
Combinatorial Analyis Fall 2010

Lecture 5: August 27
Lecturer: Neil Calkin Scribe: Reid Sanders and Grady Thomas

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

5.1 Bivariate Generating Functions

Still considering the set of binary strings without adjacent 1’s: 0∗(100∗)(εv1).
Consider the generating function (denoted g.f.) for two variables

f(x, y) =
∑
fn,k

xnyk (5.1)

Where f(x, y) = # of binary strings of length n with exactly k 1’s (still without adjacent 1’s), and both n,k
are finite.
Exercise: Suppose that A and B are combinatorial classes, with each having weight w and length l
defined. That is each object has a non-negative integer weight and non-negative integer length and An,k =
{objects with weight n and length k}, Bn,k = {objects with weight n and length k}.
‖An,k‖ finite for each pair of n, k
‖Bn,k‖ finite for each pair of n, k
If A has bivariate generating function f(x, y), B has bivariate generating function g(x, y), then A× B with
obvious weight and length wp = w1 + w2 and lp = l1 + l2. Has bivariate generating function f(x, y)g(x, y).
Once this exercise is complete we can do the following:

0∗ has g.f. :
1 + x2 + x3 + ...1

1− x

100∗ has g.f. :
x2y + x3y + x4y + ... = x2y

1− x

(100∗)k has g.f. :
(
x2y

1− x

)k

Since these sets of strings are all disjoint

(100∗)∗ has g.f. : 1 +
x2y

1− x
+

x2y

1− x

2

+
x2y

1− x

3

+ ... =
1

1− x2y
1−x

(εv1) has g.f. : 1 + xy

Hence 0∗(100∗)(εv1) has g.f. :
1

1− x
1

1− x2y
1−x

(1 + xy) =
1 + xy

1− x− x2y

How do we get coefficients out of this?
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[yk]
1 + xy

1− x− x2y

= [yk]
1

1− x
1

1− x2y
1−x

=
1

1− x
[yk]

1

1− x2y
1−x

=

(
1

1− x
[yk]

1

1− x2y
1−x

)
+

(
x

1− x
[yk−1]

1

1− x2y
1−x

)

=
1

1− x

(
x2

1− x

)k

+
x

1− x

(
x2

1− x

)k−1

As an aside, note that:

[xm]
1

1− xk

= [xm](1− x)−k

=
(
−k
m

)
(−1)m

Where we need to interpret
(−k

m

)
properly! That is(

n

m

)
=

n!
m!(n−m)!

=
n(n− 1)...(n−m+ 1)

m!

This expression makes sense even if n is not a positive integer.

Definition 5.1 Let z be an object which can be added or multiplied (i.e. in some ring). Then:(
z

m

)
:=

z(z − 1)...(z −m+ 1)
m!

So, for example
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(
−k
m

)
(−1)−1

=
−k(−k − 1) . . . (−k −m+ 1)

m!
(−1)m

=
k(k + 1) . . . (k +m− 1)

m!

=
(k +m− 1)(k +m− 2) . . . (k + 1)k

m!

=
(k +m− 1)!
m!(k − 1)!

=
(
k +m− 1

m

)
=
(
k +m− 1
k − 1

)

Note:

1
(1− x)2

=
d

dx
(

1
1− x

)

=
d

dx
(1 + x+ x2 + . . .)

= 1 + 2x+ 3x2 + . . .⇒ [xm]
1

(1− x)2

= m+ 1

Let’s continue this:

(
d

dx
)2

1
1− x

=
2

(1− x)3

(
d

dx
)3

1
1− x

=
(2)(3)

(1− x)4

(
d

dx
)n 1

1− x
=

n!
(1− x)n+1

so,
1

(1− x)k
=

1
(k − 1)!

(
d

dx
)k−1 1

1− x

but (
d

dx
)k−1xr = r(r − 1) · · · (r − k + 2)xr−k+1
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so,

1
(k − 1)!

(
d

dx
)k−1xr =

r(r − 1) · · · (r − k + 2)
(k − 1)!

xr−k+1

=
(

r

k − 1

)
xr−k+1

so,

[xm]
1

(1− x)k
=
(
k +m− 1
k − 1

)
Theorem 5.2

[xn](1 + x)z =
(
z

n

)
where

(
z

n

)
=
z(z − 1) · · · (z −m+ 1)

n!
(5.2)

Back to coefficients,

[xnyk]f(x, y) = [xn](
1

1− x
(
x2

1− x
)k +

x

1− x
(
x2

1− x
)k−1)

[xn]
x2k

(1− x)k+1
= [xn−2k]

1
(1− x)k+1

=
(
n− 2k + k

k

)
=
(
n− k
k

)

[xn]
x2k−1

(1− x)k
= [xn−2k+1]

1
(1− x)k

=
(
n− 2k + k

k − 1

)
=
(
n− k
k − 1

)

fn,k =
(
n− k
k

)
+
(
n− k
k − 1

)
=
(
n− k + 1

k

)
⇒ Fn = fn,0 + fn,1 + fn,2 + . . .

So this expresses Fibonacci numbers in terms of binomial terms

Fn =
bn+1

2 c∑
k=0

(
n− k + 1

k

)
Exercise: Give a combinatorial proof that fn,k =

(
n−k+1

k

)


