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Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

8.1 Power Series Inverse

Example:
(1 + x)(1− x + x2 − x3 + x4 + ...)

converges in the ring of formal power series. So we write

(1 + x)−1 = 1− x + x2 − x3 + x4 + ...

Since we are in a commutative ring (for now) so f(x)g(x) = g(x)f(x). If f(x) has an inverse, g(x) say, that
is f(x)g(x) = 1 then it is unique.

(Non-commutative version: if f(x) has a right inverse g(x) and a left inverse h(x) then g(x) = h(x).)

Proof:

h(x)f(x) = 1 f(x)g(x) = 1
g(x) = (h(x)f(x)) g(x) = h(x) (f(x)g(x)) = h(x)

8.2 Which power series have an inverse?

Suppose f(x) has coefficient in a commutative ring, R (e.g. Z). When does there exist g(x) power series
over the same ring so that f(x)g(x) = 1?

f(x) = f0 + f1x + f2x
2 + · · ·

g(x) = g0 + g1x + g2x
2 + · · ·

fg = (f0 + f1x + f2x
2 + · · · )(g0 + g1x + g2x

2 + · · · )
= f0g0 + (f1g0 + f0g1)x + (f2g0 + f1g1 + f0g2)x2 + · · ·

8.2.1 Method 1

So, if fg = 1, we need to simultaneously satisfy

f0g0 = 1 ⇒ f0 must be a unit in R, that is f−1
0 exists so in R = Z, this means f0 = ±1

f1g0 + f0g1 = 0
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f2g0 + f1g1 + f0g2 = 0

Then f1g0 = −f0g1 ⇐⇒ g1 = −f−1
0 f1g0

=⇒ f1g0 + f0g1 = 0.

Then f2g0 + f1g1 + f0g2 = 0 ⇐⇒ g2 = −f−1
0 (f2g0 + f1g1)

f3g0 + f2g1 + f1g2 + f0g3 = 0 ⇐⇒ g3 = −f−1
0 (f3g0 + f2g1 + f1g2)

So we are able to construct (and actually compute!) g(x) = f(x)−1.

8.2.2 Method 2

Proof: Alternative proof: If f−1
0 exist, f(x)−1 exists.

(1− y)−1 = 1 + y + y2

f(x) = f0(1 + f−1
0 f1x + f−1

0 f2x
2 + · · · )

= f0(1− x(−f−1
0 f1 − f−1

0 f2x− f−1
0 f3x

2 + · · · ))
= f0(1− xh(x)) where h(x) = −f−1

0 f1 − f−1
0 f2x− f−1

0 f3x
2 + · · · )

f(x)−1 = (1− xh(x))−1 − f−1
0

= (1 + xh(x) + x2h(x)2 + x3h(x)3 + · · · )f−1
0

which converges since |xh(x)|µ < 1.

Example: If f(x) = 1− x− xk+1,

f(x)−1 =
1

1− x(1 + x)k
=
∞∑
k=0

x`(1 + xk)`

[xn]f(x)−1 =
∞∑
`=0

[xn−`](1 + xk)` Need: n− ` ≥ 0, k|(n− `)

=
bn

k c∑
t=0

[xkt](1 + xk)n−kt Put: kt = n− `, 0 ≤ kt ≤ n

=
bn

k c∑
t=0

(
n− kt

t

)

8.2.3 Method 3

Under certain circumstances the following is easy-ish to compute. Set f(x) = f0(x) and supposef(0) = 1.

1
f0(x)

=
f0(−x)

f0(x)f0(−x)
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Since f0(x)f0(−x) is even, we can write if as f1(x2), where perhaps we can compute f1(y).

1
f0(x)

=
f0(−x)
f1(x2)

=
f0(−x)f1(−x2)
f1(x2)f1(−x2)

= f0(−x)f1(−x2)f2(−x4)f3(−x8) · · ·
Since f0 = 1 + a1x + a2x

2 + · · ·
⇒ f0(x)f0(−x) = (1 + a1x + a2x

2 + · · · )(1 + a1x + a2x
2 + · · · )

= 1 + (2a2 − a2
1)x2 + · · · )

= 1 + b2
1 + b2x

4 + · · ·
⇒ fk(y) = 1 + c1y + c2y

2 + · · ·

fk(x2k

) = 1− c1x
2k

+ c2x
2k+1

+ · · ·

So, fk(x2k

)→ 1 as k →∞.
Note: to compute all coefficients in 1

f(x) up to xN requires the product of fk(−x2k

) up to k ≥ log2 N

(k = dlog2 Ne) giving a product of k + 1 terms. We can do this by using Fourier Transformations.
This is fast precisely when we can compute fk(y) efficiently.

Exercise : f(x) = 1 = xj. What are the fk’s? And what does this method give us?

8.2.4 What happens with f0 = 1− x− x2?

f0(−x) = (1 + x− x2)
f0(x)f0(−x) = (1 + x− x2)(1− x− x2)

= (1− 3x2 + x4)
f1(y) = 1− 3y + y2

f1(y)f1(−y) = (1− 3y + y2)(1 + 3y + y2)
= (1− 9y2 + 2y2 + y4)
= 1− 7y2 + y4

f2(z) = 1− 7z + z4

fk(y) = (1− aky + y2)
fk(−y) = (1 + aky + y2)

fk(y)fk(−y) = 1− (a2
k − 2)y2 + y4)

ak+1 = a2
k − 2

and obtain a recurrence to obtain ak’s, and hence a factorization of 1
1−x−x2 .


