Combinatorial Analyis

Lecture 2: August 20

Lecturer: Neil Calkin

Scribe: Jack Cooper/Erin Doolittle

Fall 2010

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

2.1 Principles of Counting

2.1.1 Two Basic Principles

- 1. Addition: If A, B are finite and $A \cap B = \emptyset$, that is A, B are disjoint, then $|A \cup B| = |A| + |B|$. (More generally, we have $|A \cup B| = |A| + |B| - |A \cap B|$.) (We'll extend this idea to the principle of Inclusion-Exclusion.)
- 2. Multiplication: If A, B are finite sets, then $|A \times B| = |A| \cdot |B|$ where $A \times B = \{(a, b) : a \in A, b \in B\}$.

Aside:

How to talk about ordered pairs if all you are allowed is sets? We can build $A \times B$ as the set of all elements of the form $\{a, \{a, b\}\}$. If a = b, then we get $\{a, \{a\}\}$ and we know the ordered pair in question was (a, a).

2.2 Combinatorial Classes

A combinatorial class \mathcal{A} is a countable or finite set, together with a map (size, weight,...).

$$w: \mathcal{A} \longrightarrow \mathbb{N} = \{0, 1, 2, \dots\}$$

So, each element of \mathcal{A} has a "size" or "weight" associated with it.

Later, we'll have more than one : for example, partitions of n into k parts have total weight n and k parts.

Further, we require that the inverse image of each n is finite, that is $w^{-1}(n) = \{a \in \mathcal{A} : w(a) = n\}$ is finite, i.e. only finitely many elements of weight n.

So we can define a finite set

$$\mathcal{A}_n = \{a \in \mathcal{A} : w(a) = n\}$$

and we see that $\mathcal{A} = \bigcup_n \mathcal{A}_n$.

We'll write A_n or, sometimes, a_n for $|\mathcal{A}_n|$.

We'll define the generating function got the combinatorial class \mathcal{A} (with x marking weight) to be

$$\sum_{a \in \mathcal{A}} x^{w(a)} = \sum_{n \ge 0} A_n x^n = A_0 + A_1 x + A_2 x^2 + \dots$$

If we call this formal power series f(x), we denote by $[x^n]f(x)$ the coefficient of x^n in f(x). That is, $[x^n]f(x) = A_n$.

2.2.1 Facts about coefficient extraction

1. $[x^n]$ is a linear operator.

So, $[x^n](f(x) + g(x)) = ([x^n]f(x)) + ([x^n]g(x)).$

2. $[x^n]x^k f(x) = [x^{n-k}]f(x)$

3.

$$[x^n]f(x) = \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(x)}{x^{n+1}} dx$$

if f(x) is analytic in the disk of radius R < r < 0.

4. BEWARE : We <u>CANNOT</u> do things like

$$([x^m]f(x)) + ([x^n]f(x)) = [x^m + x^n]f(x)$$

IT IS NONSENSICAL!

2.3 Generating Functions:

We have a natural bijection between sequences (one-way infinite) e.g. $(f_0, f_1, f_2, ...)$ and generating function $f_0 + f_1 x + f_2 x^2 + ...$ BUT often generating functions dispose of the following problem:

What is the next term in the series (1,2,4,8,16,...)? The natural choice is 32, but there could certainly be another sequence that starts this way and does not have a 32 there.

Look at the sequence whose general term is 2^n , in this case the generating function is $\sum_{n\geq 0} 2^n x^n$, call it f(x).

Then,

$$2xf(x) = \sum_{n \ge 0} 2^{n+1} x^{n+1}$$
$$= \sum_{n \ge 1} 2^n x^n$$
$$= f(x) - 1$$
$$\Rightarrow f(x) = (1 - 2x)^{-1}$$

As formal power series, $g(x) = f(x)^{-1}$ means precisely f(x)g(x) = 1.

2.3.1 Manipulating formal power series

1.
$$\sum_{n \ge 0} f_n x^n + \sum_{n \ge 0} g_n x^n = \sum_{n \ge 0} (f_n + g_n) x^n$$

Lecture 2: August 20

2.
$$(\sum_{k\geq 0} f_k x^k)(\sum_{l\geq 0} g_l x^l) = \sum_{k\geq 0, l\geq 0} f_k g_l x^{k+l} = \sum_{n\geq 0} (\sum_{k+l=n} f_k g_l) x^n$$

Notice that item number 2 gives you what you would expect when expanding a product of polynomials i.e. $(f_0 + f_1x + f_2x^2 + f_3x^3 + ...)(g_0 + g_1x + g_2x^2 + g_3x^3 + ...) = f_0g_0 + (f_0g_1 + f_1g_0)x + (f_0g_2 + f_1g_1 + f_2g_0)x^2 + ...$

Exercise TBHI: Check that $(1 - 2x)(1 + 2x + 2^2x^2 + 2^3x^3 + ...) = 1$

Theorem 2.1 Suppose \mathcal{A} and \mathcal{B} are combinatorial classes with $\mathcal{A} \cap \mathcal{B} = \emptyset$, respective weights w_1, w_2 , and generating functions f(x), g(x) then $(\mathcal{A} \cup \mathcal{B}, w_s)$ is a combinatorial class with generating function f(x) + g(x) where

$$w_s|_{\mathcal{A}} = w_1$$
$$w_s|_{\mathcal{B}} = w_2$$

Theorem 2.2 For arbitrary classes \mathcal{A} and \mathcal{B} define:

$$w_p : \mathcal{A} \times \mathcal{B} \to \mathbb{N}$$
$$w_p : (a, b) \to w_1(a) + w_2(b)$$

then $(\mathcal{A} \times \mathcal{B}, w_p)$ is a combinatorial class with generating function f(x)g(x)

Exercise TBHI: Prove this