Combinatorial Analysis

Lecture 8: September 3

Lecturer: Neil Calkin

Scribe: Erin Doolittle and Jeannie Friedel

Fall 2010

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

8.1 Power Series Inverse

Example:

$$(1+x)(1-x+x^2-x^3+x^4+...)$$

converges in the ring of formal power series. So we write

 $(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4 + \dots$

Since we are in a commutative ring (for now) so f(x)g(x) = g(x)f(x). If f(x) has an inverse, g(x) say, that is f(x)g(x) = 1 then it is unique.

(Non-commutative version: if f(x) has a right inverse g(x) and a left inverse h(x) then g(x) = h(x).)

Proof:

$$\begin{split} h(x)f(x) &= 1 & f(x)g(x) = 1 \\ g(x) &= (h(x)f(x))\,g(x) = h(x)\,(f(x)g(x)) = h(x) \end{split}$$

8.2 Which power series have an inverse?

Suppose f(x) has coefficient in a commutative ring, R (e.g. Z). When does there exist g(x) power series over the same ring so that f(x)g(x) = 1?

$$f(x) = f_0 + f_1 x + f_2 x^2 + \cdots$$

$$g(x) = g_0 + g_1 x + g_2 x^2 + \cdots$$

$$fg = (f_0 + f_1 x + f_2 x^2 + \cdots)(g_0 + g_1 x + g_2 x^2 + \cdots)$$

$$= f_0 g_0 + (f_1 g_0 + f_0 g_1) x + (f_2 g_0 + f_1 g_1 + f_0 g_2) x^2 + \cdots$$

8.2.1 Method 1

So, if fg = 1, we need to simultaneously satisfy

 $f_0g_0 = 1 \implies f_0$ must be a unit in \mathbb{R} , that is f_0^{-1} exists so in $R = \mathbb{Z}$, this means $f_0 = \pm 1$ $f_1g_0 + f_0g_1 = 0$ $f_2g_0 + f_1g_1 + f_0g_2 = 0$

 $f_1g_0 = -f_0g_1 \qquad \iff g_1 = -f_0^{-1}f_1g_0$ $\implies f_1g_0 + f_0g_1 = 0.$ Then $f_2g_0 + f_1g_1 + f_0g_2 = 0 \qquad \iff \quad g_2 = -f_0^{-1}(f_2g_0 + f_1g_1)$

Then

 $f_3g_0 + f_2g_1 + f_1g_2 + f_0g_3 = 0 \iff g_3 = -f_0^{-1}(f_3g_0 + f_2g_1 + f_1g_2)$ So we are able to construct (and actually compute!) $g(x) = f(x)^{-1}$.

8.2.2Method 2

Proof: Alternative proof: If f_0^{-1} exist, $f(x)^{-1}$ exists.

$$\begin{aligned} (1-y)^{-1} &= 1+y+y^2 \\ f(x) &= f_0(1+f_0^{-1}f_1x+f_0^{-1}f_2x^2+\cdots) \\ &= f_0(1-x(-f_0^{-1}f_1-f_0^{-1}f_2x-f_0^{-1}f_3x^2+\cdots)) \\ &= f_0(1-xh(x)) \text{ where } h(x) = -f_0^{-1}f_1 - f_0^{-1}f_2x - f_0^{-1}f_3x^2+\cdots) \\ f(x)^{-1} &= (1-xh(x))^{-1} - f_0^{-1} \\ &= (1+xh(x)+x^2h(x)^2+x^3h(x)^3+\cdots)f_0^{-1} \end{aligned}$$

which converges since $|xh(x)|_{\mu} < 1$.

Example: If $f(x) = 1 - x - x^{k+1}$,

$$f(x)^{-1} = \frac{1}{1 - x(1 + x)^k} = \sum_{k=0}^{\infty} x^{\ell} (1 + x^k)^{\ell}$$

$$[x^{n}]f(x)^{-1} = \sum_{\ell=0}^{\infty} [x^{n-\ell}](1+x^{k})^{\ell} \quad \text{Need: } n-\ell \ge 0, k|(n-\ell)$$
$$= \sum_{t=0}^{\lfloor \frac{n}{k} \rfloor} [x^{kt}](1+x^{k})^{n-kt} \quad \text{Put: } kt = n-\ell, 0 \le kt \le n$$
$$= \sum_{t=0}^{\lfloor \frac{n}{k} \rfloor} \binom{n-kt}{t}$$

8.2.3 Method 3

Under certain circumstances the following is easy-ish to compute. Set $f(x) = f_0(x)$ and $\operatorname{suppose} f(0) = 1$.

$$\frac{1}{f_0(x)} = \frac{f_0(-x)}{f_0(x)f_0(-x)}$$

Lecture 8: September 3

Since $f_0(x)f_0(-x)$ is even, we can write if as $f_1(x^2)$, where perhaps we can compute $f_1(y)$.

$$\frac{1}{f_0(x)} = \frac{f_0(-x)}{f_1(x^2)}
= \frac{f_0(-x)f_1(-x^2)}{f_1(x^2)f_1(-x^2)}
= f_0(-x)f_1(-x^2)f_2(-x^4)f_3(-x^8)\cdots
Since f_0 = 1 + a_1x + a_2x^2 + \cdots
\Rightarrow f_0(x)f_0(-x) = (1 + a_1x + a_2x^2 + \cdots)(1 + a_1x + a_2x^2 + \cdots)
= 1 + (2a_2 - a_1^2)x^2 + \cdots)
= 1 + b_1^2 + b_2x^4 + \cdots
\Rightarrow f_k(y) = 1 + c_1y + c_2y^2 + \cdots
f_k(x^{2^k}) = 1 - c_1x^{2^k} + c_2x^{2^{k+1}} + \cdots$$

So, $f_k(x^{2^k}) \to 1$ as $k \to \infty$. Note: to compute all coefficients in $\frac{1}{f(x)}$ up to x^N requires the product of $f_k(-x^{2^k})$ up to $k \ge \log_2 N$ $(k = \lceil \log_2 N \rceil)$ giving a product of k + 1 terms. We can do this by using Fourier Transformations. This is fast precisely when we can compute $f_k(y)$ efficiently.

Exercise : $f(x) = 1 = x^{j}$. What are the f_{k} 's? And what does this method give us?

What happens with $f_0 = 1 - x - x^2$? 8.2.4

$$\begin{aligned} f_0(-x) &= (1+x-x^2) \\ f_0(x)f_0(-x) &= (1+x-x^2)(1-x-x^2) \\ &= (1-3x^2+x^4) \\ f_1(y) &= 1-3y+y^2 \\ f_1(y)f_1(-y) &= (1-3y+y^2)(1+3y+y^2) \\ &= (1-9y^2+2y^2+y^4) \\ &= 1-7y^2+y^4 \\ f_2(z) &= 1-7z+z^4 \\ f_k(y) &= (1-a_ky+y^2) \\ f_k(-y) &= (1+a_ky+y^2) \\ f_k(-y) &= 1-(a_k^2-2)y^2+y^4) \\ a_{k+1} &= a_k^2-2 \end{aligned}$$

and obtain a recurrence to obtain a_k 's, and hence a factorization of $\frac{1}{1-x-x^2}$.