
These are brief notes for the lecture on Wednesday October 20, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.6. Rank

Suppose that we are given an m × n matrix A. Instead of regarding this as a collection
of n columns (as we did when we computed the column space of A), we can regard it as a
collection of m rows (each having n entries).

Now, two rows can be added together, and we get a new row with the same number of
entries: a row can be multiplied by a real number, and the row of all zeros acts as 0. Hence
the set of all rows forms a vector space.

Another viewpoint is that if we take a row of A and transpose it, we get a vector in Rm.

In either case, we can look at the subspace spanned by the set of rows of A. In the transpose
viewpoint, this is the column space of the matrix AT . We denote the span of the rows of A
by Row(A), the row space of A.

Theorem 14. If A ∼ B, then Row(A)=Row(B). If B is in echelon form, then the non-zero
rows of B are a basis for Row(B)= Row(A).

Proof: Clearly the second statement follows (each non-zero row contains a pivot, which we
can use to show that the rows are linearly independent). So, we need to show that if B ∼ A,
then Row(B)=Row(A). It is enough to show this for B = EA: then iterating this process
we can get from A to any other matrix similar to it.

Exercise: Let A =


−2 −5 8 0 −17

1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

 . Find Row(A), Col(A), and Nul(A).

Note: A ∼


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 −20
0 0 0 0 0

 .
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Theorem 15 (The Rank-Nullity Theorem). Let A be an m× n matrix. Then

dim(Row(A)) = dim(Col(A)).

We call this value rank(A) and further, we have

rank(A) + dim(Nul(A)) = n.

Proof:

Theorem 16. Let A be an n× n matrix. The following (extra) conditions are equivalent to
A being invertible:

(m) The columns of A are a basis for Rn.

(n) Col(A)=Rn.

(o) dim(Col(A)) = n.

(p) rank(A)=n.

(q) Nul(A)={0}.

(r) dim(Nul(A)) = 0.

4.7. Change of Basis

When we have a vector space V with a basis B = {b1, b2, . . . , bn} specified, we know that
every vector x ∈ V can be expressed uniquely as a linear combination of B: that is, it is
represented as the coordinate vector [x]B. Recall that the entries in the coordinate vector
are the coefficients of the linear combination.

Sometimes there is more than one natural basis to use for a vector space: if we have two
bases B and C, then each vector x can be expressed in terms of B as [x]B, and in terms of
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C as [x]C. Now, clearly these two representations are related, and either one determines the
other: we now discuss how to transform from one to the other.

Example: Suppose that we have two bases B = {b1, b2} and C = {c1, c2}. Since C is a basis,
we can express V in terms of C: suppose that we know

b1 = 4c1 + 3c2 and b1 = 2c1 + c2.

If we are given a vector x in terms of its B-coordinates [x]B, we can then determine [x]C as
follows.

Suppose [x]B =

(
3
1

)
, that is,

x = 3b1 + b2.

We can then substitute the expressions for b1 and b2 to obtain

x = 3(4c1 + 3c2) + (2c1 + c2)

= 14c1 + 10c2

Hence we obtain [x]C =

(
14
10

)
.

Let’s redo the problem from a slightly different perspective: we wish to obtain [x]C, and we
know x = 3b1 + b2. Hence we know

[x]C = [3b1]C + [b2]C

(since an equation about vectors remains true when we express it relative to coordinates!)
We can express this in matrix form by forming a matrix whose columns are [b1]C, [b1]C:

[x]C = [ [b1]C [b2]C]

(
3
1

)
.

But we know the columns of the matrix are

[b1]C =

(
4
3

)
and [b2]C =

(
2
1

)
so we have

[x]C =

(
4 2
3 1

)(
3
1

)
=

(
14
10

)
.

We can write this method up systematically: we obtain the following theorem.

Theorem 17. Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of a vector space V . Then

there is a unique n× n matrix P
C←B so that

[x]C = P
C←B [x]B.

The columns of P
C←B are the C-coordinate vectors of the vectors in the basis B. That is,

P
C←B = [ [b1]C [b2]C . . . [bn]C ] .

The matrix P
C←B is called the change-of-coordinates matrix from B to C. Multiplication

by P
C←B converts B-coordinates to C-coordinates.
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The columns of P
C←B are linearly independent since they are the coordinates relative to C of

the linearly independent set B. Hence P
C←B is invertible. So, if we multiply both sides of the

equation by P
C←B

−1
we get a formula expressing B-coordinates in terms of C-coordinates.

P
C←B

−1
[x]C = [x]B.

This means that the inverse of the change of basis matrix from B to C is the change of basis
matrix from C to B.

P
C←B

−1
= P
B←C
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