These are brief notes for the lecture on Wednesday October 13, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.4. Coordinate Systems

THEOREM 8 (Unique Representation Theorem). Let V be a vector space, and let $\mathcal{B} = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ be a basis for V. Then for every $\underline{v} \in V$, there is a unique vector $\underline{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ so that $v = x_1 b_1 + x_2 b_2 + \dots + x_n b_n$.

Proof: Since \mathcal{B} is a basis, we know that there is at least one representation of this form (since $\underline{v} \in V$ and \mathcal{B} spans V, \underline{v} is a linear combination of the elements of \mathcal{B}).

So, we just have to show that there is only one such representation: this will follow from the fact that \mathcal{B} is linearly independent.

Suppose that we also have

$$\underline{v} = y_1\underline{b}_1 + y_2\underline{b}_2 + \dots + y_n\underline{b}_n.$$

We will show that $x_1 = y_1, x_2 = y_2, \ldots$ Subtracting the two expressions for \underline{v} , we obtain

$$\underline{0} = (x_1 - y_1)\underline{b}_1 + (x_2 - y_2)\underline{b}_2 + \dots + (x_n - y_n)\underline{b}_n$$

but since \mathcal{B} is linearly independent, this implies that each of the values $x_1 - y_1$, $x_2 - y_2$, etc. must be 0. Hence $x_i = y_i$ as claimed.

Notation: Suppose \mathcal{B} and V are as above. Given a vector $\underline{v} \in V$ we write

$$[\underline{v}]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

provided that

$$\underline{v} = \sum_{i=1}^{n} x_i \underline{b}_i = x_1 \underline{b}_1 + x_2 \underline{b}_2 + \dots + x_n \underline{b}_n.$$

We refer to this as the co-ordinate representation of \underline{v} with respect to the basis \mathcal{B} . This will enable us to use all the tools, all the machinery we have for \mathbb{R}^n to analyze general vector spaces in terms of their bases.

Example: Suppose that $\underline{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\underline{b}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then $\mathcal{B} = \{\underline{b}_1, \underline{b}_2\}$ is a basis for \mathbb{R}^2 . Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$[\underline{x}]_{\mathcal{B}} = \begin{pmatrix} 5\\ -7 \end{pmatrix}.$$

Then $\underline{x} =$

Suppose that \underline{x} has a co-ordinate representation with respect to this basis

$$[\underline{x}]_{\mathcal{B}} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

Then $\underline{x} =$

Suppose $\underline{x} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$. Then $[\underline{x}]_{\mathcal{B}} =$

Suppose $\underline{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Then $[\underline{x}]_{\mathcal{B}} =$

Co-ordinates in \mathbb{R}^n

Suppose that we are given a basis $\mathcal{B} = \{\underline{b}_1, \ldots, \underline{b}_p\}$ for the vector space \mathbb{R}^n . Write $P_{\mathcal{B}} = [\underline{b}_1, \underline{b}_2, \ldots, \underline{b}_p]$

Then, since every vector \underline{v} is representable uniquely as a linear combination of the vectors in \mathcal{B} , we have that for every $\underline{v} \in \mathbb{R}^n$ the vector equation

$$x_1\underline{b}_1 + x_2\underline{b}_2 + \dots + x_p\underline{b}_p = \underline{v}$$

(or the corresponding matrix equation $P_{\mathcal{B}}\underline{x} = \underline{v}$) has a unique solution.

Hence when we row-reduce B we must have a matrix with a pivot in every column (the representation is unique) and in every row (every equation has a solution). Hence B must be square, and so p = n. Let's take this into account and start the discussion again.

Suppose that we are given a basis $\mathcal{B} = \{\underline{b}_1, \dots, \underline{b}_n\}$ for the vector space \mathbb{R}^n . Then the vector equation

$$x_1\underline{b}_1 + x_2\underline{b}_2 + \dots + x_p\underline{b}_n = \underline{v}$$

corresponds to the matrix equation

 $\underline{v} = P_{\mathcal{B}}\underline{x}.$

But the values x_1, x_2, \ldots, x_n in \underline{x} are precisely the co-ordinates of \underline{v} with respect to the basis \mathcal{B} . Hence

$$\underline{v} = P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}}.$$

DEFINITION. $P_{\mathcal{B}}$ is called the change of co-ordinates matrix.

Now, since every vector is expressible uniquely, it means that the equation is solveable for every \underline{v} , and so $P_{\mathcal{B}}$ is invertible, and then

$$P_{\mathcal{B}}^{-1}\underline{v} = P_{\mathcal{B}}^{-1}P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}$$

that is,

$$[\underline{v}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\underline{v}.$$

So we can find the co-ordinates $[\underline{v}]_{\mathcal{B}}$ with respect to \mathcal{B} of the vector \underline{v} by multiplying it by $P_{\mathcal{B}}^{-1}$.

THEOREM 8. Let $\mathcal{B} = \{\underline{b}_1, \ldots, \underline{b}_n\}$ be a basis for a vector space V. Let $T : V \to \mathbb{R}^n$ be defined by

$$\Gamma(\underline{v}) = [\underline{v}]_{\mathcal{B}}.$$

Then T is a one-to-one linear transformation onto \mathbb{R}^n .

Note: We have assumed that the number of vectors in the basis is equal to n, the dimension of \mathbb{R}^n .

Proof: It is a linear transformation:

It is one-to-one

It is onto

We say that V is isomorphic to \mathbb{R}^n (isomorphic meaning "same shape" or "same form"), which we write as $V \simeq \mathbb{R}^n$.

COROLLARY. For any vectors $\underline{v}, \underline{v}_1, \ldots, \underline{v}_k \in V$,

 $[\underline{v}]_{\mathcal{B}} = \underline{0} \qquad \Longleftrightarrow \qquad \underline{v} = \underline{0}$

and

$$[c_1\underline{v}_1 + c_2\underline{v}_2 + \dots + \underline{v}_k]_{\mathcal{B}} = c_1[\underline{v}_1]_{\mathcal{B}} + c_2[\underline{v}_2]_{\mathcal{B}} + \dots + c_k[\underline{v}_k]_{\mathcal{B}}.$$

Example: \mathbb{P}_3 has basis $\mathcal{B} = \{1, x, x^2, x^3\}$. If $p(x) = ax^3 + bx^2 + cx + d \in \mathbb{P}_3$

then

$$[p(x)]_{\mathcal{B}} = \left(\begin{array}{c} \\ \end{array} \right)$$

•

 $\mathbb{P}_3 \simeq __.$

Example: $\mathcal{B}' = \{1, x, x^2 - x, x^3 - 3x^2 + 2x\}$ is also a basis for \mathbb{P}_3 . For the same p(x) above, compute $[p(x)]_{\mathcal{B}'}$.