These are brief notes for the lecture on Monday October 18, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.4. Coordinate Systems

Suppose that we are given a basis $\mathcal{B} = \{\underline{b}_1, \dots, \underline{b}_n\}$ for the vector space \mathbb{R}^n . Then the vector equation

$$x_1\underline{b}_1 + x_2\underline{b}_2 + \dots + x_p\underline{b}_n = \underline{v}$$

corresponds to the matrix equation

$$\underline{v} = P_{\mathcal{B}}\underline{x}$$

But the values x_1, x_2, \ldots, x_n in \underline{x} are precisely the co-ordinates of \underline{v} with respect to the basis \mathcal{B} . Hence

 $\underline{v} = P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}}.$

DEFINITION. $P_{\mathcal{B}}$ is called the change of co-ordinates matrix.

Now, since every vector is expressible uniquely, it means that the equation is solveable for every \underline{v} , and so $P_{\mathcal{B}}$ is invertible, and then

$$P_{\mathcal{B}}^{-1}\underline{v} = P_{\mathcal{B}}^{-1}P_{\mathcal{B}}[\underline{v}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}$$

that is,

$$[\underline{v}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\underline{v}.$$

So we can find the co-ordinates $[\underline{v}]_{\mathcal{B}}$ with respect to \mathcal{B} of the vector \underline{v} by multiplying it by $P_{\mathcal{B}}^{-1}$.

THEOREM 8. Let $\mathcal{B} = \{\underline{b}_1, \ldots, \underline{b}_n\}$ be a basis for a vector space V. Let $T : V \to \mathbb{R}^n$ be defined by

$$\Gamma(\underline{v}) = [\underline{v}]_{\mathcal{B}}.$$

Then T is a one-to-one linear transformation onto \mathbb{R}^n .

Note: The number of vectors in the basis is equal to n, the dimension of \mathbb{R}^n , the space we are mapping to.

We say that V is isomorphic to \mathbb{R}^n (isomorphic meaning "same shape" or "same form"), which we write as $V \simeq \mathbb{R}^n$.

COROLLARY. For any vectors $\underline{v}, \underline{v}_1, \ldots, \underline{v}_k \in V$,

$$[\underline{v}]_{\mathcal{B}} = \underline{0} \qquad \Longleftrightarrow \qquad \underline{v} = \underline{0}$$

and

 $[c_1\underline{v}_1 + c_2\underline{v}_2 + \dots + \underline{v}_k]_{\mathcal{B}} = c_1[\underline{v}_1]_{\mathcal{B}} + c_2[\underline{v}_2]_{\mathcal{B}} + \dots + c_k[\underline{v}_k]_{\mathcal{B}}.$

4.5. The Dimension of a Vector Space

THEOREM 10. If a vector space V has a basis $\mathcal{B} = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ of cardinality n, then any subset of V with more than n vectors in is linearly dependent.

Proof: Suppose that p > n and $\{\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_p\}$ is a set of vectors in V. Then the coordinate vectors $[\underline{u}_1]_{\mathcal{B}}, [\underline{u}_2]_{\mathcal{B}}, \ldots, [\underline{u}_p]_{\mathcal{B}}$ form a linearly dependent set of vectors in \mathbb{R}^n since p > n and there are p of them.

Hence we can find scalars c_1, c_2, \ldots, c_p , not all zero, so that

$$c_1[\underline{u}_1]_{\mathcal{B}} + c_2[\underline{u}_2]_{\mathcal{B}} + \dots + c_p[\underline{u}_p]_{\mathcal{B}} = \begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix} \quad (\text{the zero vector in } \mathbb{R}^n)$$

Since the coordinate mapping is a linear transformation,

$$[c_1\underline{u}_1 + c_2\underline{u}_2 + \dots + c_p\underline{u}_p]_{\mathcal{B}} = \begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix}$$

But since the coordinate mapping is one-to-one, this means that $c_1\underline{u}_1 + c_2\underline{u}_2 + \cdots + c_p\underline{u}_p = \underline{0}$, and since not all of the c_i are zero, the vectors are linearly dependent.

THEOREM 11. If V is a vector space with a basis of size n, then every basis for V has exactly n vectors.

Proof: Let \mathcal{B}_1 and \mathcal{B}_2 be bases having n and p vectors respectively. We will show that n = p. First, since \mathcal{B}_1 is a basis, and \mathcal{B}_2 is linearly independent, from the previous theorem we know that $p \leq n$. Similarly, since \mathcal{B}_2 is a basis, and \mathcal{B}_1 is linearly dependent, $n \leq p$. Thus $p \leq n \leq p$ and we see that p = n.

Recall that if V is spanned by a finite set, then by repeatedly discarding vectors which are part of a non-trivial linear combination giving zero, we can find a basis for V. This theorem says that every basis must have the same number of vectors in it.

DEFINITION. If V is spanned by a finite set, then V is said to be finite dimensional, and the dimension of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\underline{0}\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite dimensional.

Example

 $\dim \mathbb{R}^n =$ $\dim \mathbb{P}_n =$ $\dim \mathbb{P} =$

Example: Find the dimension of the subspace

$$H = \left\{ \begin{pmatrix} a + 4b + c + 2d \\ a + 2b + d \\ a + 5b + c + 3d \\ b + d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$$

We now show that subspaces of finite dimensional vector spaces are also finite dimensional, and that we can build a basis in a natural way.

THEOREM 11. If VR is a finite-dimensional vector space, and if H < V, then any linearly independent set $S \subset H$ can be expanded to a basis for H and

$$\dim(H) \le \dim(V).$$

Proof: The key idea is that if $S = \{\underline{u}_1, \ldots, \underline{u}_k\}$ and if S doesn't span H, then there is a vector $\underline{u}_{k+1} \notin \text{Span}(S)$, so that $\{\underline{u}_1, \ldots, \underline{u}_k, \underline{u}_{k+1}\}$ is still linearly independent. We continue enlarging S as long as it doesn't span H. This process has to stop, since the number of vectors we get can't exceed the dimension of V. Since S is then a basis for H, and the number of vectors in S is at most the dimension of V, we have $\dim(H) \leq \dim(V)$.

If we know the dimension of V, then finding a basis can be made somewhat simpler:

THEOREM 12. Suppose that V is a p-dimensional vector space. Then

- (1) Any linearly independent set of p vectors in V is a basis for V.
- (2) Any set of p vectors which spans V is a basis for V.

Proof First, any linearly independent set can be extended to a basis. But a basis has to have p vectors in, hence it can't be any bigger. Hence the linearly independent set must already be a basis.

Secondly, any spanning set contains a basis. But a basis has to have p vectors in, and there is only one subset of the spanning set having p vectors in, namely the whole set. Hence the spanning set must already be a basis.

The dimensions of Nul(A) and Col(A)

dim(Col(A)) = number of pivots in Adim(Nul(A)) = number of free variables in rref of A

Note: the dimension of the null space is the number of columns of A minus the number of pivots.

Hence we have

 $\dim(\operatorname{Col}(A)) + \dim(\operatorname{Nul}(A)) =$ number of columns of A.