
These are brief notes for the lecture on Friday October 29, 2010: they are not complete, but
they are a guide to what I want to say today. They are not guaranteed to be correct.

0.1. Eigenvectors and Eigenvalues

Recall the observation from last class: eigenvectors with the same eigenvalue (together with
the zero vector) form a subspace. In some sense, they behave similarly to each other.
To continue the analogy, eigenvectors having different eigenvalues must be somehow very
different from each other.

For example, if v1, v2 are eigenvectors of A with eigenvalues λ1, λ2 respectively, and λ1 6= λ2,
then v1, v2 cannot be scalar multiples of each other. Indeed if

v1 = cv2

then
Av1 = Acv2 =⇒ λ1v1 = cλ2v2

so cλ1 = cλ2, so c = 0. But then v1 = 0, so it wasn’t an eigenvector in the first place!

The following (often very useful) theorem is a typical rephrasing of that idea:

Theorem 1. If v1, . . . , vr are eigenvectors corresponding to distinct eigenvalues λ1, . . . , λr
of an n× n matrix A, then the set {v1, . . . , vr}

Proof: Suppose that the vectors v1, . . . , vr are eigenvectors with distinct eigenvalues λ1, . . . , λr,
and that they are linearly dependent. Choose the largest p so that v1, . . . , vp are linearly
independent: since v1 is an eigenvector, it is non-zero, and so p exists. Then vp+1 is a linear
combination of v1, . . . , vp,

vp+1 = c1v1 + · · ·+ cpvp.

Now multiply both sides of this equation by A− λp+1I to obtain

(λp+1 − λp+1)vp+1 = (λ1 − λp+1)c1v1 + · · ·+ (λp − λp+1)cpvp.

Since the vectors v1, . . . , vp are linearly independent, and none of λ1, . . . , λp are equal to
λp+1, this implies that each of the cj’s are zero. But this contradicts our assumption that
vp+1 is both non-zero and a linear combination of v1, . . . , vp.

Hence v1, . . . , vr are linearly independent, as claimed.

An application to linear recurrences: Suppose that we have a constant coefficient
homogeneous linear recurrence: for example:

fn+1 = 3fn − 2fn−1.

If we create a vector

xn =

(
fn

fn−1

)
then the recurrence can be written as(

fn+1

fn

)
=

(
3fn − 2fn−1

fn

)
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or (
fn+1

fn

)
=

(
3 −2
1 0

)(
fn
fn−1

)
that is, as

xn+1 = Axn.

where A =

(
3 −2
1 0

)
. Iterating this equation, we obtain xn = An−1x1.

Now, it happens that this matrix has nice eigenvalues and eigenvectors: indeed, λ1 = 1

is an eigenvalue, with eigenvector u =

(
1
1

)
and λ2 = 2 is an eigenvalue, with eigenvector

v =

(
2
1

)
. Hence An−1u = λn−1

1 u = u, and An−1v = λn−1
2 v = 2n−1v. Thus, if x1 = cu + dv,

we have

xn−1 = An−1(cu+ dv) = cu+ d2n−1v.

So now, if we know f0 and f1, since u and v span R2, we can find c, d so that x1 = cu+ dv,
and hence determine a formula for fn.

These sorts of techniques are very useful for solving much larger difference equations.

0.2. The Characteristic Equation

As was asked last lecture, “It’s easy to check that a vector is an eigenvector, and to check
that a real number is an eigenvalue, row reduce A− λI and check that it has rows without
pivots, and this way we can find eigenvectors. But how do we find the eigenvalues to use?”

In this section we’ll show that eigenvalues are the roots of a certain polynomial.

Suppose we want to find the eigenvalues of a 2 × 2 matrix A: we want to find λ so that
there is a non-zero solution x to (A − λI)x = 0. Such solutions exist precisely when the
determinant

det(A− λI) = 0

(see Theorem 4 in section 2.2).

So, for example, if we consider the matrix A =

(
3 −2
1 0

)
from the example at the end of the

last section,

det(A− λI) = det

(
3− λ −2

1 −λ

)
= (3− λ)(−λ)− (−2) · (1) = λ2 − 3λ+ 2.

Hence λ is an eigenvalue of A if and only if λ2−3λ+2 = 0: since λ2−3λ+2 = (λ−1)(λ−2),
the only eigenvalues are 1, 2 as we claimed earlier.

Notice that we have taken an equation involving a real unknown λ and a vector unknown x,
and isolated just λ. Once we have found the values of λ which make the determinant zero,
we can solve for the eigenvectors x which work.
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For a general 2× 2 matrix

(
a b
c d

)
, the formula for the determinant enables us to compute

the eigenvalues easily:

det

(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc)

so that the quadratic formula gives

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2
.

This is absolutely not a formula to memorize! It’s far easier in practice to work out for a
given matrix what the eigenvalues are by doing it from scratch.

Note: if the equation det(A−λI) = 0 has no real roots, then there are no real eigenvalues (or
eigenvectors). However, if we work over the complex numbers C we can still do something.
This is beyond the scope of our discussion here, but is of great importance. For example, if

A =

(
cos θ − sin θ
sin θ cos θ

)
corresponding to a rotation through an angle θ, and if the angle is not a half or a full turn
(i.e. π or 2π) then

det(A− λI) = λ2 − 2λ cos θ + 1

so λ = cos θ ±
√
cos2θ − 1 = cos θ + i sin θ, where i =

√
−1, so unless sin θ = 0, there are no

real eigenvalues.

For a 3×3 matrix A we can do the same analysis, and using the formula for the determinant
of A, show that the eigenvalues of A must satisfy a cubic polynomial. Here we see a formula
for the polynomial which is much worse than for the 2× 2 case:

−λ3 +(a+e+ i)λ2 +(bd−ai+ cg−ei−ae+fh)lambda+(aei+ bfh+ cdh−afh− bdi− ceg)

Again, this is not a formula to memorize! Rather, it is of theoretic importance to know that
it is a cubic polynomial, and hence there are at most three real eigenvalues.

The big theorem is an extension of the Invertible Matrix theorem:

Theorem (The Invertible Matrix Theorem continued). Let A be an n× n matrix. Then A
is invertible if and only if

s The number 0 is not an eigenvalue of A.

t The determinant of A is not zero.

We’ll also need to recall the following facts about determinants.

Theorem 4 (Properties of Determinants). Let A and B be n× n matrices.

a A is invertible if and only if det(A) 6= 0

b det(AB) = det(A) det(B).

c det(AT ) = det(A).
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d If A is triangular, then det(A) is the product of the entries on the main diagonal.

e A row replacement operation on A doesn’t change the determinant. A row inter-
change switches the sign of the determinant. A row scaling also scales the determi-
nant by the same scale factor.

Then we see the fundamental fact that

Theorem. A scalar λ is an eigenvalue of an n × n matrix if and only if λ satisfies the
characteristic equation

det(A− λI) = 0.

It is true, but beyond the scope of this course, that if A is an n × n matrix then the
characteristic polynomial det(A − λI) has degree n. Hence an n × n matrix has at most n
eigenvalues.

Definition. Two n× n matrices A and B are similar if there is an invertible matrix P so
that P−1AP = B, or equivalently A = PBP−1.

Note that if P is invertible, then so is Q = P−1, so if A = PBP−1 then B = QAQ−1, so
that A is similar to B if and only if B is similar to A.
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