Combinatorial Analyis

Fall 2010

Lecture 9: September 6

Lecturer: Neil Calkin
Scribe: Dominique Morgan and Charles Pilman

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

9.1 Formal Power Series

What operations can we perform, and when, on formal power series?
Aside: A nonzero Laurent series is a power series of the form $\sum_{k=m}^{\infty} a_{k} x^{k}$ where $a_{m} \neq 0$ and m is allowed to be negative.

All the questions we ask below about power series can be asked about Laurent series.
Exercise : Do so, and answer.
Let $f(x), g(x)$ be formal power series: $f(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $\sum_{n \geq 0} g_{n} x^{n}$:

1. We can add $f(x)+g(x)$, and obtain a formal power series

$$
\left[x^{n}\right](f(x)+g(x))=\left(\left[x^{n}\right] f(x)\right)+\left(\left[x^{n}\right] g(x)\right)
$$

2. We can multiply $\left[x^{n}\right] f(x) g(x)=\sum_{k=0}^{n} f_{k} g_{n-k}$.
3. We can divide $f(x)$ by $g(x)$ when $f(x)=\sum_{n \geq k} f_{n} x^{n}, g(x)=\sum_{m \geq \ell} g_{m} x^{m}$ and $\frac{1}{g_{\ell}}$ exists in the ring of coefficients and $k \geq \ell$.
4. Compute $\frac{1}{g(x)}$: if and only if $g_{0}=g(0)$ is invertible in our ring of coefficients.
5. Compute $\log (f(x))$?

Does $\log (y)$ have a formal power series representation? No
However, $\log (1+y)$ does. Note $\log (1)=0$ and $\frac{d}{d y} \log (1+y)=\frac{1}{1+y}=\sum_{n \geq 0}(-1)^{n} y^{n}$ together imply that $\log (1+y)=\sum_{n \geq 0} \frac{(-1)^{n} y^{n+1}}{n+1}=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\ldots$

Hence, if we hope for consistency, we'll want $\log (f(x))=\log (1+(f(x)-1))=\sum_{n \geq 0} \frac{(-1)^{n}(f(x)-1)^{n+1}}{n+1}$,

$$
\begin{aligned}
\text { which converges as a power series } & \Leftrightarrow\left|(f(x)-1)^{n-1}\right|_{u} \rightarrow 0 \\
& \Leftrightarrow|(f(x)-1)|_{u} \leq 1 \\
& \Leftrightarrow f(x)=1+g(x) \text { with }|g(x)|_{u} \leq 1 \\
& \Leftrightarrow f(0)=1
\end{aligned}
$$

6. Compute $\exp (f(x))$?
$e^{y}=\sum_{n \geq 0} \frac{1}{n!} y^{n}$, so $e^{f(x)}=\sum_{n \geq 0} \frac{f(x)^{n}}{n!}$, provided it coverges $\Leftrightarrow|f(x)|_{u}<1$, that is $f(0)=0$.
7. Compute $f(g(x))$?

$$
\begin{aligned}
& f(g(x))=\sum_{n \geq 0} f_{n}(g(x))^{n} \text { which converges } \Leftrightarrow\left|f_{n}(g(x))^{n}\right|_{u} \rightarrow 0 \\
& \Leftrightarrow|g(x)|_{u}<1 \text { or } f_{n}=0 \text { for all but finitely many } n \\
& \Leftrightarrow g(0)=0 \text { or } f(x) \text { is polynomial. }
\end{aligned}
$$

8. Compute $f^{\prime}(x)$? Always $f^{\prime}(x)=\sum_{n \geq 1} n f_{n} x^{n-1}$

Exercise :

1. Let $f(x), g(x)$ be power series: Show $\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
2. Suppose $f(u)$ is a power series in $u, g(x)$ is a power series in $x, f(g(x))$ is a power series, show $f^{\prime}(g(x))$ exists and $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$.

Supppose $f(x)$ is a power series, and the appropriate series to follow exist. What is the best way to compute the following?
$\left[x^{n}\right] f(x)^{m}$
$\left[x^{n}\right] f(x)^{a}, a \notin \mathbb{N}$
$\left[x^{n}\right] e^{f(x)}$
$\left[x^{n}\right] \log (1+f(x))$.
Does the answer change if we want a sincgle coefficient, or all coefficients upto \mathbb{N} ?

Iterated Squaring: suppose we can multiply: then compute a^{n}, express n in binary as $b_{0}+2 b_{1}+4 b_{2}+\ldots+2^{k} b_{k}$.

Simple method:

$$
\begin{aligned}
& \text { Compute } \\
& \begin{aligned}
a^{2} & =a \cdot a \\
a^{4} & =a^{2} \cdot a^{2} \\
a^{8} & =a^{4} \cdot a^{4} \\
& \vdots \\
a^{2^{k}} & =a^{2^{k-1}} \cdot a^{2^{k-1}}
\end{aligned}
\end{aligned}
$$

Then compute $a^{n}=\prod_{j \mid b_{j}=1} a^{2^{j}}$.

Other method:
$a^{19}=a^{16+2+1}$
$a \rightarrow a^{2} \rightarrow a^{4} \rightarrow a^{8} \rightarrow a^{9}=a^{8} \cdot a \rightarrow a^{1} 8 \rightarrow a^{1} 9=a^{1} 8 \cdot a$
The procedure is this:
Start with a. For each binary digit, square, and if the digit is 1 , multiply by a.

