These are brief notes for the lecture on Monday October 18, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.4. Coordinate Systems

Suppose that we are given a basis $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ for the vector space \mathbb{R}^{n}. Then the vector equation

$$
x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{p} \underline{b}_{n}=\underline{v}
$$

corresponds to the matrix equation

$$
\underline{v}=P_{\mathcal{B}} \underline{x} .
$$

But the values $x_{1}, x_{2}, \ldots, x_{n}$ in \underline{x} are precisely the co-ordinates of \underline{v} with respect to the basis \mathcal{B}. Hence

$$
\underline{v}=P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}}
$$

Definition. $P_{\mathcal{B}}$ is called the change of co-ordinates matrix.
Now, since every vector is expressible uniquely, it means that the equation is solveable for every \underline{v}, and so $P_{\mathcal{B}}$ is invertible, and then

$$
P_{\mathcal{B}}^{-1} \underline{v}=P_{\mathcal{B}}^{-1} P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}}=[\underline{v}]_{\mathcal{B}}
$$

that is,

$$
[\underline{v}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \underline{v}
$$

So we can find the co-ordinates $[\underline{v}]_{\mathcal{B}}$ with respect to \mathcal{B} of the vector \underline{v} by multiplying it by $P_{\mathcal{B}}^{-1}$.
Theorem 8. Let $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ be a basis for a vector space V. Let $T: V \rightarrow \mathbb{R}^{n}$ be defined by

$$
T(\underline{v})=[\underline{v}]_{\mathcal{B}} .
$$

Then T is a one-to-one linear transformation onto \mathbb{R}^{n}.
Note: The number of vectors in the basis is equal to n, the dimension of \mathbb{R}^{n}, the space we are mapping to.

We say that V is isomorphic to \mathbb{R}^{n} (isomorphic meaning "same shape" or "same form"), which we write as $V \simeq \mathbb{R}^{n}$.

Corollary. For any vectors $\underline{v}, \underline{v}_{1}, \ldots, \underline{v}_{k} \in V$,

$$
[\underline{v}]_{\mathcal{B}}=\underline{0} \quad \Longleftrightarrow \quad \underline{v}=\underline{0}
$$

and

$$
\left[c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}+\cdots+\underline{v}_{k}\right]_{\mathcal{B}}=c_{1}\left[\underline{v}_{1}\right]_{\mathcal{B}}+c_{2}\left[\underline{v}_{2}\right]_{\mathcal{B}}+\cdots+c_{k}\left[\underline{v}_{k}\right]_{\mathcal{B}} .
$$

4.5. The Dimension of a Vector Space

Theorem 10. If a vector space V has a basis $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}$ of cardinality n, then any subset of V with more than n vectors in is linearly dependent.

Proof: Suppose that $p>n$ and $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{p}\right\}$ is a set of vectors in V. Then the coordinate vectors $\left[\underline{u}_{1}\right]_{\mathcal{B}},\left[\underline{u}_{2}\right]_{\mathcal{B}}, \ldots,\left[\underline{u}_{p}\right]_{\mathcal{B}}$ form a linearly dependent set of vectors in \mathbb{R}^{n} since $p>n$ and there are p of them.
Hence we can find scalars $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, so that

$$
c_{1}\left[\underline{u}_{1}\right]_{\mathcal{B}}+c_{2}\left[\underline{u}_{2}\right]_{\mathcal{B}}+\cdots+c_{p}\left[\underline{u}_{p}\right]_{\mathcal{B}}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \quad \text { (the zero vector in } \mathbb{R}^{n} \text {) }
$$

Since the coordinate mapping is a linear transformation,

$$
\left[c_{1} \underline{u}_{1}+c_{2} \underline{u}_{2}+\cdots+c_{p} \underline{u}_{p}\right]_{\mathcal{B}}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

But since the coordinate mapping is one-to-one, this means that $c_{1} \underline{u}_{1}+c_{2} \underline{u}_{2}+\cdots+c_{p} \underline{u}_{p}=\underline{0}$, and since not all of the c_{i} are zero, the vectors are linearly dependent.

Theorem 11. If V is a vector space with a basis of size n, then every basis for V has exactly n vectors.

Proof: Let \mathcal{B}_{1} and \mathcal{B}_{2} be bases having n and p vectors respectively. We will show that $n=p$. First, since \mathcal{B}_{1} is a basis, and \mathcal{B}_{2} is linearly independent, from the previous theorem we know that $p \leq n$. Similarly, since \mathcal{B}_{2} is a basis, and \mathcal{B}_{1} is linearly dependent, $n \leq p$. Thus $p \leq n \leq p$ and we see that $p=n$.

Recall that if V is spanned by a finite set, then by repeatedly discarding vectors which are part of a non-trivial linear combination giving zero, we can find a basis for V. This theorem says that every basis must have the same number of vectors in it.

Definition. If V is spanned by a finite set, then V is said to be finite dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\underline{0}\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite dimensional.

Example

$$
\begin{array}{r}
\operatorname{dim} \mathbb{R}^{n}= \\
\operatorname{dim} \mathbb{P}_{n}= \\
\operatorname{dim} \mathbb{P}=
\end{array}
$$

Example: Find the dimension of the subspace

$$
H=\left\{\left(\begin{array}{c}
a+4 b+c+2 d \\
a+2 b+d \\
a+5 b+c+3 d \\
b+d
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

We now show that subspaces of finite dimensional vector spaces are also finite dimensional, and that we can build a basis in a natural way.

Theorem 11. If $V R$ is a finite-dimensional vector space, and if $H<V$, then any linearly independent set $S \subset H$ can be expanded to a basis for H and

$$
\operatorname{dim}(H) \leq \operatorname{dim}(V)
$$

Proof: The key idea is that if $S=\left\{\underline{u}_{1}, \ldots, \underline{u}_{k}\right\}$ and if S doesn't span H, then there is a vector $\underline{u}_{k+1} \notin \operatorname{Span}(S)$, so that $\left\{\underline{u}_{1}, \ldots, \underline{u}_{k}, \underline{u}_{k+1}\right\}$ is still linearly independent. We continue enlarging S as long as it doesn't span H. This process has to stop, since the number of vectors we get can't exceed the dimension of V. Since S is then a basis for H, and the number of vectors in S is at most the dimension of V, we have $\operatorname{dim}(H) \leq \operatorname{dim}(V)$.

If we know the dimension of V, then finding a basis can be made somewhat simpler:
Theorem 12. Suppose that V is a p-dimensional vector space. Then
(1) Any linearly independent set of p vectors in V is a basis for V.
(2) Any set of p vectors which spans V is a basis for V.

Proof First, any linearly independent set can be extended to a basis. But a basis has to have p vectors in, hence it can't be any bigger. Hence the linearly independent set must already be a basis.
Secondly, any spanning set contains a basis. But a basis has to have p vectors in, and there is only one subset of the spanning set having p vectors in, namely the whole set. Hence the spanning set must already be a basis.

The dimensions of $\operatorname{Nul}(A)$ and $\operatorname{Col}(A)$

$$
\begin{gathered}
\operatorname{dim}(\operatorname{Col}(A))=\text { number of pivots in } A \\
\operatorname{dim}(\operatorname{Nul}(A))=\text { number of free variables in rref of } A
\end{gathered}
$$

Note: the dimension of the null space is the number of columns of A minus the number of pivots.

Hence we have

$$
\operatorname{dim}(\operatorname{Col}(A))+\operatorname{dim}(\operatorname{Nul}(A))=\text { number of columns of } A .
$$

