These are brief notes for the lecture on Wednesday October 20, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.6. Rank

Suppose that we are given an $m \times n$ matrix A. Instead of regarding this as a collection of n columns (as we did when we computed the column space of A), we can regard it as a collection of m rows (each having n entries).
Now, two rows can be added together, and we get a new row with the same number of entries: a row can be multiplied by a real number, and the row of all zeros acts as $\underline{0}$. Hence the set of all rows forms a vector space.

Another viewpoint is that if we take a row of A and transpose it, we get a vector in \mathbb{R}^{m}.
In either case, we can look at the subspace spanned by the set of rows of A. In the transpose viewpoint, this is the column space of the matrix A^{T}. We denote the span of the rows of A by $\operatorname{Row}(A)$, the row space of A.

Theorem 14. If $A \sim B$, then $\operatorname{Row}(A)=\operatorname{Row}(B)$. If B is in echelon form, then the non-zero rows of B are a basis for $\operatorname{Row}(B)=\operatorname{Row}(A)$.

Proof: Clearly the second statement follows (each non-zero row contains a pivot, which we can use to show that the rows are linearly independent). So, we need to show that if $B \sim A$, then $\operatorname{Row}(B)=\operatorname{Row}(A)$. It is enough to show this for $B=E A$: then iterating this process we can get from A to any other matrix similar to it.

Exercise: Let $A=\left(\begin{array}{rrrrr}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right)$. Find $\operatorname{Row}(A), \operatorname{Col}(A)$, and $\operatorname{Nul}(A)$.
Note: $A \sim\left(\begin{array}{rrrrr}1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & -20 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.

Theorem 15 (The Rank-Nullity Theorem). Let A be an $m \times n$ matrix. Then

$$
\operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(\operatorname{Col}(A)) .
$$

We call this value $\operatorname{rank}(A)$ and further, we have

$$
\operatorname{rank}(A)+\operatorname{dim}(N u l(A))=n .
$$

Proof:

Theorem 16. Let A be an $n \times n$ matrix. The following (extra) conditions are equivalent to A being invertible:
(m) The columns of A are a basis for \mathbb{R}^{n}.
(n) $\operatorname{Col}(A)=\mathbb{R}^{n}$.
(o) $\operatorname{dim}(\operatorname{Col}(A))=n$.
(p) $\operatorname{rank}(A)=n$.
(q) $\operatorname{Nul}(A)=\{\underline{0}\}$.
(r) $\operatorname{dim}(N u l(A))=0$.

4.7. Change of Basis

When we have a vector space V with a basis $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}$ specified, we know that every vector $\underline{x} \in V$ can be expressed uniquely as a linear combination of \mathcal{B} : that is, it is represented as the coordinate vector $[\underline{x}]_{\mathcal{B}}$. Recall that the entries in the coordinate vector are the coefficients of the linear combination.

Sometimes there is more than one natural basis to use for a vector space: if we have two bases \mathcal{B} and \mathcal{C}, then each vector \underline{x} can be expressed in terms of \mathcal{B} as $[\underline{x}]_{\mathcal{B}}$, and in terms of
\mathcal{C} as $[x]_{\mathcal{C}}$. Now, clearly these two representations are related, and either one determines the other: we now discuss how to transform from one to the other.

Example: Suppose that we have two bases $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}\right\}$ and $\mathcal{C}=\left\{\underline{c}_{1}, \underline{c}_{2}\right\}$. Since \mathcal{C} is a basis, we can express V in terms of \mathcal{C} : suppose that we know

$$
\underline{b}_{1}=4 \underline{c}_{1}+3 \underline{c}_{2} \quad \text { and } \quad \underline{b}_{1}=2 \underline{c}_{1}+\underline{c}_{2} .
$$

If we are given a vector \underline{x} in terms of its \mathcal{B}-coordinates $[\underline{x}]_{\mathcal{B}}$, we can then determine $[\underline{x}]_{\mathcal{C}}$ as follows.
Suppose $[\underline{x}]_{\mathcal{B}}=\binom{3}{1}$, that is,

$$
\underline{x}=3 \underline{b}_{1}+\underline{b}_{2} .
$$

We can then substitute the expressions for \underline{b}_{1} and \underline{b}_{2} to obtain

$$
\begin{aligned}
\underline{x} & =3\left(4 \underline{c}_{1}+3 \underline{c}_{2}\right)+\left(2 \underline{c}_{1}+\underline{c}_{2}\right) \\
& =14 \underline{c}_{1}+10 \underline{c}_{2}
\end{aligned}
$$

Hence we obtain $[\underline{x}]_{\mathcal{C}}=\binom{14}{10}$.
Let's redo the problem from a slightly different perspective: we wish to obtain $[\underline{x}]_{\mathcal{C}}$, and we know $\underline{x}=3 \underline{b}_{1}+\underline{b}_{2}$. Hence we know

$$
[\underline{x}]_{\mathcal{C}}=\left[3 \underline{b}_{1}\right]_{\mathcal{C}}+\left[\underline{b}_{2}\right]_{\mathcal{C}}
$$

(since an equation about vectors remains true when we express it relative to coordinates!) We can express this in matrix form by forming a matrix whose columns are $\left[\underline{b}_{1}\right]_{\mathcal{C}},\left[\underline{b}_{1}\right]_{\mathcal{C}}$:

$$
[\underline{x}]_{\mathcal{C}}=\left[\left[\underline{b}_{1}\right]_{\mathcal{C}}\left[\underline{b}_{2}\right]_{\mathcal{C}}\right]\binom{3}{1} .
$$

But we know the columns of the matrix are

$$
\left[\underline{b}_{1}\right]_{\mathcal{C}}=\binom{4}{3} \quad \text { and } \quad\left[\underline{b}_{2}\right]_{\mathcal{C}}=\binom{2}{1}
$$

so we have

$$
[\underline{x}]_{\mathcal{C}}=\left(\begin{array}{ll}
4 & 2 \\
3 & 1
\end{array}\right)\binom{3}{1}=\binom{14}{10} .
$$

We can write this method up systematically: we obtain the following theorem.
Theorem 17. Let $\mathcal{B}=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ and $\mathcal{C}=\left\{\underline{c}_{1}, \ldots, \underline{c}_{n}\right\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ so that

$$
[\underline{x}]_{\mathcal{C}}=\stackrel{P}{\mathcal{C} \leftarrow \mathcal{B}}[\underline{x}]_{\mathcal{B}}
$$

The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are the \mathcal{C}-coordinate vectors of the vectors in the basis \mathcal{B}. That is,

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\left[\underline{b}_{1}\right]_{\mathcal{C}}\left[\underline{b}_{2}\right]_{\mathcal{C}} \ldots\left[\underline{b}_{n}\right]_{\mathcal{C}}\right] .
$$

The matrix ${ }_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}. Multiplication by $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ converts \mathcal{B}-coordinates to \mathcal{C}-coordinates.

The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are linearly independent since they are the coordinates relative to \mathcal{C} of the linearly independent set \mathcal{B}. Hence $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is invertible. So, if we multiply both sides of the equation by ${ }_{\mathcal{C} \leftarrow \mathcal{B}}^{P-1}$ we get a formula expressing \mathcal{B}-coordinates in terms of \mathcal{C}-coordinates.

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}{ }^{-1}[\underline{x}]_{\mathcal{C}}=[\underline{x}]_{\mathcal{B}} .
$$

This means that the inverse of the change of basis matrix from \mathcal{B} to \mathcal{C} is the change of basis matrix from \mathcal{C} to \mathcal{B}.

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\stackrel{P}{\mathcal{B} \leftarrow \mathcal{C}}
$$

