
These are brief notes for the lecture on Friday October 15, 2010: they are not complete, but
they are a guide to what I want to say today. They are not guaranteed to be correct.

4.4. Coordinate Systems

Suppose that we are given a basis B = {b1, . . . , bn} for the vector space Rn. Then the vector
equation

x1b1 + x2b2 + · · ·+ xpbn = v

corresponds to the matrix equation
v = PBx.

But the values x1, x2, . . . , xn in x are precisely the co-ordinates of v with respect to the basis
B. Hence

v = PB[v]B.

Definition. PB is called the change of co-ordinates matrix.

Now, since every vector is expressible uniquely, it means that the equation is solveable for
every v, and so PB is invertible, and then

P−1B v = P−1B PB[v]B = [v]B

that is,
[v]B = P−1B v.

So we can find the co-ordinates [v]B with respect to B of the vector v by multiplying it by
P−1B .

Theorem 8. Let B = {b1, . . . , bn} be a basis for a vector space V . Let T : V → Rn be
defined by

T (v) = [v]B.

Then T is a one-to-one linear transformation onto Rn.

Note: We have assumed that the number of vectors in the basis is equal to n, the dimension
of Rn.

Proof: It is a linear transformation:

It is one-to-one

It is onto

We say that V is isomorphic to Rn (isomorphic meaning “same shape” or “same form”),
which we write as V ' Rn.
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Corollary. For any vectors v, v1, . . . , vk ∈ V ,

[v]B = 0 ⇐⇒ v = 0

and
[c1v1 + c2v2 + · · ·+ vk]B = c1[v1]B + c2[v2]B + · · ·+ ck[vk]B.

Example: P3 has basis B = {1, x, x2, x3}. If

p(x) = ax3 + bx2 + cx + d ∈ P3

then

[p(x)]B =


 .

P3 ' .

Example: B′ = {1, x, x2− x, x3− 3x2 + 2x} is also a basis for P3. For the same p(x) above,
compute [p(x)]B′ .
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Example: Consider the set S ⊂ P3.

S = {p(x) = 1 + x + x3, q(x) = 2 + x2, r(x) = 4 + 2x + x2 + 2x3, s(x) = 1 + x + x2 + x3}.
Is S linearly dependent or linearly independent?

Example: Let v1 =

3
6
2

 , v2 =

−1
0
1

 , x =

 3
12
7

 Then {v1, v2} is a basis for H =

span(v1, v2). Is x ∈ H and if so, what is [x]B?

4.5. The Dimension of a Vector Space

Theorem 10. If a vector space V has a basis B = {b1, b2, . . . , bn} of cardinality n, then any
subset of V with more than n vectors in is linearly dependent.

Proof: Suppose that p > n and {u1, u2, . . . , up} is a set of vectors in V . Then the coordinate
vectors [u1]B, [u2]B, . . . , [up]B form a linearly dependent set of vectors in Rn since p > n and
there are p of them.

Hence we can find scalars c1, c2, . . . , cp, not all zero, so that

c1[u1]B + c2[u2]B + · · ·+ cp[up]B =

0
...
0

 (the zero vector in Rn)

Since the coordinate mapping is a linear transformation,

[c1u1 + c2u2 + · · ·+ cpup]B =

0
...
0


But since the coordinate mapping is one-to-one, this means that c1u1 + c2u2 + · · ·+ cpup = 0,
and since not all of the ci are zero, the vectors are linearly dependent.
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Theorem 11. If V is a vector space with a basis of size n, then every basis for V has exactly
n vectors.

Proof: Let B1 and B2 be bases having n and p vectors respectively. We will show that
n = p. First, since B1 is a basis, and B2 is linearly independent, from the previous theorem
we know that p ≤ n. Similarly, since B2 is a basis, and B1 is linearly dependent, n ≤ p.
Thus p ≤ n ≤ p and we see that p = n. �

Recall that if V is spanned by a finite set, then by repeatedly discarding vectors which are
part of a non-trivial linear combination giving zero, we can find a basis for V . This theorem
says that every basis must have the same number of vectors in it.

Definition. If V is spanned by a finite set, then V is said to be finite dimensional, and the
dimension of V , written as dimV , is the number of vectors in a basis for V . The dimension
of the zero vector space {0} is defined to be zero. If V is not spanned by a finite set, then V
is said to be infinite dimensional.

Example

dimRn =

dimPn =

dimP =

Example: Find the dimension of the subspace

H =



a + 4b + c + 2d

a + 2b + d
a + 5b + c + 3d

b + d

 : a, b, c, d ∈ R


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