
These are brief notes for the lecture on Wednesday October 27, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

0.1. Eigenvectors and Eigenvalues

In this chapter we are going to focus on n × n matrices A. One very important aspect
of square matrices is that when we interpret them as representing a linear transformation,
T : Rn → Rn with T : x 7→ Ax, the transformation takes Rn to itself.

When we map a space to itself, we can ask some extra questions: for example, which points,
if any, are fixed by T : that is, for which x ∈ Rn is T (x) = x? Such values are called fixed
points.

Another thing we can do with transformations from a space to itself is to iterate the trans-
formation: that is compute

x, T (x), T (T (x)), T (T (T (x))), . . .

We will examine what we say about these things for linear transformations.

Our first question might be: which fixed points does a matrix have? However, most linear
transformations corresponding to matrices have none. One reason for this is that matrices
such as, for example, (

2 0
0 3

)
and

(
1/2 0

0 1/3

)
have the effect of either stretching or shrinking vectors (and some matrices do both) and
that some matrices, for example, (

1 1
−1 1

)
have even more complicated behaviour. We will handle the stretching or shrinking question
here (and if we work with complex numbers instead of real numbers) we can deal with the
latter example too.

Consider the matrix

A =

(
1 2
2 1

)
and the corresponding transformation T : x 7→ Ax, for various vectors x.

• x =

(
0
0

)
: T (x) =

Of course, any linear transformation takes the zero vector to the zero vector!
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• x =

(
1
0

)
: T (x) =

• x =

(
2
0

)
: T (x) =

Of course, for any linear transformation, if we know T (x) then we know T (cx) = cT (x)!

• x =

(
0
1

)
: T (x) =

• x =

(
1
1

)
: T (x) =

• x =

(
2
1

)
: T (x) =

• x =

(
1
−1

)
: T (x) =

Of these, let’s focus on the vectors

(
1
1

)
and

(
1
−1

)
.

Each of these vectors has the property that Ax is parallel to x, that is, there is a real
number λ (depending on which vector we pick) so that Ax = λx. (Aside: λ is the Greek
letter lambda, corresponding to our letter l).

Definition. Let A be an n× n matrix. A non-zero vector x ∈ Rn is called an eigenvector
of A if there exists some scalar λ ∈ R so that Ax = λx. If x is an eigenvector of A, the
corresponding value λ is called an eigenvalue of A, and we say that λ is an eigenvalue of A
with eigenvector x.

Note: while an eigenvector x must be non-zero (so that we are always excluding the trivial

case A0 = 0) it is possible for the value λ to be zero. For example:

(
1 2
2 4

)
has eigenvector(

2
−1

)
with eigenvalue 0.

Note: If x is an eigenvector of A with eigenvalue λ, and if c ∈ R is a non-zero scalar, then
cx is also an eigenvector with eigenvalue λ: however, since each is a scalar multiple of the
other, we don’t really get any new information from the two of them than from one.

Example: (
1 6
5 2

)(
6
−5

)
=

(
−24

20

)
= −4

(
6
−5

)
.

Thus we see that

(
6
−5

)
is an eigenvector of this matrix, and −4 is the corresponding

eigenvalue. This illustrates the following method: to show that a non-zero vector x is an
eigenvector of A, compute Ax, and check that it is a scalar multiple of x.
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To show that λ is an eigenvalue of A we have to work a little harder. We have to find a
solution x to the equation Ax = λx. Let’s do an example: let λ = 7 and

A =

(
2 4
5 3

)
.

To show that λ is an eigenvalue of A we need to find x so that Ax = λx. This is equivalent
to solving (

2 4
5 3

)(
x1
x2

)
= 7

(
x1
x2

)
or (

2− 7 4
5 3− 7

)(
x1
x2

)
=

(
0
0

)
that is to say, (

−5 4
5 −4

)(
x1
x2

)
=

(
0
0

)
.

Clearly x1 = 4, x2 = 5 is a solution to this, with x 6= 0. Hence λ = 7 is an eigenvalue of A.

Note: For any scalar λ:

Ax = λx ⇐⇒ Ax− λIx = 0 ⇐⇒ x ∈ Nul(A− λI)

Definition. If dim(Nul(A − λI)) > 0 (that is, if there are non-zero vectors in the null
space) then Nul(A − λI) is called the eigenspace for A corresponding to the eigenvalue λ,
since any x ∈ Nul(A− λI) satisfies Ax = λx.

Note: This means that all non-zero vectors in the eigenspace are eigenvectors of A with
eigenvalue λ.

Example: Find a basis for the eigenspace corresponding to the eigenvector 2 for the matrix

A =

4 −1 6
2 1 6
2 −1 8

 .
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Theorem 1. The eigenvalues of an upper triangular matrix (or of a lower triangular matrix)
are its diagonal entries.

Proof:

Note:

The number 0 is an eigenvalue of A

⇐⇒ there exists x 6= 0 so that Ax = 0x

⇐⇒ there exists x 6= 0 so that Ax− 0x = 0.

⇐⇒ there exists x 6= 0 ∈ Nul(A)

⇐⇒ A is not invertible.

Eigenvectors with the same eigenvalue (together with the zero vector) form a subspace. In
some sense, they behave similarly to each other. To continue the analogy, eigenvectors having
different eigenvalues must be somehow very different from each other.

For example, if v1, v2 are eigenvectors of A with eigenvalues λ1, λ2 respectively, and λ1 6= λ2,
then v1, v2 cannot be scalar multiples of each other. Indeed if

v1 = cv2

then
Av1 = Acv2 =⇒ λ1v1 = cλ2v2

so cλ1 = cλ2, so c = 0. But then v1 = 0, so it wasn’t an eigenvector in the first place!

The following (often very useful) theorem is a typical rephrasing of that idea:

Theorem 2. If v1, . . . , vr are eigenvectors corresponding to distinct eigenvalues λ1, . . . , λr
of an n× n matrix A, then the set {v1, . . . , vr}

Proof: Suppose that the vectors v1, . . . , vr are eigenvectors with distinct eigenvalues λ1, . . . , λr,
and that they are linearly dependent. Then we know that there is a p so that

vp+1 = c1v1 + · · ·+ cpvp

and v1, . . . , vp are linearly independent. Now multiply both sides of this equation by A:
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