
Combinatorial Analyis Fall 2010

Lecture 7: September 1
Lecturer: Neil Calkin Scribe: Jack Cooper/Shihwei Chao

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

Recall: cn is the number of ways of parenthesizing a1a2 · · · an. We have

cn =
1

4n− 2

(
2n
n

)
.

Thus
c1 = 1

c2 = 1

c3 = 2

c4 = 5

c5 = 14

c6 = 42

c7 = 132

c8 = 429

c9 = 1430

c10 = 4862

Note: 1
2(2n−1)

(
2n
n

)
= (2n)!

2(2n−1)n!n! = (2n−2)!
n(n−1)!(n−1)! = 1

n

(
2(n−1)
(n−1)

)
gives a slightly nicer representation: fewer

factors. A useful website, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/njas/sequences/ Observe that

c1 = 1

c2 = 1

c3 = 2

c4 = 5

c5 = 14 = 2× 7

c6 = 42 = 2× 3× 7

c7 = 132 = 22 × 3× 11

c8 = 429 = 3× 11× 13

Then,
c2
c1

= 1 =
2
2

=
2× 1

2
c3
c2

= 2 =
6
3

=
2× 3

3

7-1
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c3

=
5
2

=
10
4

=
2× 5

4
c5
c4

=
2× 7

5
=

14
5

=
2× 7

5
c6
c5

= 3 =
18
6

=
2× 9

6
c7
c6

=
2× 11

7
=

22
7

=
2× 11

7
c8
c7

=
13
4

=
26
8

=
2× 13

8

Therefore, we have for n > 2,
cn
cn−1

=
2 (2n− 3)

n
.

Now, cn = cn

cn−1
× cn−1

cn−2
× cn−2

cn−3
× · · · × c2

c1
× c1 = 2n−1(2n−3)(2n−5)···3·1

n(n−1)···3·2·1

= 1
n ·

2n−1(2n−3)(2n−5)···3·1·(2n−2)(2n−4)···4·2
(n−1)!2n−1(n−1)! = 1

n ·
(2n−2)!

(n−1)!(n−1)! = 1
n

(
2n−2
n−1

)
.

Formal power series ↔ oneway infinite sequences i.e.
∑
n≥0 anx

n ↔ (a0, a1, a2, · · · )

Equip the space of formal power series ( or oneway infinite sequences ) with coefficients in a ring ( say Z,
Q, R, C, Z

2Z , etc. ) with a metric | |u, it is actually an ultrametric via the following.

Fix 0 < γ < 1. If f (x) =
∑
n≥0 anx

n, set |f (x)|u = γk where k = least n so that an 6= 0, that is

f (x) = akx
t
(

1 + ak+1
ak

x+ ak+2
ak

x2 + · · ·
)

and ak 6= 0. Define |0|u = 0.

This metric induces a topology on the set of power series: Let fn (x), n > 0, be a sequence of power series,
then fn (x)→ 0 as n→∞ means |fn (x)− 0|u → 0, with respect to the reals, as n→∞ . ∀ε > 0, ∃n0 such
that if n > n0 then |fn (x)|u < ε ≡ setting N = logε

logγ , this means degree of leading term of fn (x) > N .

Hence fn (x)→ 0 is this topology⇔ minimum degrees of fn (x)→∞ as n→∞.

fn (x)→ g (x) if for every N > 0, ∃n0 so that if n > n0 then fn (x) and g (x) agree up to terms in xN .

Exercises

1. Show that | |u is a metric.

2. Show that |f (x) g (x)|u = |f (x)|u |g (x)|u.

3. Show that | |u satisfies the ultrametric inequality:

|f (x) + g (x)|u 6 max {|f (x)|u , |g (x)|u} .

If |f (x)|u 6= |g (x)|u, we have equality in the previous inequality.

Example:
Let fn (x) =

∑n
k=0 x

k. Then fn (x)→
∑
k>0 x

k. Let fn (x) =
∑n
k=0 akx

k. Then fn (x)→
∑
k>0 akx

k.
Ultrametric convergence is easy!

Exercise Prove:
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n>0 fn (x) converges with respect to | |u ⇔ |fn (x)|u → 0.

And,
∏
n>0 hn (x) converges ⇔ hn (x)→ 1 ⇔ hn (x)− 1→ 0.

Things can still get strange: e.g. fn (x) =
∑
n>0 n!xn is a perfectly valid power series.

h (x) = (1 + x)
(
1 + x2

) (
1 + x4

) (
1 + x8

)
· · · =

∏∞
i=0

(
1 + x2i

)
converges to 1 + x+ x2 + x3 + · · · .

Exercise

Prove this by

1. uniqueness of binary representations.

2. showing (1− x)h (x) = 1 and (1− x)
(
1 + x+ x2 + x3 + · · ·

)
= 1, and hence

h (x) = 1 + x+ x2 + x3 + · · · .


