
These are brief notes for the lecture on Friday November 6, 2009: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

5.3. Eigenvectors and Eigenvalues

5.4. The Characteristic Equation

As was asked last lecture, “It’s easy to check that a vector is an eigenvector, and to check
that a real number is an eigenvalue, row reduce A− λI and check that it has rows without
pivots, and this way we can find eigenvectors. But how do we find the eigenvalues to use?”

In this section we’ll show that eigenvalues are the roots of a certain polynomial.

Suppose we want to find the eigenvalues of a 2 × 2 matrix A: we want to find λ so that
there is a non-zero solution x to (A − λI)x = 0. Such solutions exist precisely when the
determinant

det(A− λI) = 0

(see Theorem 4 in section 2.2).

So, for example, if we consider the matrix A =

(
3 −2
1 0

)
from the example at the end of the

last section,

det(A− λI) = det

(
3− λ −2

1 −λ

)
= (3− λ)(−λ)− (−2) · (1) = λ2 − 3λ+ 2.

Hence λ is an eigenvalue of A if and only if λ2−3λ+2 = 0: since λ2−3λ+2 = (λ−1)(λ−2),
the only eigenvalues are 1, 2 as we claimed earlier.

Notice that we have taken an equation involving a real unknown λ and a vector unknown x,
and isolated just λ. Once we have found the values of λ which make the determinant zero,
we can solve for the eigenvectors x which work.

For a general 2× 2 matrix

(
a b
c d

)
, the formula for the determinant enables us to compute

the eigenvalues easily:

det

(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc)

so that the quadratic formula gives

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2
.

This is absolutely not a formula to memorize! It’s far easier in practice to work out for a
given matrix what the eigenvalues are by doing it from scratch.

Note: if the equation det(A−λI) = 0 has no real roots, then there are no real eigenvalues (or
eigenvectors). However, if we work over the complex numbers C we can still do something.
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This is beyond the scope of our discussion here, but is of great importance. For example, if

A =

(
cos θ − sin θ
sin θ cos θ

)
corresponding to a rotation through an angle θ, and if the angle is not a half or a full turn
(i.e. π or 2π) then

det(A− λI) = λ2 − 2λ cos θ + 1

so λ = cos θ ±
√
cos2θ − 1 = cos θ + i sin θ, where i =

√
−1, so unless sin θ = 0, there are no

real eigenvalues.

For a 3×3 matrix A we can do the same analysis, and using the formula for the determinant
of A, show that the eigenvalues of A must satisfy a cubic polynomial. Here we see a formula
for the polynomial which is much worse than for the 2× 2 case:

−λ3 +(a+e+ i)λ2 +(bd−ai+ cg−ei−ae+fh)lambda+(aei+ bfh+ cdh−afh− bdi− ceg)

Again, this is not a formula to memorize! Rather, it is of theoretic importance to know that
it is a cubic polynomial, and hence there are at most three real eigenvalues.

The big theorem is an extension of the Invertible Matrix theorem:

Theorem (The Invertible Matrix Theorem continued). Let A be an n× n matrix. Then A
is invertible if and only if

(s) The number 0 is not an eigenvalue of A.

(t) The determinant of A is not zero.

We’ll also need to recall the following facts about determinants.

Theorem 4 (Properties of Determinants). Let A and B be n× n matrices.

(a) A is invertible if and only if det(A) 6= 0

(b) det(AB) = det(A) det(B).

(c) det(AT ) = det(A).

(d) If A is triangular, then det(A) is the product of the entries on the main diagonal.

(e) A row replacement operation on A doesn’t change the determinant. A row inter-
change switches the sign of the determinant. A row scaling also scales the determi-
nant by the same scale factor.

Then we see the fundamental fact that

Theorem. A scalar λ is an eigenvalue of an n × n matrix if and only if λ satisfies the
characteristic equation

det(A− λI) = 0.
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It is true, but beyond the scope of this course, that if A is an n × n matrix then the
characteristic polynomial det(A − λI) has degree n. Hence an n × n matrix has at most n
eigenvalues. There are lots of ways to prove this: for example, using co-factor expansions
of determinants, using the fact that the determinant of a matrix can be expressed as a sum
of products in which exactly one term from each column appears, or using clever algebraic
methods which avoid determinants entirely.

Some matrices are such that all of their eigenvalues are distinct: however, sometimes a
matrix can have repeated eigenvalues: for example, the n×n matrix I has n eigenvalues, all
of which are 1, since det(I − λI) = (1− λ)n.

If A has characteristic equation p(λ) = det(A − λI) and if λi is a multiple root of this
polynomial, then we define the multiplicity of the eigenvalue λi to be the number of times
λ− λi is a root of the polynomial. (Note: sometimes there are other notions of multiplicity,
and we’ll need to call this the “algebraic” multiplicity of λi.)

Example: Find the eigenvalues and their multiplicities of

A =


6 5 0 −5
0 −3 1 2
0 0 6 3
0 0 0 7

 .

Definition. Two n× n matrices A and B are similar if there is an invertible matrix P so
that P−1AP = B, or equivalently A = PBP−1.

Note that if P is invertible, then so is Q = P−1, so if A = PBP−1 then B = QAQ−1, so
that A is similar to B if and only if B is similar to A.

Theorem 5. If n×n matrices A and B are similar, then they have the same characteristic
polynomials.

Proof: If A = PBP−1 then

det(A− λI) = det(PBP−1 − λI) = det(PBP−1 − λPIP−1)

= det(P (B − λI)(P−1) = det(P ) det(B − λI) det(P−1)

= det(P ) det(P−1) det(B − λI) = det(B − λI)

as claimed.
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5.5. Diagonalization

Definition. A square matrix D having ijth element dij is diagonal if dij = 0 except for the
elements djj on the diagonal: that is,

if i 6= j then dij = 0.

Often, if the eigenvalues and eigenvectors of a n × n matrix A are nice enough, we can use
them to obtain a nice factorization of the form A = PDP−1. Here we want D to be a nice
matrix, for example, diagonal, and P to be invertible, so that its columns form a basis for
Rn.

A big part of the reason this is a useful thing is that we can compute powers of diagonal
matrices very quickly: for example, if

D =

5 0 0
0 2 0
0 0 3


then

D2 =

5 0 0
0 2 0
0 0 3

5 0 0
0 2 0
0 0 3

 =

52 0 0
0 22 0
0 0 32


D3 = DD2

5 0 0
0 2 0
0 0 3

52 0 0
0 22 0
0 0 32

 =

53 0 0
0 23 0
0 0 33


and in general,

Dk =

5k 0 0
0 2k 0
0 0 3k

 for k ≥ 1.

If A = PDP−1, where D is diagonal, then we can compute Ak easily in terms of Dk:

A2 = (PDP−1)(PDP−1) = (PD)(P−1P )(DP−1) = (PD)I(DP−1) = PD2P−1,

A3 = (PDP−1)(PD2P−1) = (PD)(P−1P )(D2P−1) = (PD)I(D2P−1) = PD3P−1

and in general

Ak = (PDP−1)(PDk−1P−1) = (PD)(P−1P )(Dk−1P−1) = (PD)I(Dk−1P−1) = PDkP−1.

Without all the derivation crowding this out, it’s clearer:

A = PDP−1,

A2 = PD2P−1,

A3 = PD3P−1

and in general, if k ≥ 1,
Ak = PDkP−1.

So, if we can compute Dk easily (which we can, for a diagonal matrix D) and if A = PDP−1,
then we can compute Ak easily too.
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