These are brief notes for the lecture on Wednesday October 13, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.4. Coordinate Systems

Theorem 8 (Unique Representation Theorem). Let V be a vector space, and let $\mathcal{B}=$ $\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}$ be a basis for V. Then for every $\underline{v} \in V$, there is a unique vector $\underline{x}=$ $\left(\begin{array}{r}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ so that

$$
\underline{v}=x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n} .
$$

Proof: Since \mathcal{B} is a basis, we know that there is at least one representation of this form (since $\underline{v} \in V$ and \mathcal{B} spans V, \underline{v} is a linear combination of the elements of \mathcal{B}).
So, we just have to show that there is only one such representation: this will follow from the fact that \mathcal{B} is linearly independent.

Suppose that we also have

$$
\underline{v}=y_{1} \underline{b}_{1}+y_{2} \underline{b}_{2}+\cdots+y_{n} \underline{b}_{n} .
$$

We will show that $x_{1}=y_{1}, x_{2}=y_{2}, \ldots$ Subtracting the two expressions for \underline{v}, we obtain

$$
\underline{0}=\left(x_{1}-y_{1}\right) \underline{b}_{1}+\left(x_{2}-y_{2}\right) \underline{b}_{2}+\cdots+\left(x_{n}-y_{n}\right) \underline{b}_{n} .
$$

but since \mathcal{B} is linearly independent, this implies that each of the values $x_{1}-y_{1}, x_{2}-y_{2}$, etc. must be 0 . Hence $x_{i}=y_{i}$ as claimed.

Notation: Suppose \mathcal{B} and V are as above. Given a vector $\underline{v} \in V$ we write

$$
[\underline{v}]_{\mathcal{B}}=\left(\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

provided that

$$
\underline{v}=\sum_{i=1}^{n} x_{i} \underline{b}_{i}=x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n} .
$$

We refer to this as the co-ordinate representation of \underline{v} with respect to the basis \mathcal{B}. This will enable us to use all the tools, all the machinery we have for \mathbb{R}^{n} to analyze general vector spaces in terms of their bases.

Example: Suppose that $\underline{b}_{1}=\binom{1}{0}$ and $\underline{b}_{2}=\binom{1}{1}$. Then $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}\right\}$ is a basis for \mathbb{R}^{2}. Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$
[\underline{x}]_{\mathcal{B}}=\binom{5}{-7} .
$$

Then $\underline{x}=$

Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$
[\underline{x}]_{\mathcal{B}}=\binom{y_{1}}{y_{2}} .
$$

Then $\underline{x}=$

Suppose $\underline{x}=\binom{2}{7}$.
Then $[\underline{x}]_{\mathcal{B}}=$

Suppose $\underline{x}=\binom{x_{1}}{x_{2}}$.
Then $[\underline{x}]_{\mathcal{B}}=$

Co-ordinates in \mathbb{R}^{n}

Suppose that we are given a basis $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{p}\right\}$ for the vector space \mathbb{R}^{n}. Write $P_{\mathcal{B}}=$ $\left[\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{p}\right]$

Then, since every vector \underline{v} is representable uniquely as a linear combination of the vectors in \mathcal{B}, we have that for every $\underline{v} \in \mathbb{R}^{n}$ the vector equation

$$
x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{p} \underline{b}_{p}=\underline{v}
$$

(or the corresponding matrix equation $P_{\mathcal{B}} \underline{x}=\underline{v}$) has a unique solution.

Hence when we row-reduce B we must have a matrix with a pivot in every column (the representation is unique) and in every row (every equation has a solution). Hence B must be square, and so $p=n$. Let's take this into account and start the discussion again.
Suppose that we are given a basis $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ for the vector space \mathbb{R}^{n}. Then the vector equation

$$
x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{p} \underline{b}_{n}=\underline{v}
$$

corresponds to the matrix equation

$$
\underline{v}=P_{\mathcal{B}} \underline{x} .
$$

But the values $x_{1}, x_{2}, \ldots, x_{n}$ in \underline{x} are precisely the co-ordinates of \underline{v} with respect to the basis \mathcal{B}. Hence

$$
\underline{v}=P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}} .
$$

Definition. $P_{\mathcal{B}}$ is called the change of co-ordinates matrix.
Now, since every vector is expressible uniquely, it means that the equation is solveable for every \underline{v}, and so $P_{\mathcal{B}}$ is invertible, and then

$$
P_{\mathcal{B}}^{-1} \underline{v}=P_{\mathcal{B}}^{-1} P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}}=[\underline{v}]_{\mathcal{B}}
$$

that is,

$$
[\underline{v}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \underline{v}
$$

So we can find the co-ordinates $[\underline{v}]_{\mathcal{B}}$ with respect to \mathcal{B} of the vector \underline{v} by multiplying it by $P_{\mathcal{B}}^{-1}$.

Theorem 8. Let $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ be a basis for a vector space V. Let $T: V \rightarrow \mathbb{R}^{n}$ be defined by

$$
T(\underline{v})=[\underline{v}]_{\mathcal{B}} .
$$

Then T is a one-to-one linear transformation onto \mathbb{R}^{n}.
Note: We have assumed that the number of vectors in the basis is equal to n, the dimension of \mathbb{R}^{n}.

Proof: It is a linear transformation:

It is one-to-one

It is onto

We say that V is isomorphic to \mathbb{R}^{n} (isomorphic meaning "same shape" or "same form"), which we write as $V \simeq \mathbb{R}^{n}$.

Corollary. For any vectors $\underline{v}, \underline{v}_{1}, \ldots, \underline{v}_{k} \in V$,

$$
[\underline{v}]_{\mathcal{B}}=\underline{0} \quad \Longleftrightarrow \quad \underline{v}=\underline{0}
$$

and

$$
\left[c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}+\cdots+\underline{v}_{k}\right]_{\mathcal{B}}=c_{1}\left[\underline{v}_{1}\right]_{\mathcal{B}}+c_{2}\left[\underline{v}_{2}\right]_{\mathcal{B}}+\cdots+c_{k}\left[\underline{v}_{k}\right]_{\mathcal{B}} .
$$

Example: \mathbb{P}_{3} has basis $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$. If

$$
p(x)=a x^{3}+b x^{2}+c x+d \in \mathbb{P}_{3}
$$

then

$$
[p(x)]_{\mathcal{B}}=(\quad)
$$

$\mathbb{P}_{3} \simeq$ \qquad .
Example: $\mathcal{B}^{\prime}=\left\{1, x, x^{2}-x, x^{3}-3 x^{2}+2 x\right\}$ is also a basis for \mathbb{P}_{3}. For the same $p(x)$ above, compute $[p(x)]_{\mathcal{B}^{\prime}}$.

