Lecture 4: August 25

Lecturer: Neil Calkin
Scribe: Charles Pilman and Anna Keaton
Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

4.1 Counting Strings Without Consecutive Ones:

We saw last class that the set of binary strings can be be expressed as $0^{*}\left(11^{*} 00^{*}\right)^{*} 1^{*}$. Furthermore, we saw that strings without adjacent ones can be expressed as $0^{*}\left(100^{*}\right)^{*}(\epsilon \cup 1)$.

4.1.1 Generating function:

The generating function for 0^{*}, with x marking length is

$$
1+x+x^{2}+\ldots=\frac{1}{1-x}
$$

The generating function for $\epsilon \cup 1$, with x marking length is

$$
1+x
$$

The generating function for 100^{*}, with x marking length is

$$
x^{2}+x^{3}+x^{4}+x^{5}+\ldots=\frac{x^{2}}{1-x}
$$

The generating function for $\left(100^{*}\right)^{*}$, with x marking length is

$$
1+\frac{x^{2}}{1-x}+\left(\frac{x^{2}}{1-x}\right)^{2}+\left(\frac{x^{2}}{1-x}\right)^{3}+\ldots=\frac{1}{1-\frac{x^{2}}{1-x}}
$$

So the generating function for $0^{*}\left(100^{*}\right)^{*}(\epsilon \cup 1)$ is

$$
\frac{1}{1-x} \cdot \frac{1}{1-\frac{x^{2}}{1-x}} \cdot(1+x)=\frac{1+x}{1-x-x^{2}}
$$

4.1.2 Deriving Sequence from Generating Function:

How do we get the Fibonacci numbers out of $\frac{1+x}{1-x-x^{2}}$?
Suppose $f(x)=f_{0}+f_{1} x+f_{2} x^{2}+\ldots=\sum_{n \geq 0} f_{n} x^{n}$, and $f(x)=\frac{1+x}{1-x-x^{2}}$, that is, $\left(1-x-x^{2}\right) f(x)=1+x$.
Then $\left[x^{n}\right]\left(1-x-x^{2}\right) f(x)=\left[x^{n}\right](1+x)= \begin{cases}1 & : n=0,1 \\ 0 & : n \geq 2\end{cases}$

$$
\left[x^{n}\right] f(x)-x f(x)-x^{2} f(x)=\left(\left[x^{n}\right] f(x)\right)-\left(\left[x^{n-1}\right] f(x)\right)-\left(\left[x^{n-2}\right] f(x)\right)=f_{n}-f_{n-1}-f_{n-2}, \text { if } n \geq 2
$$

Lecture 4: August 25
So, if $n \geq 2, f_{n}-f_{n-1}-f_{n-2}=0$.
So $f_{n}=f_{n-1}+f_{n-2}$.
If $n=1$, we get $f_{1}-f_{0}=1$.
If $n=0$, we get $f_{0}=1$.
So $f(x)=1+2 x+3 x^{2}+5 x^{3}+8 x^{4}+\ldots$
And the f_{n} 's are (when suitably indexed) the Fibonacci numbers.

4.1.3 Exercises:

Exercise TBHI: By considering strings of length n starting with 0 , and strings of length n starting with 1 , (without adjacent 1 's) show combinatorially that $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$.

Exercise TBHI: Reverse the argument above, and use $f_{0}=1$ and $f_{1}=2$ to show $\left(1-x-x^{2}\right) f(x)=1+x$ and hence $f(x)=\frac{1+x}{1-x-x^{2}}$.

Exercise TBHI: By considering strings (without adjacent 1's) of length $2 \mathrm{n}+1$ (or, more generally, $m+n+1$) and separating them according to whether the middle bit is 0 or 1 , show combinatorially that $f_{2 n+1}=f_{n}^{2}+f_{n-1}^{2}\left(f_{m+n+1}=f_{m} f_{n}+f_{m-1} f_{n-1}\right.$, respectively $)$.

4.1.4 Generating Function Growth:

How fast does f_{n} grow?
Note that since f_{n} is an increasing sequence,
$f_{n}<2 f_{n-1}$, if $n \geq 2$.
$f_{n}>2 f_{n-2}$, if $n \geq 2$.
Hence, since $f_{1}=2^{1}, f_{n}<2^{n}$ for $n \geq 2$. And since $f_{0}=\left(2^{1 / 2}\right)^{n}$ for all $n \geq 1$. So for all $n \geq 0$, $\left(2^{1 / 2}\right)^{n} \leq f_{n} \leq 2^{n}$.

4.1.5 Further Analysis of f_{n} :

If f_{n} were exactly $c \alpha^{n}$ (which it is not!) then we would have $c \alpha^{n}=c \alpha^{n-1}+c \alpha^{n-2}$.
So, $\alpha=0$, or $c=0$, or $\alpha^{2}-\alpha-1=0$.
$\alpha=\frac{1 \pm \sqrt{5}}{2}=1.6 \ldots$ or $-.6 \ldots$
Now observe that if $\alpha_{1}=\frac{1+\sqrt{5}}{2}$ and $\alpha_{2}=\frac{1-\sqrt{5}}{2}$ then $g_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}$ also satisfies $g_{n}=g_{n-1}+g_{n-2}$. If we solve $c_{1} \alpha_{1}^{0}+c_{2} \alpha_{2}^{0}=1$ and $c_{1} \alpha_{1}^{1}+c_{2} \alpha_{2}^{1}=2$, then $g_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}=f_{n}$ for all n by induction.
$\left(\begin{array}{cc}1 & 1 \\ \alpha_{1} & \alpha_{2}\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{2}$.
Since $\alpha_{1} \neq \alpha_{2},\left(\begin{array}{cc}1 & 1 \\ \alpha_{1} & \alpha_{2}\end{array}\right)$ is invertible, and hence this system does have a solution:
$c_{1}+c_{2}=1$
$\frac{c_{1}}{2}+\frac{c_{1} \sqrt{5}}{2}+\frac{c_{2}}{2}-\frac{c_{2} \sqrt{5}}{2}=2$
$c_{1}+c_{2}+\left(c_{1}-c_{2}\right) \sqrt{5}=4$
$c_{1}-c_{2}=\frac{3}{\sqrt{5}}$
$c_{1}=\frac{1}{2}\left(1+\frac{3}{\sqrt{5}}\right)=\frac{1}{2}\left(1+\frac{3 \sqrt{5}}{5}\right)$.
$c_{2}=\frac{1}{2}\left(1-\frac{3}{\sqrt{5}}\right)=\frac{1}{2}\left(1-\frac{3 \sqrt{5}}{5}\right)$.

Lecture 4: August 25
So, $f_{n}=\frac{1}{2}\left(1+\frac{3 \sqrt{5}}{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{1}{2}\left(1-\frac{3 \sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
Note that $\left|\frac{1}{2}\left(1-\frac{3 \sqrt{5}}{5}\right)\right|<\frac{1}{2}$
and $\left|\frac{1-\sqrt{5}}{2}\right|<1$
so $\left|\frac{1}{2}\left(1-\frac{3 \sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right|<\frac{1}{2}$.
And so f_{n} is the closest integer to $\frac{1}{2}\left(1-\frac{3 \sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
4.1.6 Back to $f(x)=\frac{1+x}{1-x-x^{2}}$:

If we consider $\frac{1}{1-\beta x}$, with constant β, as a formal power series,
we have $\frac{1}{1-\beta x}=1+\beta x+\beta^{2} x^{2}+\beta^{3} x^{3}+\ldots$
So, if we could write $\frac{1+x}{1-x-x^{2}}$ as $\frac{c_{1}}{1-\alpha_{1} x}+\frac{c_{2}}{1-\alpha_{2} x}$ then $f_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}$.
To find $c_{1}, c_{2}, \alpha_{1}, \alpha_{2}$:
we need $\left(1-\alpha_{1} x\right)\left(1-\alpha_{2} x\right)=1-x-x^{2}$
or $\alpha_{1}+\alpha_{2}=1, \alpha_{1} \alpha_{2}=-1$

$$
\begin{gathered}
\alpha_{2}=\frac{-1}{\alpha_{1}} \\
\alpha_{1}-\frac{1}{\alpha_{1}}=1 \\
\alpha_{1}^{2}-1=\alpha_{1} \\
\alpha_{1}^{2}-\alpha_{1}-1=0 \\
\alpha_{1}=\frac{1+\sqrt{5}}{2}, \alpha_{2}=\frac{1-\sqrt{5}}{2} \\
\frac{1+x}{\left(1-\alpha_{1} x\right)\left(1-\alpha_{2} x\right)}=\frac{c_{1}}{1-\alpha_{1} x}+\frac{c_{2}}{1-\alpha_{2} x}
\end{gathered}
$$

So,

$$
\begin{gathered}
c_{1}\left(1-\alpha_{2} x\right)+c_{2}\left(1-\alpha_{1} x\right)=1+x \\
c_{1}+c_{2}=1 \\
c_{1} \alpha_{2}+c_{2} \alpha_{1}=-2
\end{gathered}
$$

Solve, and obtain the same values as before.

