
Combinatorial Analyis Fall 2010

Lecture 3: August 23
Lecturer: Neil Calkin Scribe: Jeannie Friedel and Dominique Morgan

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

3.1 Combinatorial Classes:

We can extend the cross product of two combinatorial classes to finitely many A×B × . . .× C ×D .

If A, B, . . . , C, D respectively have generating functions fa, fb, . . . , fc, fd, then A×B × . . .× C ×D has
generating function fa(x) fb(x) . . . fc(x) fd(x) , where the weight is
w(a, b, ..., c, d) = wa(a) + wb(b) + . . .+ wc(c) + wd(d).

3.1.1 Example

Let A = {0, 1} with w(0) = 0 and w(1) = 1 so A has generating function 1 + x.

Let An denote A×A× . . .×A︸ ︷︷ ︸
n−times

which has generating function (1+x)n.

A typical element of An is an n-tuple of 0’s and 1’s (a binary sequence). Equivalently, a sequence of 0’s and
1’s of length n. A sequence has weight k if it has exactly k 1’s.

Bijection φn : {Set of binary strings of length n} −→ {Set of subsets of {1,2, . . . ,n}}.

|φn(σ)| = w(σ) and φn = { j | σ(j) = 1 } = set of positions in which σ has a 1 .

e.g. 0110110111 → {2, 3, 5, 6, 8, 9, 10}

Corollary 3.1
Number of subsets of {1, 2, . . . , n} of cardinality k
= Number of binary strings of length n with k 1’s
= Number of binary strings of length n with weight k
=
[
xk
]

(1 + x)
n

Define n ≥ k ≥ 0, n, k integer,
(
n
k

)
=
[
xk
]

(1 + x)
n
.

3-1

Lecture 3: August 23 3-2

Corollary 3.2
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
Pascal’s identity

Proof:

[
xk
]

(1 + x)
n

=
[
xk
]

(1 + x)
n−1

+ x (1 + x)
n−1

=
([
xk
]

(1 + x)
n−1
)

+
([
xk
]
x (1 + x)

n−1
)

=

(
n− 1

k

)
+
[
xk−1

]
(1 + x)

n−1
=

(
n− 1

k

)
+

(
n− 1

k − 1

)

Proof: [Combinatorial]
Let

(
n
k

)
be the number of k-subsets of {1, 2, . . . , n} = |Sn,k| where Sn,k is the set of k-subsets of

{1, 2, . . . , n}. Let Tn,k be the set of k-subsets of {1, 2, . . . , n} which contain the element n.
Sn,k = Sm−1,k∪̇Tn,k where ∪̇ is the disjoint union, that is Sn−1,k ∩ Tn,k = ∅.
Now, |Tn,k| = |Sn−1,k−1|, indeed there is a natural bijection (delete the element n). Hence |Sn,k| =

|Sn−1,k|+ |Sn−1,k−1|, and so (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
as required.

3.1.2 Sets of Binary Strings via regular languages:

Take a nice language S; denote by S∗ the set of all words formed by concatenating a finite number of elements
of S. “nice” means that each word is obtained uniquely .

Example: S = {0, 1}. S∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 110, 111, . . .}, where ε is the empty
string.

Bad Example: The set {0, 1, 01} is not nice since the string 01 is obtained as 01 and also (0)(1), so not
obtained uniquely.

Is the set {0, 01} nice? yes. We can represent it the following ways:

0a1∪̇0a110a2 ∪̇0a110a210a3 ∪̇ · · ·

0b1∪̇0b1(01)0b2 ∪̇0b1(01)0b2(01)0b3∪̇ · · ·

Back to considering binary sequences. S = {0, 1}, and

S∗ = all binary sequences

= {0}∗{1{1}∗0{0}∗}∗{1}∗

which we’ll write

= 0∗(11∗00∗)∗1∗

What about the set of binary strings without consecutive 1’s?

{ε, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, . . .} = 0∗(100∗)∗(ε ∪ 1)

Let’s see if we can compute the generating funciton for such strings with x marking length.

1 + 2x+ 3x3 + 5x2 + · · ·

Lecture 3: August 23 3-3

0∗ has generating function 1 + x + x2 + x3 + · · · = 1
1−x . 100∗ has generating function x2

1−x . So, (100∗)∗

has generating function

1 +

(
x2

1− x

)
+

(
x2

1− x

)2

+

(
x2

1− x

)3

+ · · · = 1

1− x2

1−x

ε ∪ 1 has generating function 1 + x. So, 0∗(100∗)∗(ε ∪ 1) has generating function

1

1− x
· 1

1− x2

1−x

· 1 + x =
1 + x

1− x− x2
.

How can we get the Fibonacci numbers from this???

