
These are brief notes for the lecture on Monday November 9, 2009: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

5.3. Eigenvectors and Eigenvalues

5.4. The Characteristic Equation

Theorem. A scalar λ is an eigenvalue of an n × n matrix if and only if λ satisfies the
characteristic equation

det(A− λI) = 0.

It is true, but beyond the scope of this course, that if A is an n × n matrix then the
characteristic polynomial det(A − λI) has degree n. Hence an n × n matrix has at most n
eigenvalues. There are lots of ways to prove this: for example, using co-factor expansions
of determinants, using the fact that the determinant of a matrix can be expressed as a sum
of products in which exactly one term from each column appears, or using clever algebraic
methods which avoid determinants entirely.

Some matrices are such that all of their eigenvalues are distinct: however, sometimes a
matrix can have repeated eigenvalues: for example, the n×n matrix I has n eigenvalues, all
of which are 1, since det(I − λI) = (1− λ)n.

If A has characteristic equation p(λ) = det(A − λI) and if λi is a multiple root of this
polynomial, then we define the multiplicity of the eigenvalue λi to be the number of times
λ− λi is a root of the polynomial. (Note: sometimes there are other notions of multiplicity,
and we’ll need to call this the “algebraic” multiplicity of λi.)

Example: Find the eigenvalues and their multiplicities of

A =


6 5 0 −5
0 −3 1 2
0 0 6 3
0 0 0 7

 .

Definition. Two n× n matrices A and B are similar if there is an invertible matrix P so
that P−1AP = B, or equivalently A = PBP−1.

Note that if P is invertible, then so is Q = P−1, so if A = PBP−1 then B = QAQ−1, so
that A is similar to B if and only if B is similar to A.
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Theorem 1. If n×n matrices A and B are similar, then they have the same characteristic
polynomials.

Proof: If A = PBP−1 then

det(A− λI) = det(PBP−1 − λI) = det(PBP−1 − λPIP−1)

= det(P (B − λI)(P−1) = det(P ) det(B − λI) det(P−1)

= det(P ) det(P−1) det(B − λI) = det(B − λI)

as claimed.

5.5. Diagonalization

Definition. A square matrix D having ijth element dij is diagonal if dij = 0 except for the
elements djj on the diagonal: that is,

if i 6= j then dij = 0.

Often, if the eigenvalues and eigenvectors of a n × n matrix A are nice enough, we can use
them to obtain a nice factorization of the form A = PDP−1. Here we want D to be a nice
matrix, for example, diagonal, and P to be invertible, so that its columns form a basis for
Rn.

A big part of the reason this is a useful thing is that we can compute powers of diagonal
matrices very quickly: for example, if

D =

5 0 0
0 2 0
0 0 3


then

D2 =

5 0 0
0 2 0
0 0 3

5 0 0
0 2 0
0 0 3

 =

52 0 0
0 22 0
0 0 32


D3 = DD2

5 0 0
0 2 0
0 0 3

52 0 0
0 22 0
0 0 32

 =

53 0 0
0 23 0
0 0 33


and in general,

Dk =

5k 0 0
0 2k 0
0 0 3k

 for k ≥ 1.

If A = PDP−1, where D is diagonal, then we can compute Ak easily in terms of Dk:

A2 = (PDP−1)(PDP−1) = (PD)(P−1P )(DP−1) = (PD)I(DP−1) = PD2P−1,

A3 = (PDP−1)(PD2P−1) = (PD)(P−1P )(D2P−1) = (PD)I(D2P−1) = PD3P−1

and in general

Ak = (PDP−1)(PDk−1P−1) = (PD)(P−1P )(Dk−1P−1) = (PD)I(Dk−1P−1) = PDkP−1.
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Without all the derivation crowding this out, it’s clearer:

A = PDP−1,

A2 = PD2P−1,

A3 = PD3P−1

and in general, if k ≥ 1,
Ak = PDkP−1.

So, if we can compute Dk easily (which we can, for a diagonal matrix D) and if A = PDP−1,
then we can compute Ak easily too.

Definition. An n × n matrix A is said to be diagonalizable if there exists a an invertible
matrix P and a diagonal matrix D (both of which must be n × n) so that A = PDP−1 (or
equivalently, since P is invertible, AP = PD): that is, A is similar to a diagonal matrix.

Example: Let A be the matrix (
7 2
−4 1

)
.

Find eigenvalues and eigenvectors for A.

Place the eigenvectors in a matrix P , and the corresponding eigenvalues in a diagonal matrix
D

Compute PDP−1.

Compute Ak.
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Some matrices turn out not to be diagonalizable: we’ll see shortly that, for example,

A =

(
0 1
0 0

)
is not diagonalizable.

Eigenvalues and eigenvectors turn out to be exactly what we need to study diagonalization
of matrices. In fact, we can characterize exactly when a square matrix can be diagonalized.

Theorem 6 (The Diagonalization Theorem). An n × n matrix A is diagonalizable if and
only if it has n linearly independent eigenvectors. In fact, A = PDP−1, with D a diagonal
matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this
case the diagonal entries of D are the eigenvalues of A, with the jjth entry of D being the
eigenvalue corresponding to the eigenvector which is the jth column of A.

So, this means that we can diagonalize an n× n matrix A if and only if we can find a basis
for Rn consisting of eigenvectors of A. Before we see why this is, let’s revisit the matrix

A =

(
0 1
0 0

)
above.

The characteristic equation for A is λ2 = 0, so the only eigenvalue is 0. Now, the null space
of A is 1 dimensional, so we can only find one linearly independent eigenvector. Hence by
the theorem, A cannot be diagonalized!

Proof of the theorem: If P is invertible, and A = PDP−1, then AP = PD. If

P = [v1 v2 . . . vn]

and D has diagonal entries λ1, . . . λn, then PD has columns

PD = [λ1v1 λ2v2 . . . λnvn].

Hence Avj = λjvj, and vj is an eigenvector of A. Since P is invertible, its columns are
linearly independent, and hence we have n linearly independent eigenvectors of A.

Conversely, if we have n linearly independent eigenvectors, v1, . . . vn (having corresponding
eigenvalues λ1, . . . λn respectively), we construct a matrix P having them as columns. Then

AP = [λ1v1 λ2v2 . . . λnvn] = PD

Since the n vectors in Rn are linearly independent, P is invertible and hence

A = PDP−1

and A is diagonalizable. �

Corollary. An n× n matrix A having n distinct eigenvalues is diagonalizable.

Proof: We saw earlier that eigenvectors corresponding to distinct eigenvalues are linearly
independent. Each eigenvalue has at least one corresponding eigenvector: hence we have n
linearly independent eigenvectors, and A is diagonalizable.
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