Lecture 5: August 27

Lecturer: Neil Calkin
Scribe: Reid Sanders and Grady Thomas

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

5.1 Bivariate Generating Functions

Still considering the set of binary strings without adjacent 1's: $0^{*}\left(100^{*}\right)(\epsilon v 1)$.
Consider the generating function (denoted g.f.) for two variables

$$
\begin{equation*}
f(x, y)=\sum_{f_{n}, k} x^{n} y^{k} \tag{5.1}
\end{equation*}
$$

Where $f(x, y)=\#$ of binary strings of length n with exactly k 1's (still without adjacent 1 's), and both n, k are finite.
Exercise: Suppose that \mathcal{A} and \mathcal{B} are combinatorial classes, with each having weight w and length l defined. That is each object has a non-negative integer weight and non-negative integer length and $\mathcal{A}_{n, k}=$ $\{$ objects with weight n and length $k\}, \mathcal{B}_{n, k}=\{$ objects with weight n and length $k\}$.
$\left\|\mathcal{A}_{n, k}\right\|$ finite for each pair of n, k
$\left\|\mathcal{B}_{n, k}\right\|$ finite for each pair of n, k
If \mathcal{A} has bivariate generating function $f(x, y), \mathcal{B}$ has bivariate generating function $g(x, y)$, then $\mathcal{A} \times \mathcal{B}$ with obvious weight and length $w_{p}=w_{1}+w_{2}$ and $l_{p}=l_{1}+l_{2}$. Has bivariate generating function $f(x, y) g(x, y)$. Once this exercise is complete we can do the following:

$$
\begin{array}{ll}
0^{*} \text { has g.f. : } & \frac{1+x^{2}+x^{3}+\ldots 1}{1-x} \\
100^{*} \text { has g.f. : } & \frac{x^{2} y+x^{3} y+x^{4} y+\ldots=x^{2} y}{1-x} \\
\left(100^{*}\right)^{k} \text { has g.f. : } & \left(\frac{x^{2} y}{1-x}\right)^{k}
\end{array}
$$

Since these sets of strings are all disjoint

$$
\left(100^{*}\right)^{*} \text { has g.f. : }
$$

$$
1+\frac{x^{2} y}{1-x}+{\frac{x^{2} y^{2}}{1-x}}^{2}+{\frac{x^{2} y^{3}}{1-x}}^{3}+\ldots=\frac{1}{1-\frac{x^{2} y}{1-x}}
$$

$(\epsilon v 1)$ has g.f. :
$1+x y$
Hence $0^{*}\left(100^{*}\right)(\epsilon v 1)$ has g.f. :

$$
\frac{1}{1-x} \frac{1}{1-\frac{x^{2} y}{1-x}}(1+x y)=\frac{1+x y}{1-x-x^{2} y}
$$

How do we get coefficients out of this?

$$
\begin{aligned}
& {\left[y^{k}\right] \frac{1+x y}{1-x-x^{2} y}} \\
& =\left[y^{k}\right] \frac{1}{1-x} \frac{1}{1-\frac{x^{2} y}{1-x}} \\
& =\frac{1}{1-x}\left[y^{k}\right] \frac{1}{1-\frac{x^{2} y}{1-x}} \\
& =\left(\frac{1}{1-x}\left[y^{k}\right] \frac{1}{1-\frac{x^{2} y}{1-x}}\right)+\left(\frac{x}{1-x}\left[y^{k-1}\right] \frac{1}{1-\frac{x^{2} y}{1-x}}\right) \\
& =\frac{1}{1-x}\left(\frac{x^{2}}{1-x}\right)^{k}+\frac{x}{1-x}\left(\frac{x^{2}}{1-x}\right)^{k-1}
\end{aligned}
$$

As an aside, note that:

$$
\begin{aligned}
& {\left[x^{m}\right] \frac{1}{1-x^{k}}} \\
& =\left[x^{m}\right](1-x)^{-k} \\
& =\binom{-k}{m}(-1)^{m}
\end{aligned}
$$

Where we need to interpret $\binom{-k}{m}$ properly! That is

$$
\begin{aligned}
& \binom{n}{m}=\frac{n!}{m!(n-m)!} \\
& =\frac{n(n-1) \ldots(n-m+1)}{m!}
\end{aligned}
$$

This expression makes sense even if n is not a positive integer.
Definition 5.1 Let z be an object which can be added or multiplied (i.e. in some ring). Then:

$$
\binom{z}{m}:=\frac{z(z-1) \ldots(z-m+1)}{m!}
$$

So, for example

$$
\begin{aligned}
& \binom{-k}{m}(-1)^{-1} \\
& =\frac{-k(-k-1) \ldots(-k-m+1)}{m!}(-1)^{m} \\
& =\frac{k(k+1) \ldots(k+m-1)}{m!} \\
& =\frac{(k+m-1)(k+m-2) \ldots(k+1) k}{m!} \\
& =\frac{(k+m-1)!}{m!(k-1)!} \\
& =\binom{k+m-1}{m} \\
& =\binom{k+m-1}{k-1}
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \frac{1}{(1-x)^{2}} \\
& =\frac{d}{d x}\left(\frac{1}{1-x}\right) \\
& =\frac{d}{d x}\left(1+x+x^{2}+\ldots\right) \\
& =1+2 x+3 x^{2}+\ldots \Rightarrow\left[x^{m}\right] \frac{1}{(1-x)^{2}} \\
& =m+1
\end{aligned}
$$

Let's continue this:

$$
\begin{aligned}
& \left(\frac{d}{d x}\right)^{2} \frac{1}{1-x}=\frac{2}{(1-x)^{3}} \\
& \left(\frac{d}{d x}\right)^{3} \frac{1}{1-x}=\frac{(2)(3)}{(1-x)^{4}} \\
& \left(\frac{d}{d x}\right)^{n} \frac{1}{1-x}=\frac{n!}{(1-x)^{n+1}} \\
& \text { so, } \frac{1}{(1-x)^{k}}=\frac{1}{(k-1)!}\left(\frac{d}{d x}\right)^{k-1} \frac{1}{1-x} \\
& \text { but }\left(\frac{d}{d x}\right)^{k-1} x^{r}=r(r-1) \cdots(r-k+2) x^{r-k+1}
\end{aligned}
$$

so,

$$
\begin{aligned}
\frac{1}{(k-1)!}\left(\frac{d}{d x}\right)^{k-1} x^{r} & =\frac{r(r-1) \cdots(r-k+2)}{(k-1)!} x^{r-k+1} \\
& =\binom{r}{k-1} x^{r-k+1}
\end{aligned}
$$

so,

$$
\left[x^{m}\right] \frac{1}{(1-x)^{k}}=\binom{k+m-1}{k-1}
$$

Theorem 5.2

$$
\begin{equation*}
\left[x^{n}\right](1+x)^{z}=\binom{z}{n} \text { where }\binom{z}{n}=\frac{z(z-1) \cdots(z-m+1)}{n!} \tag{5.2}
\end{equation*}
$$

Back to coefficients,

$$
\begin{aligned}
& {\left[x^{n} y^{k}\right] f(x, y)=\left[x^{n}\right]\left(\frac{1}{1-x}\right.}\left.\left(\frac{x^{2}}{1-x}\right)^{k}+\frac{x}{1-x}\left(\frac{x^{2}}{1-x}\right)^{k-1}\right) \\
& {\left[x^{n}\right] \frac{x^{2} k}{(1-x)^{k+1}} }=\left[x^{n-2 k}\right] \frac{1}{(1-x)^{k+1}} \\
&=\binom{n-2 k+k}{k} \\
&=\binom{n-k}{k} \\
& \quad=\binom{n-2 k+k}{k-1} \\
& \quad=\binom{n-k}{k-1} \\
&\left.x^{n}\right] \frac{x^{2 k-1}}{(1-x)^{k}}=\left[x^{n-2 k+1}\right] \frac{1}{(1-x)^{k}} \\
& f_{n, k}=\binom{n-k}{k}+\binom{n-k}{k-1} \\
&=\binom{n-k+1}{k} \\
& \Rightarrow F_{n}=f_{n, 0}+f_{n, 1}+f_{n, 2}+\ldots
\end{aligned}
$$

So this expresses Fibonacci numbers in terms of binomial terms

$$
F_{n}=\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\binom{n-k+1}{k}
$$

Exercise: Give a combinatorial proof that $f_{n, k}=\binom{n-k+1}{k}$

