These are brief notes for the lecture on Friday November 13, and Monday November 16, 2009: they are not complete, but they are a guide to what I want to say on those days. They are guaranteed to be incorrect.

6.2. Orthogonal Sets

Theorem 5. Let $W<\mathbb{R}^{n}$, and let $S=\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{k}\right\}$ be an orthogonal basis for W. Then if the vector \underline{y} in W is given in terms of the basis S by

$$
\underline{y}=c_{1} \underline{u}_{1}+c_{2} \underline{u}_{2}+\cdots+c_{k} \underline{u}_{k}
$$

then

$$
c_{j}=\frac{\underline{y} \cdot \underline{u}_{j}}{\underline{u}_{j} \cdot \underline{u}_{j}}
$$

Proof: Proof strategy: we know that every vector in W has a unique representation as a linear combination of vectors in S, since S is a basis for W. If we take the inner product of \underline{y} with \underline{u}_{j}, then since W is orthogonal, all the inner products vanish except for the terms in the theorem.

Geometric Interpretation of Theorem 5: Let $\left\{\underline{u}_{1}, \underline{u}_{2}\right\}$ be an orthogonal basis for \mathbb{R}^{2}. Put

$$
\begin{aligned}
& \underline{\hat{y}}_{1}=\frac{\underline{y} \cdot \underline{u}_{1}}{\left\|\underline{u}_{1}\right\|^{2}} \underline{u}_{1}=\operatorname{Proj}_{\underline{u}_{1}}(\underline{y}) \\
& \underline{\hat{y}}_{2}=\frac{\underline{y} \cdot \underline{u}_{2}}{\left\|\underline{u}_{2}\right\|^{2}} \underline{u}_{2}=\operatorname{Proj} \underline{u}_{2}(\underline{y})
\end{aligned}
$$

Then

$$
\underline{y}=\underline{\hat{y}}_{1}+\underline{\hat{y}}_{2} .
$$

Orthonormal Sets

Definition. A set $\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{p}$ is called orthonormal if it is orthogonal and $\left\|\underline{u}_{i}\right\|=1$ for $1 \leq i \leq p$. In this case, if $W=\operatorname{Span}\left(\underline{u}_{1}, \ldots, \underline{u}_{p}\right)$, then the set is called an orthonormal basis for W.

Example: The set $\underline{e}_{1}, \underline{e}_{2}, \ldots, \underline{e}_{n}$ is an orthonormal basis for \mathbb{R}^{n}.
Example: Show that the set $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}$ is an orthornormal basis for \mathbb{R}^{3}, where

$$
\underline{v}_{1}=\left(\begin{array}{l}
3 / \sqrt{11} \\
1 / \sqrt{11} \\
1 / \sqrt{11}
\end{array}\right), \quad \underline{v}_{2}=\left(\begin{array}{c}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right), \quad \underline{v}_{3}=\left(\begin{array}{c}
1 / \sqrt{66} \\
4 / \sqrt{66} \\
-7 / \sqrt{66}
\end{array}\right) .
$$

THEOREM 6. An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$.
Proof: proof strategy: interpret the entries of $U^{T} U$ in terms of inner products of the columns of U.

Theorem 7. Let U be an $m \times n$ matrix with orthonormal columns, and $\underline{x}, \underline{y} \in \mathbb{R}^{n}$. Then
(1) $\|U \underline{x}\|=\|\underline{x}\|$.
(2) $(U \underline{x}) \cdot(U \underline{y})=\underline{x} \cdot \underline{y}$.
(3) $(U \underline{x}) \cdot(U \underline{y})=0$ if and only if $\underline{x} \cdot \underline{y}$.

Note: (a) U preserves length
(b) U preserves orthonormality.

Proof: proof strategy: write $(U \underline{x}) \cdot(U \underline{y})$ as

$$
(U \underline{x}) \cdot(U \underline{y})=(U \underline{x})^{T}(U \underline{y})=\left(\underline{x}^{T} U^{T}\right)(U \underline{y})=\underline{x}^{T}\left(U^{T} U\right) \underline{y} .
$$

Example: Let

$$
U=\left(\begin{array}{rr}
1 / \sqrt{2} & 2 / 3 \\
1 / \sqrt{2} & -2 / 3 \\
0 & 1 / 3
\end{array}\right) \quad \text { and } \quad \underline{x}=\binom{\sqrt{2}}{3}
$$

Note that U has orthonormal columns and that $\|U \underline{x}\|=\|\underline{x}\|$.

In the case where U is a an $n \times n$ matrix with orthonormal columns, we see that $U^{T} U=I$ so $U^{T}=U^{-1}$, so $U U^{T}=I$ as well: that is, U has orthonormal rows too!

