
These are brief notes for the lecture on Friday October 8, 2010: they are not complete, but
they are a guide to what I want to say today. They are not guaranteed to be correct.

4.3. Linear Independence in Vector Spaces; Bases

Definition. Suppose that V is a vector space, and that v1, v2, . . . , vp ∈ V . This sequence
of vectors is a basis for V if it is linearly independent and spans V . A basis for a subspace
H < V is a sequence of vectors in H which is linearly independent and spans H.

Note: often a set of vectors is described as a basis, but then the discussion uses that b1 is
the first vector in the set, b2 is the second vector in the set, etc. This makes it slightly better
to refer to a sequence of vectors as being a basis (or as the book puts it, an “indexed set”,
which is non-standard terminology). For our purposes, we will allow a basis to be either a
sequence or a set as is most convenient.

Example: Let A = [a1, a2, . . . , an] be an invertible n× n matrix. What does the Invertible
Matrix Theorem say about {a1, a2, . . . , an}?

Example: {e1, e2, . . . , en} is a basis for Rn. Why?

Example: {1, x, x2, . . . , xn} is a basis for Pn. Why?

Theorem 5. Let V be a vector space, and S = {v1, v2, . . . , vp} ⊆ V , and let H = Span(v1, v2, . . . , vp).

(1) If there exists k so that vk is a linear combination of the other vectors in S, then

H = Span(v1, v2, . . . , vk−1, vk+1, . . . , vp)

(2) If H 6= {0} then some subset of S is a basis for H.

Proof:
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(1) Suppose that u ∈ H. We need to show that u is a linear combination of vectors in
v1, . . . , vk−1, vk+1 . . . , vn. We know that it is a linear combination of vectors in S.

(2) If S is linearly independent, then it is a basis. Otherwise, there is a non-trivial
linear combination of vectors in S giving 0, and hence there is some vector in S
which can be written as a linear combination of the others. Hence we can replace
S by a smaller set S ′ which still spans H. Clearly we can continue this process,
and it has to stop either with S ′ = ∅ (in which case H = {0}) or with S ′ a linearly
independent set spanning H, and hence a basis for H.
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Bases for Nul A and Col A
We already have seen how to find a basis for Nul A: row reduce A to obtain a matrix in
reduced row echelon form and use this to express the null space in vector parametric form.
The vectors appearing will be the basis for Nul A.

Example: Let

B =


1 3 0 2 9
0 0 1 5 0
0 0 0 0 1
0 0 0 0 0

 .

Find a basis for Nul B.

For the same matrix B, find a basis for Col B.

Fact: If A ∼ B, then the linear dependencies of the columns of A are exactly the same as
the linear dependencies of the columns of B.

Theorem 6. The pivot columns of a matrix A form a basis for Col A.

3



Note: A basis is

• A spanning set which is as small as possible

• A linearly independent set which is as big as possible

Example: which of the following sets of vectors form a basis for R3.

(1)


1

0
0

 ,

2
3
1


(2)


1

0
0

 ,

2
3
1

 ,

0
0
1


(3)


1

0
0

 ,

2
3
1

 ,

0
0
1

 ,

1
1
1


4.4. Coordinate Systems

Theorem 8 (Unique Representation Theorem). Let V be a vector space, and let B =
{b1, b2, . . . , bn} be a basis for V . Then for every v ∈ V , there is a unique vector x =x1

...
xn

 ∈ Rn so that

v = x1b1 + x2b2 + · · ·+ xnbn.

Proof: Since B is a basis, we know that there is at least one representation of this form
(since v ∈ V and B spans V , v is a linear combination of the elements of B.

So, we just have to show that there is only one such representation: this will follow from the
fact that B is linearly independent.

Suppose that we also have
v = y1b1 + y2b2 + · · ·+ ynbn.

We will show that x1 = y1, x2 = y2, . . . . Subtracting the two expressions for v, we obtain

0 = (x1 − y1)b1 + (x2 − y2)b2 + · · ·+ (xn − yn)bn.

but since B is linearly independent, this implies that each of the values x1− y1, x2− y2, etc.
must be 0. Hence xi = yi as claimed.
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