
These are brief notes for the lecture on Wednesday October 13, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.4. Coordinate Systems

Theorem 8 (Unique Representation Theorem). Let V be a vector space, and let B =
{b1, b2, . . . , bn} be a basis for V . Then for every v ∈ V , there is a unique vector x =x1

...
xn

 ∈ Rn so that

v = x1b1 + x2b2 + · · ·+ xnbn.

Proof: Since B is a basis, we know that there is at least one representation of this form
(since v ∈ V and B spans V , v is a linear combination of the elements of B).

So, we just have to show that there is only one such representation: this will follow from the
fact that B is linearly independent.

Suppose that we also have
v = y1b1 + y2b2 + · · ·+ ynbn.

We will show that x1 = y1, x2 = y2, . . . . Subtracting the two expressions for v, we obtain

0 = (x1 − y1)b1 + (x2 − y2)b2 + · · ·+ (xn − yn)bn.

but since B is linearly independent, this implies that each of the values x1− y1, x2− y2, etc.
must be 0. Hence xi = yi as claimed.

Notation: Suppose B and V are as above. Given a vector v ∈ V we write

[v]B =


x1

x2
...

xn


provided that

v =
n∑

i=1

xibi = x1b1 + x2b2 + · · ·+ xnbn.

We refer to this as the co-ordinate representation of v with respect to the basis B. This will
enable us to use all the tools, all the machinery we have for Rn to analyze general vector
spaces in terms of their bases.
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Example: Suppose that b1 =

(
1
0

)
and b2 =

(
1
1

)
. Then B = {b1, b2} is a basis for R2.

Suppose that x has a co-ordinate representation with respect to this basis

[x]B =

(
5
−7

)
.

Then x =

Suppose that x has a co-ordinate representation with respect to this basis

[x]B =

(
y1
y2

)
.

Then x =

Suppose x =

(
2
7

)
.

Then [x]B =

Suppose x =

(
x1

x2

)
.

Then [x]B =

Co-ordinates in Rn

Suppose that we are given a basis B = {b1, . . . , bp} for the vector space Rn. Write PB =
[b1, b2, . . . , bp]

Then, since every vector v is representable uniquely as a linear combination of the vectors
in B, we have that for every v ∈ Rn the vector equation

x1b1 + x2b2 + · · ·+ xpbp = v

(or the corresponding matrix equation PBx = v) has a unique solution.
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Hence when we row-reduce B we must have a matrix with a pivot in every column (the
representation is unique) and in every row (every equation has a solution). Hence B must
be square, and so p = n. Let’s take this into account and start the discussion again.

Suppose that we are given a basis B = {b1, . . . , bn} for the vector space Rn. Then the vector
equation

x1b1 + x2b2 + · · ·+ xpbn = v

corresponds to the matrix equation
v = PBx.

But the values x1, x2, . . . , xn in x are precisely the co-ordinates of v with respect to the basis
B. Hence

v = PB[v]B.

Definition. PB is called the change of co-ordinates matrix.

Now, since every vector is expressible uniquely, it means that the equation is solveable for
every v, and so PB is invertible, and then

P−1B v = P−1B PB[v]B = [v]B

that is,
[v]B = P−1B v.

So we can find the co-ordinates [v]B with respect to B of the vector v by multiplying it by
P−1B .

Theorem 8. Let B = {b1, . . . , bn} be a basis for a vector space V . Let T : V → Rn be
defined by

T (v) = [v]B.

Then T is a one-to-one linear transformation onto Rn.

Note: We have assumed that the number of vectors in the basis is equal to n, the dimension
of Rn.

Proof: It is a linear transformation:

It is one-to-one

It is onto

We say that V is isomorphic to Rn (isomorphic meaning “same shape” or “same form”),
which we write as V ' Rn.

3



Corollary. For any vectors v, v1, . . . , vk ∈ V ,

[v]B = 0 ⇐⇒ v = 0

and
[c1v1 + c2v2 + · · ·+ vk]B = c1[v1]B + c2[v2]B + · · ·+ ck[vk]B.

Example: P3 has basis B = {1, x, x2, x3}. If

p(x) = ax3 + bx2 + cx + d ∈ P3

then

[p(x)]B =


 .

P3 ' .

Example: B′ = {1, x, x2− x, x3− 3x2 + 2x} is also a basis for P3. For the same p(x) above,
compute [p(x)]B′ .
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