These are brief notes for the lecture on Friday October 8, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.3. Linear Independence in Vector Spaces; Bases

Definition. Suppose that V is a vector space, and that $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{p} \in V$. This sequence of vectors is a basis for V if it is linearly independent and spans V. A basis for a subspace $H<V$ is a sequence of vectors in H which is linearly independent and spans H.

Note: often a set of vectors is described as a basis, but then the discussion uses that \underline{b}_{1} is the first vector in the set, \underline{b}_{2} is the second vector in the set, etc. This makes it slightly better to refer to a sequence of vectors as being a basis (or as the book puts it, an "indexed set", which is non-standard terminology). For our purposes, we will allow a basis to be either a sequence or a set as is most convenient.

Example: Let $A=\left[\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{n}\right]$ be an invertible $n \times n$ matrix. What does the Invertible Matrix Theorem say about $\left\{\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{n}\right\}$?

Example: $\left\{\underline{e}_{1}, \underline{e}_{2}, \ldots, \underline{e}_{n}\right\}$ is a basis for \mathbb{R}^{n}. Why?

Example: $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for \mathbb{P}_{n}. Why?

Theorem 5. Let V be a vector space, and $S=\left\{\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{p}\right\} \subseteq V$, and let $H=\operatorname{Span}\left(\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{p}\right)$.
(1) If there exists k so that \underline{v}_{k} is a linear combination of the other vectors in S, then

$$
H=\operatorname{Span}\left(\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k-1}, \underline{v}_{k+1}, \ldots, \underline{v}_{p}\right)
$$

(2) If $H \neq\{\underline{0}\}$ then some subset of S is a basis for H.

Proof:

(1) Suppose that $\underline{u} \in H$. We need to show that \underline{u} is a linear combination of vectors in $\underline{v}_{1}, \ldots, \underline{v}_{k-1}, \underline{v}_{k+1} \ldots, \underline{v}_{n}$. We know that it is a linear combination of vectors in S.
(2) If S is linearly independent, then it is a basis. Otherwise, there is a non-trivial linear combination of vectors in S giving $\underline{0}$, and hence there is some vector in S which can be written as a linear combination of the others. Hence we can replace S by a smaller set S^{\prime} which still spans H. Clearly we can continue this process, and it has to stop either with $S^{\prime}=\emptyset$ (in which case $H=\{\underline{0}\}$) or with S^{\prime} a linearly independent set spanning H, and hence a basis for H.

Bases for Nul A and $\operatorname{Col} A$

We already have seen how to find a basis for $\operatorname{Nul} A$: row reduce A to obtain a matrix in reduced row echelon form and use this to express the null space in vector parametric form. The vectors appearing will be the basis for $\operatorname{Nul} A$.

Example: Let

$$
B=\left(\begin{array}{lllll}
1 & 3 & 0 & 2 & 9 \\
0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Find a basis for Nul B.

For the same matrix B, find a basis for $\operatorname{Col} B$.

Fact: If $A \sim B$, then the linear dependencies of the columns of A are exactly the same as the linear dependencies of the columns of B.

Theorem 6. The pivot columns of a matrix A form a basis for Col A.

Note: A basis is

- A spanning set which is as small as possible
- A linearly independent set which is as big as possible

Example: which of the following sets of vectors form a basis for \mathbb{R}^{3}.
(1) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)\right\}$
(2) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$
(3) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

4.4. Coordinate Systems

Theorem 8 (Unique Representation Theorem). Let V be a vector space, and let $\mathcal{B}=$ $\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}$ be a basis for V. Then for every $\underline{v} \in V$, there is a unique vector $\underline{x}=$ $\left(\begin{array}{r}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ so that

$$
\underline{v}=x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n} .
$$

Proof: Since \mathcal{B} is a basis, we know that there is at least one representation of this form (since $\underline{v} \in V$ and \mathcal{B} spans V, \underline{v} is a linear combination of the elements of \mathcal{B}.

So, we just have to show that there is only one such representation: this will follow from the fact that \mathcal{B} is linearly independent.

Suppose that we also have

$$
\underline{v}=y_{1} \underline{b}_{1}+y_{2} \underline{b}_{2}+\cdots+y_{n} \underline{b}_{n} .
$$

We will show that $x_{1}=y_{1}, x_{2}=y_{2}, \ldots$ Subtracting the two expressions for \underline{v}, we obtain

$$
\underline{0}=\left(x_{1}-y_{1}\right) \underline{b}_{1}+\left(x_{2}-y_{2}\right) \underline{b}_{2}+\cdots+\left(x_{n}-y_{n}\right) \underline{b}_{n} .
$$

but since \mathcal{B} is linearly independent, this implies that each of the values $x_{1}-y_{1}, x_{2}-y_{2}$, etc. must be 0 . Hence $x_{i}=y_{i}$ as claimed.

