
These are brief notes for the lecture on Wednesday September 15, 2010: they are not com-
plete, but they are a guide to what I want to say today. They are not guaranteed to be
correct.

2.4. Partitioned Matrices

Sometimes it is helpful to group certain rows and columns of a matrix together, and to regard
the entries as one object: for example, the 6× 6 matrix

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1


looks rather like a diagonal matrix: except that down the diagonal we have 2 × 2 matrices
instead of numbers. We can view this asJ 0 0

0 J 0
0 0 J


in which each of the entries J and 0 (“blocks”) is a 2 × 2 matrix. Sometimes this is a very
useful view to take.

Things can get more complicated: the pattern of blocks might be such that different blocks
have different sizes: However, all the blocks in a row of blocks have to have the same number
of rows, and all the blocks in a column of blocks have to have the same number of columns.

Example:

1



We can specify the sizes of the blocks in a partitioned m × n matrix by (m1, m2, . . . ,mk)
and n1, n2, . . . , nl), where the mi are positive integers summing to m and the nj are positive
integers summing to n. Then the partitioned matrix consists of k rows of blocks and l
columns of blocks.

If A and B are two partitioned matrices with the same block sizes (i.e. the list of mi and nj

values are the same) then we can add A and B by adding each of their blocks. To multiply
a partitioned matrix by a scalar, just multiply each block by the scalar.

Matrix multiplication is (surprise!) more complicated! Partitioned matrices A and B can
be multiplied together (in a manner respecting the partition) if each block of A can be
multiplied into the corresponding block of B: that is, if the partitioning of the columns of
A is the same as the partitioning of the rows of B.

In this case, things work out just as we would expect:(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
A special case of this is when the blocks of A are just the columns of A, the blocks of B are
just the rows of B, and, of course, the number of columns of A is equal to the number of
rows of B. Then

A = [col1(A), col2(A), . . . , coln(A)] and B =


row1(B)
row2(B)

...
rown(B)


If A is m× n and B is n× p then each rowi(A)colj(B) is a m× p matrix, and

AB = col1(A)row1(B) + col2(A)row2(B) + . . . coln(A)rown(B)

Example: Compute

(
1 2 3
3 2 1

)4 5
6 5
4 3

 in this manner.

Inverses of block matrices are rather more complicated. We won’t touch much on them here.
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2.5. Matrix Factorizations

It is often the case that we need to repeatedly solve matrix equations Ax = b1, Ax = b2, . . .
, Ax = bp (solving for different values of x each time, of course). If A is invertible, of
course, it would be easy to compute A−1 and just compute A−1b1, etc. However, there is
another efficient method, one which is actually used in practice. This is the so-called LU
decomposition or factorization of A.

Suppose that A is a m×n matrix which can be row-reduced to echelon form (not reduced row
echelon form!) without switching rows. Then if the elementary row operations have matrices
E1, E2, . . . Ek, then we get U = EkEk−1 . . . E2E1A is in echelon form. Now EkEk−1 . . . E2E1

is the product of lower triangular m × m matrices (that is, matrices for which the entries
above the diagonal are 0) and each of them has 1’s down the diagonal (since for reduction
to echelon form we don’t divide rows by a scalar to make the leading entry equal to 1).

Hence A can be written as LU , where L = E−1
1 E−1

2 . . . Ek is lower triangular, and has 1’s
down the diagonal (it is a unit lower triangular matrix) and U is in echelon form.

A =


1 0 0 0
∗ 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1




� ∗ ∗ ∗ ∗
0 � ∗ ∗ ∗
0 0 0 � ∗
0 0 0 0 0


Here ∗ refers to any real number, and � marks the pivots in U .

To solve the equation Ax = b we see that it is the same as solving LUx = b. If we first solve
the equation Ly = b then the equation Ux = y we will solve the system.

But Ly = b is easy to solve, since L is lower triangular. And since U is upper triangular, the
equation Ux = y is also easy to solve.
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2.6. Subspaces of Rn

In Chapter 4 we will meet general vector spaces, and study subspaces of them: in order to
make the ideas we meet there more concrete, we’ll briefly discuss subspaces and dimension
of subspaces here.

A subspace of Rn is a set of vectors in Rn which looks like a copy of Rm in its own right:
for example, if we are in R3, any plane through the origin looks a lot like R2: it is “2-
dimensional”, the sum of any two vectors in the plane is in the plane, and any scalar multiple
of a vector in the plane is in the plane. Similarly, any line through the origin looks a lot like
R = R1. How can we formalize this notion, and get our hands on what “dimension” means?

Definition. A subspace of Rn is a set H of vectors in Rn with the following three properties:

(1) The zero vector 0 from Rn is in H.

(2) For every u, v ∈ H, u + v ∈ H.

(3) For each u ∈ H and c ∈ R, cu ∈ H.

Example 1: If v1 and v2 are in Rn, then Span(v1, v2) is a subspace of Rn. To check this,
note first that 0 = 0v1 + 0v2.
Now check it is closed under addition:

Now check it is closed under scalar multiplication:

Example 2: A line not through the origin is not a subspace: it doesn’t contain 0. Also, it
is not closed under scalar multiplication or addition.

Example 3: For v1, v2, . . . vp ∈ Rn, Span(v1, v2, . . . vp) is a subspace of Rn. We will refer to
this as the subspace spanned (or generated) by v1, v2, . . . vp.
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An important special case of this example is the following:

Definition. The column space of a matrix A is the set Col(A) of all linear combinations
of the columns of A.

That is, Col(A) is the span of the columns of A.

The other common way in which subspaces arise is as the solution set to a homogeneous
system of equations:

Definition. The null space of a matrix A is the set Nul(A) of all solutions to the homoge-
neous equation Ax = 0.

Theorem 12. The null space of a m× n matrix A is a subspace of Rn.
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