Lecture 8: September 3

Lecturer: Neil Calkin

Scribe: Erin Doolittle and Jeannie Friedel
Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

8.1 Power Series Inverse

Example:

$$
(1+x)\left(1-x+x^{2}-x^{3}+x^{4}+\ldots\right)
$$

converges in the ring of formal power series. So we write

$$
(1+x)^{-1}=1-x+x^{2}-x^{3}+x^{4}+\ldots
$$

Since we are in a commutative ring (for now) so $f(x) g(x)=g(x) f(x)$. If $f(x)$ has an inverse, $g(x)$ say, that is $f(x) g(x)=1$ then it is unique.
(Non-commutative version: if $f(x)$ has a right inverse $g(x)$ and a left inverse $h(x)$ then $g(x)=h(x)$.)

Proof:

$$
\begin{array}{ll}
h(x) f(x)=1 & f(x) g(x)=1 \\
& g(x)=(h(x) f(x)) g(x)=h(x)(f(x) g(x))=h(x)
\end{array}
$$

8.2 Which power series have an inverse?

Suppose $f(x)$ has coefficient in a commutative ring, $\mathrm{R}(\mathrm{e} . \mathrm{g} . \mathbb{Z})$. When does there exist $g(x)$ power series over the same ring so that $f(x) g(x)=1$?

$$
\begin{aligned}
f(x) & =f_{0}+f_{1} x+f_{2} x^{2}+\cdots \\
g(x) & =g_{0}+g_{1} x+g_{2} x^{2}+\cdots \\
f g & =\left(f_{0}+f_{1} x+f_{2} x^{2}+\cdots\right)\left(g_{0}+g_{1} x+g_{2} x^{2}+\cdots\right) \\
& =f_{0} g_{0}+\left(f_{1} g_{0}+f_{0} g_{1}\right) x+\left(f_{2} g_{0}+f_{1} g_{1}+f_{0} g_{2}\right) x^{2}+\cdots
\end{aligned}
$$

8.2.1 Method 1

So, if $f g=1$, we need to simultaneously satisfy

$$
\begin{aligned}
f_{0} g_{0} & =1 \Rightarrow f_{0} \text { must be a unit in } \mathbb{R}, \text { that is } f_{0}^{-1} \text { exists so in } R=\mathbb{Z}, \text { this means } f_{0}= \pm 1 \\
f_{1} g_{0}+f_{0} g_{1} & =0
\end{aligned}
$$

$$
f_{2} g_{0}+f_{1} g_{1}+f_{0} g_{2}=0
$$

Then $\quad f_{1} g_{0}=-f_{0} g_{1} \quad \Longleftrightarrow g_{1}=-f_{0}^{-1} f_{1} g_{0}$

$$
\Longrightarrow \quad f_{1} g_{0}+f_{0} g_{1}=0
$$

Then $\quad f_{2} g_{0}+f_{1} g_{1}+f_{0} g_{2}=0 \quad \Longleftrightarrow \quad g_{2}=-f_{0}^{-1}\left(f_{2} g_{0}+f_{1} g_{1}\right)$

$$
f_{3} g_{0}+f_{2} g_{1}+f_{1} g_{2}+f_{0} g_{3}=0 \quad \Longleftrightarrow \quad g_{3}=-f_{0}^{-1}\left(f_{3} g_{0}+f_{2} g_{1}+f_{1} g_{2}\right)
$$

So we are able to construct (and actually compute!) $g(x)=f(x)^{-1}$.

8.2.2 Method 2

Proof: Alternative proof: If f_{0}^{-1} exist, $f(x)^{-1}$ exists.

$$
\begin{aligned}
(1-y)^{-1} & =1+y+y^{2} \\
f(x) & =f_{0}\left(1+f_{0}^{-1} f_{1} x+f_{0}^{-1} f_{2} x^{2}+\cdots\right) \\
& =f_{0}\left(1-x\left(-f_{0}^{-1} f_{1}-f_{0}^{-1} f_{2} x-f_{0}^{-1} f_{3} x^{2}+\cdots\right)\right) \\
& \left.=f_{0}(1-x h(x)) \text { where } h(x)=-f_{0}^{-1} f_{1}-f_{0}^{-1} f_{2} x-f_{0}^{-1} f_{3} x^{2}+\cdots\right) \\
f(x)^{-1} & =(1-x h(x))^{-1}-f_{0}^{-1} \\
& =\left(1+x h(x)+x^{2} h(x)^{2}+x^{3} h(x)^{3}+\cdots\right) f_{0}^{-1}
\end{aligned}
$$

which converges since $|x h(x)|_{\mu}<1$.
Example: If $f(x)=1-x-x^{k+1}$,

$$
\begin{aligned}
& f(x)^{-1}=\frac{1}{1-x(1+x)^{k}}=\sum_{k=0}^{\infty} x^{\ell}\left(1+x^{k}\right)^{\ell} \\
{\left[x^{n}\right] f(x)^{-1} } & =\sum_{\ell=0}^{\infty}\left[x^{n-\ell}\right]\left(1+x^{k}\right)^{\ell} \quad \text { Need: } n-\ell \geq 0, k \mid(n-\ell) \\
& =\sum_{t=0}^{\left\lfloor\frac{n}{k}\right\rfloor}\left[x^{k t}\right]\left(1+x^{k}\right)^{n-k t} \quad \text { Put: } k t=n-\ell, 0 \leq k t \leq n \\
& =\sum_{t=0}^{\left\lfloor\frac{n}{k}\right\rfloor}\binom{n-k t}{t}
\end{aligned}
$$

8.2.3 Method 3

Under certain circumstances the following is easy-ish to compute. Set $f(x)=f_{0}(x)$ and suppose $f(0)=1$.

$$
\frac{1}{f_{0}(x)}=\frac{f_{0}(-x)}{f_{0}(x) f_{0}(-x)}
$$

Since $f_{0}(x) f_{0}(-x)$ is even, we can write if as $f_{1}\left(x^{2}\right)$, where perhaps we can compute $f_{1}(y)$.

$$
\begin{aligned}
\frac{1}{f_{0}(x)} & =\frac{f_{0}(-x)}{f_{1}\left(x^{2}\right)} \\
& =\frac{f_{0}(-x) f_{1}\left(-x^{2}\right)}{f_{1}\left(x^{2}\right) f_{1}\left(-x^{2}\right)} \\
& =f_{0}(-x) f_{1}\left(-x^{2}\right) f_{2}\left(-x^{4}\right) f_{3}\left(-x^{8}\right) \cdots \\
\text { Since } & f_{0}=1+a_{1} x+a_{2} x^{2}+\cdots \\
\Rightarrow \quad & f_{0}(x) f_{0}(-x)=\left(1+a_{1} x+a_{2} x^{2}+\cdots\right)\left(1+a_{1} x+a_{2} x^{2}+\cdots\right) \\
= & \left.1+\left(2 a_{2}-a_{1}^{2}\right) x^{2}+\cdots\right) \\
= & 1+b_{1}^{2}+b_{2} x^{4}+\cdots \\
\Rightarrow \quad & f_{k}(y)=1+c_{1} y+c_{2} y^{2}+\cdots \\
& f_{k}\left(x^{2^{k}}\right)=1-c_{1} 2^{2^{k}}+c_{2} x^{2^{k+1}}+\cdots
\end{aligned}
$$

So, $f_{k}\left(x^{2^{k}}\right) \rightarrow 1$ as $k \rightarrow \infty$.
Note: to compute all coefficients in $\frac{1}{f(x)}$ up to x^{N} requires the product of $f_{k}\left(-x^{2^{k}}\right)$ up to $k \geq \log _{2} N$ ($k=\left\lceil\log _{2} N\right\rceil$) giving a product of $k+1$ terms. We can do this by using Fourier Transformations.

This is fast precisely when we can compute $f_{k}(y)$ efficiently.
Exercise : $f(x)=1=x^{j}$. What are the f_{k} 's? And what does this method give us?

8.2.4 What happens with $f_{0}=1-x-x^{2}$?

$$
\begin{aligned}
f_{0}(-x) & =\left(1+x-x^{2}\right) \\
f_{0}(x) f_{0}(-x) & =\left(1+x-x^{2}\right)\left(1-x-x^{2}\right) \\
& =\left(1-3 x^{2}+x^{4}\right) \\
f_{1}(y) & =1-3 y+y^{2} \\
f_{1}(y) f_{1}(-y) & =\left(1-3 y+y^{2}\right)\left(1+3 y+y^{2}\right) \\
& =\left(1-9 y^{2}+2 y^{2}+y^{4}\right) \\
& =1-7 y^{2}+y^{4} \\
f_{2}(z) & =1-7 z+z^{4} \\
f_{k}(y) & =\left(1-a_{k} y+y^{2}\right) \\
f_{k}(-y) & =\left(1+a_{k} y+y^{2}\right) \\
f_{k}(y) f_{k}(-y) & \left.=1-\left(a_{k}^{2}-2\right) y^{2}+y^{4}\right) \\
a_{k+1} & =a_{k}^{2}-2
\end{aligned}
$$

and obtain a recurrence to obtain a_{k} 's, and hence a factorization of $\frac{1}{1-x-x^{2}}$.

