These are brief notes for the lecture on Monday September 27, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

3.1. Determinants, continued

The determinant of a matrix has a concrete geometric interpretation too:

THEOREM 1. Let A be an $n \times n$ matrix, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the corresponding linear transformation. The unit cube in \mathbb{R}^n is formed by the standard basis vectors $\underline{e}_1, \ldots, \underline{e}_n$, and has volume equal to 1. The vectors $T\underline{e}_1, \ldots, T\underline{e}_n$ define a parallelepiped in \mathbb{R}^n , and the volume of the parallelepiped is equal to $|\det(A)|$. The sign of the determinant is determined by whether the parallelepiped has been "reflected" or not.

This interpretation is why determinants appear so often in multivariate calculus!

4.1. Vector Spaces and Subspaces

In this section, we generalize the notion of a vector space from the examples we've seen (\mathbb{R}^n) , to include a number of other examples. As a result, we'll be able to apply tools from linear algebra (notions like linear independence, spanning sets, linear transformation, determinants) to these other examples.

DEFINITION. A vector space V is a non-empty set of objects called "vectors", together with two operations, called addition, + and scalar multiplication, \cdot , which satisfy the following conditions:

- (1) For all $\underline{u}, \underline{v} \in V$, $\underline{u} + \underline{v} \in V$. (Closed under addition).
- (2) For all $\underline{u}, \underline{v} \in V$, $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ (Addition is commutative).
- (3) For all $\underline{u}, \underline{v}, \underline{w} \in V$, $\underline{u} + (\underline{v} + \underline{w}) = (\underline{u} + \underline{v}) + \underline{w}$ (Addition is associative).
- (4) There is an element $\underline{0} \in V$ so that for all $\underline{u} \in V$, $\underline{u} + \underline{0} = \underline{0} + \underline{u} = \underline{u}$ (There is an additive identity).
- (5) For every $\underline{u} \in V$ there is an element $-\underline{u}$ so that $\underline{u} + (-\underline{u}) = \underline{0}$ (Every vector has an additive inverse).
- (6) For every $\underline{u} \in V$ and $c \in \mathbb{R}$, $c\underline{u} \in V$. (Closed under scalar multiplication).
- (7) For every $\underline{u}, \underline{v} \in V$ and $c \in V$, $c(\underline{u} + \underline{v}) = c\underline{u} + c\underline{v}$. (Distributivity of scalar multiplication and vector addition).
- (8) For every $\underline{u} \in V$ and $c, d \in \mathbb{R}$, $(c+d)\underline{u} = c\underline{u} + d\underline{u}$. (Distributivity of scalar multiplication and scalar addition).
- (9) For every $\underline{u} \in V$ and $c, d \in \mathbb{R}$, $c(d\underline{u}) = (cd)\underline{u}$ (Associativity of scalar multiplication).
- (10) For every $\underline{u} \in V$, $1 \cdot \underline{u} = \underline{u}$. (The real number 1 is a scalar multiplicative identity).

Note: there are a large number of conditions here: and to check whether a particular set V is a vector space, we do have to check all of them. However, as tedious as this may sometimes be, it is usually straightforward, and the major point is the following:

If the elements of a non-empty set V can be added together, multiplied by constants, and stay in V, and things work nicely, then V is a vector space.

Mostly, things "work nicely", except in sets constructed specially to show that you really *ought* to check all ten conditions!

There are some nice facts which follow from the definition: in particular, 0 and <u>0</u> work the way that we'd like them to. For every $\underline{u} \in V$ and $c \in \mathbb{R}$

(1)
$$0\underline{u} = \underline{0}$$

(2)
$$c\underline{0} = \underline{0}$$

 $(3) \ -\underline{u} = (-1)\underline{u}$

(Note that $-\underline{u}$ refers to the additive inverse of the vector \underline{u} : this shows that we *can* choose to interpret it as (-1) times the vector \underline{u} .

Proof:

We'll now see several examples of sets which are familiar from other areas of mathematics, but which can be viewed as vector spaces.

Example Let $n \ge 0$ be an integer. The set \mathbb{P}_n of polynomials of degree at most n consists of all polynomials of the form

$$p(t) = a_0 + a_1 t + \dots + a_n t^n$$

where the coefficients a_0, a_1, \ldots, a_n and the variable t are real numbers. The *degree* of p(t) is the highest power of t whose coefficient is not zero. If $p(t) = a_0 \neq 0$, then the degree of p(t) is zero. If all the coefficients of p(t) are zero, then we call p(t) the zero polynomial: its degree is technically speaking undefined, but we include it in the set \mathbb{P}_n too.

We can add two polynomials:

We can multiply a polynomial by a scalar:

The set \mathbb{P}_n is a vector space. The zero polynomial is the zero vector.

Example: Let \mathbb{P}_n be the set of all polynomials, that is $\mathbb{P} = \bigcup_{n \ge 0} \mathbb{P}_n$. Then \mathbb{P} is also a vector space. Note also that $\mathbb{P}_0 \subseteq \mathbb{P}_1 \subseteq \mathbb{P}_2 \ldots$ and for each $n \ge 0$, $\mathbb{P}_n \subseteq \mathbb{P}$.

Example Let C(0, 1) be the set of continuous functions defined on the interval (0, 1). Then we can add two continuous functions and get a continuous function: we can multiply a continuous function by a constant and we still get a continuous function: and addition and multiplication "work nicely": so C(0, 1) is also a vector space. Here the zero vector is the function which is zero on the interval (0, 1).

Example Let V be the set of functions $f(t) \in C(0, 1)$ with the property that

$$\int_0^1 f(t) \, \mathrm{d}t = 0.$$

Then the sum of two functions with integral zero is a function whose integral is zero. If we multiply f by a scalar, we still get a function whose integral is zero. Addition and multiplication "work nicely", so this is also a vector space. What is the zero vector?

Example Let V be the set of functions $f \in C(0,1)$ for which f(1/2) = 0. Is this a vector space?

Example Let V be the set of functions $f \in C(0, 1)$ for which f(1/2) = 1. Is this a vector space?