
These are brief notes for the lecture on Monday October 11, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.3. Linear Independence in Vector Spaces; Bases continued

Bases for Nul A and Col A
We already have seen how to find a basis for Nul A: row reduce A to obtain a matrix in
reduced row echelon form and use this to express the null space in vector parametric form.
The vectors appearing will be the basis for Nul A.

Example: Let

B =


1 3 0 2 9
0 0 1 5 0
0 0 0 0 1
0 0 0 0 0

 .

Find a basis for Nul B.

For the same matrix B, find a basis for Col B.
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Fact: If A ∼ B, then the linear dependencies of the columns of A are exactly the same as
the linear dependencies of the columns of B.

Proof of the fact: we note that if the coefficients of a linear combination of columns of A
are x1, x2, . . . , xn are placed in a vector x, then the linear combination gives 0 if and only
if Ax = 0. If we consider row reducing A by an elementary operation, this corresponds to
replacing A by EA, where E is an elementary matrix (and hence invertible). Thus

EAx = 0 ⇐⇒ Ax = 0

since if Ax = 0 then EAx = E0 = 0. Conversely if EAx = 0 then E−10 = E−1EAx =
IAx = Ax.

Consequently the linear dependencies of A are the same as the linear dependencies of EA,
and hence are the same as the row-reduced echelon form of A, and so any linearly independent
set of columns of A corresponds exactly to a linearly independent set of vectors of B.

Theorem 6. The pivot columns of a matrix A form a basis for Col A.

Alternatively, we can write this as an algorithm:
Algorithm: To compute a basis for the column space of a matrix A: row reduce the matrix,
and determine which columns have pivots in. The corresponding columns in A form a basis
for the column space.

Note: the basis is drawn from the columns of the original matrix, not from its row-reduced
form.

Note: A basis is

• A spanning set which is as small as possible

• A linearly independent set which is as big as possible
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Example: which of the following sets of vectors form a basis for R3.

(1)


1

0
0

 ,

2
3
1


(2)


1

0
0

 ,

2
3
1

 ,

0
0
1


(3)


1

0
0

 ,

2
3
1

 ,

0
0
1

 ,

1
1
1


4.4. Coordinate Systems

Theorem 8 (Unique Representation Theorem). Let V be a vector space, and let B =
{b1, b2, . . . , bn} be a basis for V . Then for every v ∈ V , there is a unique vector x =x1

...
xn

 ∈ Rn so that

v = x1b1 + x2b2 + · · ·+ xnbn.

Proof: Since B is a basis, we know that there is at least one representation of this form
(since v ∈ V and B spans V , v is a linear combination of the elements of B).

So, we just have to show that there is only one such representation: this will follow from the
fact that B is linearly independent.

Suppose that we also have

v = y1b1 + y2b2 + · · ·+ ynbn.

We will show that x1 = y1, x2 = y2, . . . . Subtracting the two expressions for v, we obtain

0 = (x1 − y1)b1 + (x2 − y2)b2 + · · ·+ (xn − yn)bn.

but since B is linearly independent, this implies that each of the values x1− y1, x2− y2, etc.
must be 0. Hence xi = yi as claimed.

Notation: Suppose B and V are as above. Given a vector v ∈ V we write

[v]B =


x1

x2
...

xn


provided that

v =
n∑

i=1

xibi = x1b1 + x2b2 + · · ·+ xnbn.
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We refer to this as the co-ordinate representation of v with respect to the basis B. This will
enable us to use all the tools, all the machinery we have for Rn to analyze general vector
spaces in terms of their bases.

Example: Suppose that b1 =

(
1
0

)
and b2 =

(
1
1

)
. Then B = {b1, b2} is a basis for R2.

Suppose that x has a co-ordinate representation with respect to this basis

[x]B =

(
5
−7

)
.

Then x =

Suppose that x has a co-ordinate representation with respect to this basis

[x]B =

(
y1
y2

)
.

Then x =

Suppose x =

(
2
7

)
.

Then [x]B =

Suppose x =

(
x1

x2

)
.

Then [x]B =
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