These are brief notes for the lecture on Wednesday October 20, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

4.6. Rank

Suppose that we are given an $m \times n$ matrix A. Instead of regarding this as a collection of n columns (as we did when we computed the column space of A), we can regard it as a collection of m rows (each having n entries).

Now, two rows can be added together, and we get a new row with the same number of entries: a row can be multiplied by a real number, and the row of all zeros acts as $\underline{0}$. Hence the set of all rows forms a vector space.

Another viewpoint is that if we take a row of A and transpose it, we get a vector in \mathbb{R}^m .

In either case, we can look at the subspace spanned by the set of rows of A. In the transpose viewpoint, this is the column space of the matrix A^T . We denote the span of the rows of A by Row(A), the row space of A.

THEOREM 14. If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

Proof: Clearly the second statement follows (each non-zero row contains a pivot, which we can use to show that the rows are linearly independent). So, we need to show that if $B \sim A$, then $\operatorname{Row}(B)=\operatorname{Row}(A)$. It is enough to show this for B = EA: then iterating this process we can get from A to any other matrix similar to it.

Exercise: Let
$$A = \begin{pmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{pmatrix}$$
. Find Row(A), Col(A), and Nul(A).
Note: $A \sim \begin{pmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & -20 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

1

THEOREM 15 (The Rank-Nullity Theorem). Let A be an $m \times n$ matrix. Then $\dim(Row(A)) = \dim(Col(A)).$ We call this value rank(A) and further, we have

 $rank(A) + \dim(Nul(A)) = n.$

Proof:

THEOREM 16. Let A be an $n \times n$ matrix. The following (extra) conditions are equivalent to A being invertible:

- (m) The columns of A are a basis for \mathbb{R}^n .
- (n) $Col(A) = \mathbb{R}^n$.
- (o) $\dim(Col(A)) = n$.
- (p) rank(A)=n.
- (q) $Nul(A) = \{\underline{0}\}.$
- (r) $\dim(Nul(A)) = 0.$

4.7. Change of Basis

When we have a vector space V with a basis $\mathcal{B} = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ specified, we know that every vector $\underline{x} \in V$ can be expressed uniquely as a linear combination of \mathcal{B} : that is, it is represented as the coordinate vector $[\underline{x}]_{\mathcal{B}}$. Recall that the entries in the coordinate vector are the coefficients of the linear combination.

Sometimes there is more than one natural basis to use for a vector space: if we have two bases \mathcal{B} and \mathcal{C} , then each vector \underline{x} can be expressed in terms of \mathcal{B} as $[\underline{x}]_{\mathcal{B}}$, and in terms of

 \mathcal{C} as $[\underline{x}]_{\mathcal{C}}$. Now, clearly these two representations are related, and either one determines the other: we now discuss how to transform from one to the other.

Example: Suppose that we have two bases $\mathcal{B} = \{\underline{b}_1, \underline{b}_2\}$ and $\mathcal{C} = \{\underline{c}_1, \underline{c}_2\}$. Since \mathcal{C} is a basis, we can express V in terms of \mathcal{C} : suppose that we know

$$\underline{b}_1 = 4\underline{c}_1 + 3\underline{c}_2$$
 and $\underline{b}_1 = 2\underline{c}_1 + \underline{c}_2$.

If we are given a vector \underline{x} in terms of its \mathcal{B} -coordinates $[\underline{x}]_{\mathcal{B}}$, we can then determine $[\underline{x}]_{\mathcal{C}}$ as follows.

Suppose $[\underline{x}]_{\mathcal{B}} = \begin{pmatrix} 3\\ 1 \end{pmatrix}$, that is,

We can then substitute the expressions for \underline{b}_1 and \underline{b}_2 to obtain

$$\underline{x} = 3(4\underline{c}_1 + 3\underline{c}_2) + (2\underline{c}_1 + \underline{c}_2)$$
$$= 14c_1 + 10c_2$$

 $\underline{x} = 3\underline{b}_1 + \underline{b}_2.$

Hence we obtain $[\underline{x}]_{\mathcal{C}} = \begin{pmatrix} 14\\10 \end{pmatrix}$.

Let's redo the problem from a slightly different perspective: we wish to obtain $[\underline{x}]_{\mathcal{C}}$, and we know $\underline{x} = 3\underline{b}_1 + \underline{b}_2$. Hence we know

$$[\underline{x}]_{\mathcal{C}} = [3\underline{b}_1]_{\mathcal{C}} + [\underline{b}_2]_{\mathcal{C}}$$

(since an equation about vectors remains true when we express it relative to coordinates!) We can express this in matrix form by forming a matrix whose columns are $[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_1]_{\mathcal{C}}$:

$$[\underline{x}]_{\mathcal{C}} = [[\underline{b}_1]_{\mathcal{C}} [\underline{b}_2]_{\mathcal{C}}] \begin{pmatrix} 3\\1 \end{pmatrix}.$$

But we know the columns of the matrix are

$$[\underline{b}_1]_{\mathcal{C}} = \begin{pmatrix} 4\\ 3 \end{pmatrix} \quad \text{and} \quad [\underline{b}_2]_{\mathcal{C}} = \begin{pmatrix} 2\\ 1 \end{pmatrix}$$

so we have

$$[\underline{x}]_{\mathcal{C}} = \begin{pmatrix} 4 & 2\\ 3 & 1 \end{pmatrix} \begin{pmatrix} 3\\ 1 \end{pmatrix} = \begin{pmatrix} 14\\ 10 \end{pmatrix}$$

We can write this method up systematically: we obtain the following theorem.

THEOREM 17. Let $\mathcal{B} = \{\underline{b}_1, \ldots, \underline{b}_n\}$ and $\mathcal{C} = \{\underline{c}_1, \ldots, \underline{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ so that

$$[\underline{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} [\underline{x}]_{\mathcal{B}}.$$

The columns of $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P} = \left[\ [\underline{b}_1]_{\mathcal{C}} \ [\underline{b}_2]_{\mathcal{C}} \ \cdots \ [\underline{b}_n]_{\mathcal{C}} \right].$$

The matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is called the **change-of-coordinates matrix from** \mathcal{B} to \mathcal{C} . Multiplication by $P_{\mathcal{C}\leftarrow\mathcal{B}}$ converts \mathcal{B} -coordinates to \mathcal{C} -coordinates.

The columns of ${P \atop \mathcal{C} \leftarrow \mathcal{B}}$ are linearly independent since they are the coordinates relative to \mathcal{C} of the linearly independent set \mathcal{B} . Hence ${P \atop \mathcal{C} \leftarrow \mathcal{B}}$ is invertible. So, if we multiply both sides of the equation by ${P \atop \mathcal{C} \leftarrow \mathcal{B}}^{-1}$ we get a formula expressing \mathcal{B} -coordinates in terms of \mathcal{C} -coordinates.

$$P_{\mathcal{C}\leftarrow\mathcal{B}}^{-1}[\underline{x}]_{\mathcal{C}} = [\underline{x}]_{\mathcal{B}}.$$

This means that the inverse of the change of basis matrix from \mathcal{B} to \mathcal{C} is the change of basis matrix from \mathcal{C} to \mathcal{B} .

$$P_{\mathcal{C}\leftarrow\mathcal{B}}^{-1} = P_{\mathcal{B}\leftarrow\mathcal{C}}$$