Combinatorial Analyis
 Fall 2010

 Lecture 6: August 30
 Lecturer: Neil Calkin

 Scribe: Sarah Anderson and Honghai Xu

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

6.1 The Binomial Theorem for the unusual exponents:

We know

$$(1-x)^{-1/2} = \sum_{n \ge 0} {\binom{-1/2}{n}} (-1)^n x^n.$$

where

$$(-1)^n \binom{-1/2}{n} = \frac{(-1/2)(-2/3)\dots(-1/2-n+1)}{n!} (-1)^n$$
$$= \frac{(1)(3)(5)\dots(2n-1)}{2^n n!}$$
$$= \frac{(1)(2)(3)(4)(5)\dots(2n-1)(2n)}{2^n n!((2)(4)\dots(2n))}$$
$$= \frac{(2n)!}{2^n (n!)2^n (n!)}$$
$$= \binom{2n}{n} \frac{1}{2^{2n}}.$$

Hence,

$$(1-4y)^{-1/2} = \sum_{n\geq 0} {\binom{2n}{n}} y^n.$$

Exercise: Thus,

$$(1-4y)^{-1/2}(1-4y)^{-1/2} = (1-4y)^{-1} = \sum_{n\geq 0} 4^n y^n$$

and hence

$$\sum_{k=0} \binom{2k}{k} \binom{2n-2k}{n-k} = 4^n.$$

For example, when n = 4, we get

$$\binom{0}{0}\binom{8}{4} + \binom{2}{1}\binom{6}{3} + \binom{4}{2}\binom{4}{2} + \binom{6}{3}\binom{2}{1} + \binom{8}{4}\binom{0}{0} = 256 = 4^4$$

Find a combinatorial proof of this. Exercise: Find a relation between

$$\begin{pmatrix} -1/3 \\ n \end{pmatrix} \text{ and } \begin{pmatrix} -2/3 \\ n \end{pmatrix}$$
$$\begin{pmatrix} -1/4 \\ n \end{pmatrix} \text{ and } \begin{pmatrix} -3/4 \\ n \end{pmatrix}.$$

and

Efficiency 6: August 30

$$\binom{-1/6}{n}$$
.

using potentially, $\binom{-2/6}{n}$, $\binom{-3/6}{n}$, $\binom{-4/6}{n}$, $\binom{-2/6}{n}$. How many do we need? Parenthesis: Product with *n* factors has c_n different interpretations as iterated binary products. For example, $a_1a_2a_3$ is $(a_1a_2)a_3$ or $a_1(a_2a_3)$. Then we showed

$$c_n = \sum_{k=1}^{n-1} c_k c_{k-1}, \ n > 1$$

where c = 1. Hence, we know $c_0 = 0, c_1 = 1, c_2 = 1$, and $c_3 = 2$. Let $C(x) = \sum_{n \ge 1} c_n x^n$. Then consider

$$C(x)^{2} = \sum_{k \ge 1} c_{k} x^{k} \sum_{l \ge 1} c_{l} x^{l}$$
$$= \sum_{n \ge 2} x^{n} \sum_{k=1}^{n-1} c_{k} c_{n-k}$$
$$= C(x) - x.$$

So C(x) satisfies $C(x)^2 - C(x) + x = 0$. Applying the quadratic formula, we obtain

$$C[x] = \frac{1 \pm \sqrt{1 - 4x}}{2}.$$

Now

$$(1-4x)^{\frac{1}{2}} = \sum_{n\geq 0} \begin{pmatrix} \frac{1}{2} \\ n \end{pmatrix} (-4)^n x^n$$

Since
$$\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = 1, \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} = \frac{1}{2}, \text{ and}$$

$$\begin{pmatrix} \frac{1}{2} \\ n \end{pmatrix} = \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)...(\frac{1}{2}-n+1)}{n!}$$
$$= \frac{1\cdot 1\cdot 3\cdot ...\cdot (2n-3)}{2^n n!}(-1)^{n-1}$$
$$= \frac{1\cdot 1\cdot 3\cdot ...\cdot (2n-3)\cdot (2n-1)\cdot 2\cdot 4\cdot ...\cdot (2n-2)\cdot (2n)}{2^n n!\cdot (2n-1)\cdot 2\cdot 4\cdot ...\cdot (2n-2)\cdot (2n)}(-1)^{n-1}$$
$$= \frac{(2n)!}{2^n n!\cdot (2n-1)2^n n!}(-1)^{n-1}$$
$$= \frac{(2n)!}{4^n\cdot (2n-1)n!n!}(-1)^{n-1}$$
$$= \frac{(-1)^{n-1}}{4^n\cdot (2n-1)} \begin{pmatrix} 2n \\ n \end{pmatrix} \text{ for } n \ge 2,$$

it follows that

$$(1-4x)^{\frac{1}{2}} = 1 - 2x - \sum_{n \ge 2} \frac{(-1)^{n-1}}{4^n \cdot (2n-1)} \begin{pmatrix} 2n \\ n \end{pmatrix} (-4)^n x^n$$
$$= 1 - 2x - 2x^2 - 4x^3 - 10x^4 - \dots$$

Hecture 6: August 30

$$C[x] = \frac{1 \pm (1 - 2x - 2x^2 - 4x^3 - 10x^4 - \dots)}{2}.$$

Note that here we need to choose the sign to ensure that C[0] = 0, so we obtain

$$C[x] = \frac{1 - (1 - 2x - 2x^2 - 4x^3 - 10x^4 - ...)}{2}$$

= $x + x^2 + 2x^3 + 5x^4 + ...$

So for $n \ge 1$,

$$C_n = \frac{1}{2} \cdot \frac{1}{2n-1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{1}{4n-2} \begin{pmatrix} 2n \\ n \end{pmatrix}.$$

Question: How can we get C_n without using the generating function?