Combinatorial Analyis

Lecture 3: August 23

Lecturer: Neil Calkin

Scribe: Jeannie Friedel and Dominique Morgan

Fall 2010

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

3.1**Combinatorial Classes:**

We can extend the cross product of two combinatorial classes to finitely many $A \times B \times \ldots \times C \times D$.

If A, B, ..., C, D respectively have generating functions $f_a, f_b, \ldots, f_c, f_d$, then $A \times B \times \ldots \times C \times D$ has generating function $f_a(x) f_b(x) \dots f_c(x) f_d(x)$, where the weight is $w(a, b, ..., c, d) = w_a(a) + w_b(b) + ... + w_c(c) + w_d(d).$

3.1.1Example

Let $A = \{0, 1\}$ with w(0) = 0 and w(1) = 1 so A has generating function 1 + x.

Let A^n denote $\underbrace{A \times A \times \ldots \times A}_{n-times}$ which has generating function $(1+\mathbf{x})^n$.

A typical element of A^n is an n-tuple of 0's and 1's (a binary sequence). Equivalently, a sequence of 0's and 1's of length n. A sequence has weight k if it has exactly k 1's.

Bijection ϕ_n : {Set of binary strings of length n} \longrightarrow {Set of subsets of {1,2,...,n}}.

 $|\phi_n(\sigma)| = w(\sigma)$ and $\phi_n = \{ j \mid \sigma(j) = 1 \} = \text{set of positions in which } \sigma$ has a 1.

e.g. $0110110111 \rightarrow \{2, 3, 5, 6, 8, 9, 10\}$

Corollary 3.1

Number of subsets of $\{1, 2, \ldots, n\}$ of cardinality k = Number of binary strings of length n with k 1's = Number of binary strings of length n with weight k $= \left[x^k \right] \left(1 + x \right)^n$

Define $n \ge k \ge 0$, n, k integer, $\binom{n}{k} = \begin{bmatrix} x^k \end{bmatrix} (1+x)^n$.

Corollary 3.2 $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ Pascal's identity

Proof:

$$[x^{k}] (1+x)^{n} = [x^{k}] (1+x)^{n-1} + x (1+x)^{n-1} = \left([x^{k}] (1+x)^{n-1} \right) + \left([x^{k}] x (1+x)^{n-1} \right)$$
$$= \binom{n-1}{k} + [x^{k-1}] (1+x)^{n-1} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Proof: [Combinatorial]

Let $\binom{n}{k}$ be the number of k-subsets of $\{1, 2, \ldots, n\} = |S_{n,k}|$ where $S_{n,k}$ is the set of k-subsets of $\{1, 2, \ldots, n\}$. Let $T_{n,k}$ be the set of k-subsets of $\{1, 2, \ldots, n\}$ which contain the element n.

 $S_{n,k} = S_{m-1,k} \cup T_{n,k}$ where \cup is the disjoint union, that is $S_{n-1,k} \cap T_{n,k} = \emptyset$.

Now, $|T_{n,k}| = |S_{n-1,k-1}|$, indeed there is a natural bijection (delete the element n). Hence $|S_{n,k}| = |S_{n-1,k}| + |S_{n-1,k-1}|$, and so

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

as required.

3.1.2 Sets of Binary Strings via regular languages:

Take a nice language S; denote by S^* the set of all words formed by concatenating a finite number of elements of S. "nice" means that each word is obtained uniquely.

Example: $S = \{0, 1\}$. $S^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 110, 111, \ldots\}$, where ϵ is the empty string.

<u>Bad Example:</u> The set $\{0, 1, 01\}$ is not <u>nice</u> since the string 01 is obtained as 01 and also (0)(1), so not obtained uniquely.

Is the set $\{0, 01\}$ nice? yes. We can represent it the following ways:

$$0^{a_1} \dot{\cup} 0^{a_1} 10^{a_2} \dot{\cup} 0^{a_1} 10^{a_2} 10^{a_3} \dot{\cup} \cdots$$

$$0^{b_1} \dot{\cup} 0^{b_1} (01) 0^{b_2} \dot{\cup} 0^{b_1} (01) 0^{b_2} (01) 0^{b_3} \dot{\cup} \cdots$$

Back to considering binary sequences. $S = \{0, 1\}$, and

$$S^* = \text{ all binary sequences} \\ = \{0\}^* \{1\{1\}^* 0\{0\}^*\}^* \{1\}^* \\ \text{ which we'll write} \\ = 0^* (11^* 00^*)^* 1^*$$

What about the set of binary strings without consecutive 1's?

$$\{\epsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, \ldots\} = 0^* (100^*)^* (\epsilon \cup 1)$$

Let's see if we can compute the generating function for such strings with x marking length.

$$1 + 2x + 3x^3 + 5x^2 + \cdots$$

Lecture 3: August 23

0* has generating function $1 + x + x^2 + x^3 + \cdots = \frac{1}{1-x}$. 100* has generating function $\frac{x^2}{1-x}$. So, $(100^*)^*$ has generating function

$$1 + \left(\frac{x^2}{1-x}\right) + \left(\frac{x^2}{1-x}\right)^2 + \left(\frac{x^2}{1-x}\right)^3 + \dots = \frac{1}{1 - \frac{x^2}{1-x}}$$

 $\epsilon \cup 1$ has generating function 1+x. So, $0^*(100^*)^*(\epsilon \cup 1)$ has generating function

$$\frac{1}{1-x} \cdot \frac{1}{1-\frac{x^2}{1-x}} \cdot 1 + x = \frac{1+x}{1-x-x^2}.$$

How can we get the Fibonacci numbers from this???