These are brief notes for the lecture on Friday October 15, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.4. Coordinate Systems

Suppose that we are given a basis $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ for the vector space \mathbb{R}^{n}. Then the vector equation

$$
x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{p} \underline{b}_{n}=\underline{v}
$$

corresponds to the matrix equation

$$
\underline{v}=P_{\mathcal{B}} \underline{x} .
$$

But the values $x_{1}, x_{2}, \ldots, x_{n}$ in \underline{x} are precisely the co-ordinates of \underline{v} with respect to the basis \mathcal{B}. Hence

$$
\underline{v}=P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}} .
$$

Definition. $P_{\mathcal{B}}$ is called the change of co-ordinates matrix.
Now, since every vector is expressible uniquely, it means that the equation is solveable for every \underline{v}, and so $P_{\mathcal{B}}$ is invertible, and then

$$
P_{\mathcal{B}}^{-1} \underline{v}=P_{\mathcal{B}}^{-1} P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}}=[\underline{v}]_{\mathcal{B}}
$$

that is,

$$
[\underline{v}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \underline{v}
$$

So we can find the co-ordinates $[\underline{v}]_{\mathcal{B}}$ with respect to \mathcal{B} of the vector \underline{v} by multiplying it by $P_{\mathcal{B}}^{-1}$.
THEOREM 8. Let $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ be a basis for a vector space V. Let $T: V \rightarrow \mathbb{R}^{n}$ be defined by

$$
T(\underline{v})=[\underline{v}]_{\mathcal{B}} .
$$

Then T is a one-to-one linear transformation onto \mathbb{R}^{n}.
Note: We have assumed that the number of vectors in the basis is equal to n, the dimension of \mathbb{R}^{n}.

Proof: It is a linear transformation:

It is one-to-one

It is onto

We say that V is isomorphic to \mathbb{R}^{n} (isomorphic meaning "same shape" or "same form"), which we write as $V \simeq \mathbb{R}^{n}$.

Corollary. For any vectors $\underline{v}, \underline{v}_{1}, \ldots, \underline{v}_{k} \in V$,

$$
[\underline{v}]_{\mathcal{B}}=\underline{0} \quad \Longleftrightarrow \quad \underline{v}=\underline{0}
$$

and

$$
\left[c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}+\cdots+\underline{v}_{k}\right]_{\mathcal{B}}=c_{1}\left[\underline{v}_{1}\right]_{\mathcal{B}}+c_{2}\left[\underline{v}_{2}\right]_{\mathcal{B}}+\cdots+c_{k}\left[\underline{v}_{k}\right]_{\mathcal{B}} .
$$

Example: \mathbb{P}_{3} has basis $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$. If

$$
p(x)=a x^{3}+b x^{2}+c x+d \in \mathbb{P}_{3}
$$

then

$$
[p(x)]_{\mathcal{B}}=(\quad)
$$

$\mathbb{P}_{3} \simeq$ \qquad .
Example: $\mathcal{B}^{\prime}=\left\{1, x, x^{2}-x, x^{3}-3 x^{2}+2 x\right\}$ is also a basis for \mathbb{P}_{3}. For the same $p(x)$ above, compute $[p(x)]_{\mathcal{B}^{\prime}}$.

Example: Consider the set $S \subset \mathbb{P}_{3}$.

$$
S=\left\{p(x)=1+x+x^{3}, q(x)=2+x^{2}, r(x)=4+2 x+x^{2}+2 x^{3}, s(x)=1+x+x^{2}+x^{3}\right\} .
$$

Is S linearly dependent or linearly independent?

Example: Let $\underline{v}_{1}=\left(\begin{array}{l}3 \\ 6 \\ 2\end{array}\right), \underline{v}_{2}=\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right), \underline{x}=\left(\begin{array}{r}3 \\ 12 \\ 7\end{array}\right)$ Then $\left\{\underline{v}_{1}, \underline{v}_{2}\right\}$ is a basis for $H=$ $\operatorname{span}\left(\underline{v}_{1}, \underline{v}_{2}\right)$. Is $\underline{x} \in H$ and if so, what is $[\underline{x}]_{\mathcal{B}}$?

4.5. The Dimension of a Vector Space

Theorem 10. If a vector space V has a basis $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}$ of cardinality n, then any subset of V with more than n vectors in is linearly dependent.

Proof: Suppose that $p>n$ and $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{p}\right\}$ is a set of vectors in V. Then the coordinate vectors $\left[\underline{u}_{1}\right]_{\mathcal{B}},\left[\underline{u}_{2}\right]_{\mathcal{B}}, \ldots,\left[\underline{u}_{p}\right]_{\mathcal{B}}$ form a linearly dependent set of vectors in \mathbb{R}^{n} since $p>n$ and there are p of them.

Hence we can find scalars $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, so that

$$
c_{1}\left[\underline{u}_{1}\right]_{\mathcal{B}}+c_{2}\left[\underline{u}_{2}\right]_{\mathcal{B}}+\cdots+c_{p}\left[\underline{u}_{p}\right]_{\mathcal{B}}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \quad\left(\text { the zero vector in } \mathbb{R}^{n}\right)
$$

Since the coordinate mapping is a linear transformation,

$$
\left[c_{1} \underline{u}_{1}+c_{2} \underline{u}_{2}+\cdots+c_{p} \underline{u}_{p}\right]_{\mathcal{B}}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

But since the coordinate mapping is one-to-one, this means that $c_{1} \underline{u}_{1}+c_{2} \underline{u}_{2}+\cdots+c_{p} \underline{u}_{p}=\underline{0}$, and since not all of the c_{i} are zero, the vectors are linearly dependent.

THEOREM 11. If V is a vector space with a basis of size n, then every basis for V has exactly n vectors.

Proof: Let \mathcal{B}_{1} and \mathcal{B}_{2} be bases having n and p vectors respectively. We will show that $n=p$. First, since \mathcal{B}_{1} is a basis, and \mathcal{B}_{2} is linearly independent, from the previous theorem we know that $p \leq n$. Similarly, since \mathcal{B}_{2} is a basis, and \mathcal{B}_{1} is linearly dependent, $n \leq p$. Thus $p \leq n \leq p$ and we see that $p=n$.

Recall that if V is spanned by a finite set, then by repeatedly discarding vectors which are part of a non-trivial linear combination giving zero, we can find a basis for V. This theorem says that every basis must have the same number of vectors in it.
Definition. If V is spanned by a finite set, then V is said to be finite dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\underline{0}\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite dimensional.

Example

$$
\begin{aligned}
& \operatorname{dim} \mathbb{R}^{n}= \\
& \operatorname{dim} \mathbb{P}_{n}= \\
& \operatorname{dim} \mathbb{P}=
\end{aligned}
$$

Example: Find the dimension of the subspace

$$
H=\left\{\left(\begin{array}{c}
a+4 b+c+2 d \\
a+2 b+d \\
a+5 b+c+3 d \\
b+d
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

