These are brief notes for the lecture on Monday October 11, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.3. Linear Independence in Vector Spaces; Bases continued

Bases for Nul A and Col A

We already have seen how to find a basis for Nul A: row reduce A to obtain a matrix in reduced row echelon form and use this to express the null space in vector parametric form. The vectors appearing will be the basis for Nul A.

Example: Let

$$B = \begin{pmatrix} 1 & 3 & 0 & 2 & 9 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Find a basis for Nul B.

For the same matrix B, find a basis for Col B.

Fact: If $A \sim B$, then the linear dependencies of the columns of A are exactly the same as the linear dependencies of the columns of B.

Proof of the fact: we note that if the coefficients of a linear combination of columns of A are x_1, x_2, \ldots, x_n are placed in a vector \underline{x} , then the linear combination gives $\underline{0}$ if and only if $A\underline{x} = \underline{0}$. If we consider row reducing A by an elementary operation, this corresponds to replacing A by EA, where E is an elementary matrix (and hence invertible). Thus

 $EA\underline{x} = \underline{0} \iff A\underline{x} = \underline{0}$ since if $A\underline{x} = \underline{0}$ then $EA\underline{x} = E\underline{0} = \underline{0}$. Conversely if $EA\underline{x} = \underline{0}$ then $E^{-1}\underline{0} = E^{-1}EA\underline{x} = IA\underline{x} = A\underline{x}$.

Consequently the linear dependencies of A are the same as the linear dependencies of EA, and hence are the same as the row-reduced echelon form of A, and so any linearly independent set of columns of A corresponds exactly to a linearly independent set of vectors of B.

THEOREM 6. The pivot columns of a matrix A form a basis for Col A.

Alternatively, we can write this as an algorithm:

Algorithm: To compute a basis for the column space of a matrix A: row reduce the matrix, and determine which columns have pivots in. The *corresponding columns in A* form a basis for the column space.

Note: the basis is drawn from the columns of the original matrix, not from its row-reduced form.

Note: A basis is

- A spanning set which is as small as possible
- A linearly independent set which is as big as possible

Example: which of the following sets of vectors form a basis for \mathbb{R}^3 .

$$(1) \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix} \right\}$$
$$(2) \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
$$(3) \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

4.4. Coordinate Systems

THEOREM 8 (Unique Representation Theorem). Let V be a vector space, and let \mathcal{B} = $\{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ be a basis for V. Then for every $\underline{v} \in V$, there is a unique vector $\underline{x} =$

 $\in \mathbb{R}^n$ so that

. . .

$$\underline{v} = x_1\underline{b}_1 + x_2\underline{b}_2 + \dots + x_n\underline{b}_n.$$

Proof: Since \mathcal{B} is a basis, we know that there is at least one representation of this form (since $\underline{v} \in V$ and \mathcal{B} spans V, \underline{v} is a linear combination of the elements of \mathcal{B}).

So, we just have to show that there is only one such representation: this will follow from the fact that \mathcal{B} is linearly independent.

Suppose that we also have

$$\underline{v} = y_1\underline{b}_1 + y_2\underline{b}_2 + \dots + y_n\underline{b}_n$$

We will show that $x_1 = y_1, x_2 = y_2, \ldots$ Subtracting the two expressions for \underline{v} , we obtain

$$\underline{0} = (x_1 - y_1)\underline{b}_1 + (x_2 - y_2)\underline{b}_2 + \dots + (x_n - y_n)\underline{b}_n$$

but since \mathcal{B} is linearly independent, this implies that each of the values $x_1 - y_1$, $x_2 - y_2$, etc. must be 0. Hence $x_i = y_i$ as claimed.

Notation: Suppose \mathcal{B} and V are as above. Given a vector $\underline{v} \in V$ we write

$$[\underline{v}]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

provided that

$$\underline{v} = \sum_{i=1}^{n} x_i \underline{b}_i = x_1 \underline{b}_1 + x_2 \underline{b}_2 + \dots + x_n \underline{b}_n.$$

We refer to this as the co-ordinate representation of \underline{v} with respect to the basis \mathcal{B} . This will enable us to use all the tools, all the machinery we have for \mathbb{R}^n to analyze general vector spaces in terms of their bases.

Example: Suppose that $\underline{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\underline{b}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then $\mathcal{B} = \{\underline{b}_1, \underline{b}_2\}$ is a basis for \mathbb{R}^2 . Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$[\underline{x}]_{\mathcal{B}} = \begin{pmatrix} 5\\ -7 \end{pmatrix}.$$

Then $\underline{x} =$

Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$[\underline{x}]_{\mathcal{B}} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Then $\underline{x} =$

Suppose $\underline{x} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$. Then $[\underline{x}]_{\mathcal{B}} =$

Suppose
$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Then $[\underline{x}]_{\mathcal{B}} =$