These are brief notes for the lecture on Monday October 11, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.3. Linear Independence in Vector Spaces; Bases continued

Bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$

We already have seen how to find a basis for $\operatorname{Nul} A$: row reduce A to obtain a matrix in reduced row echelon form and use this to express the null space in vector parametric form. The vectors appearing will be the basis for $\operatorname{Nul} A$.

Example: Let

$$
B=\left(\begin{array}{lllll}
1 & 3 & 0 & 2 & 9 \\
0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Find a basis for Nul B.

For the same matrix B, find a basis for $\mathrm{Col} B$.

Fact: If $A \sim B$, then the linear dependencies of the columns of A are exactly the same as the linear dependencies of the columns of B.

Proof of the fact: we note that if the coefficients of a linear combination of columns of A are $x_{1}, x_{2}, \ldots, x_{n}$ are placed in a vector \underline{x}, then the linear combination gives $\underline{0}$ if and only if $A \underline{x}=\underline{0}$. If we consider row reducing A by an elementary operation, this corresponds to replacing A by $E A$, where E is an elementary matrix (and hence invertible). Thus

$$
E A \underline{x}=\underline{0} \quad \Longleftrightarrow \quad A \underline{x}=\underline{0}
$$

since if $A \underline{x}=\underline{0}$ then $E A \underline{x}=E \underline{0}=\underline{0}$. Conversely if $E A \underline{x}=\underline{0}$ then $E^{-1} \underline{0}=E^{-1} E A \underline{x}=$ $I A \underline{x}=A \underline{x}$.
Consequently the linear dependencies of A are the same as the linear dependencies of $E A$, and hence are the same as the row-reduced echelon form of A, and so any linearly independent set of columns of A corresponds exactly to a linearly independent set of vectors of B.

Theorem 6. The pivot columns of a matrix A form a basis for Col A.

Alternatively, we can write this as an algorithm:
Algorithm: To compute a basis for the column space of a matrix A : row reduce the matrix, and determine which columns have pivots in. The corresponding columns in A form a basis for the column space.

Note: the basis is drawn from the columns of the original matrix, not from its row-reduced form.

Note: A basis is

- A spanning set which is as small as possible
- A linearly independent set which is as big as possible

Example: which of the following sets of vectors form a basis for \mathbb{R}^{3}.
(1) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)\right\}$
(2) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$
(3) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

4.4. Coordinate Systems

Theorem 8 (Unique Representation Theorem). Let V be a vector space, and let $\mathcal{B}=$ $\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}$ be a basis for V. Then for every $\underline{v} \in V$, there is a unique vector $\underline{x}=$ $\left(\begin{array}{r}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ so that

$$
\underline{v}=x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n} .
$$

Proof: Since \mathcal{B} is a basis, we know that there is at least one representation of this form (since $\underline{v} \in V$ and \mathcal{B} spans V, \underline{v} is a linear combination of the elements of \mathcal{B}).

So, we just have to show that there is only one such representation: this will follow from the fact that \mathcal{B} is linearly independent.

Suppose that we also have

$$
\underline{v}=y_{1} \underline{b}_{1}+y_{2} \underline{b}_{2}+\cdots+y_{n} \underline{b}_{n} .
$$

We will show that $x_{1}=y_{1}, x_{2}=y_{2}, \ldots$ Subtracting the two expressions for \underline{v}, we obtain

$$
\underline{0}=\left(x_{1}-y_{1}\right) \underline{b}_{1}+\left(x_{2}-y_{2}\right) \underline{b}_{2}+\cdots+\left(x_{n}-y_{n}\right) \underline{b}_{n} .
$$

but since \mathcal{B} is linearly independent, this implies that each of the values $x_{1}-y_{1}, x_{2}-y_{2}$, etc. must be 0 . Hence $x_{i}=y_{i}$ as claimed.

Notation: Suppose \mathcal{B} and V are as above. Given a vector $\underline{v} \in V$ we write

$$
[\underline{v}]_{\mathcal{B}}=\left(\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

provided that

$$
\underline{v}=\sum_{i=1}^{n} x_{i} \underline{b}_{i}=x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n} .
$$

We refer to this as the co-ordinate representation of \underline{v} with respect to the basis \mathcal{B}. This will enable us to use all the tools, all the machinery we have for \mathbb{R}^{n} to analyze general vector spaces in terms of their bases.
Example: Suppose that $\underline{b}_{1}=\binom{1}{0}$ and $\underline{b}_{2}=\binom{1}{1}$. Then $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}\right\}$ is a basis for \mathbb{R}^{2}. Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$
[\underline{x}]_{\mathcal{B}}=\binom{5}{-7} .
$$

Then $\underline{x}=$

Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$
[\underline{x}]_{\mathcal{B}}=\binom{y_{1}}{y_{2}} .
$$

Then $\underline{x}=$

Suppose $\underline{x}=\binom{2}{7}$.
Then $[\underline{x}]_{\mathcal{B}}=$

Suppose $\underline{x}=\binom{x_{1}}{x_{2}}$.
Then $[\underline{x}]_{\mathcal{B}}=$

