Fall 2010

Lecture 10: September 08

Lecturer: Neil Calkin

Scribe: Reid Sanders and Grady Thomas
Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

10.1 Computing values of functions efficiently

Aside: Today we need to work over \mathbb{Q}, not over \mathbb{R} - we need division.
How to compute values of $f(x)^{n}$ assuming they exist? In fact for each of the following functions how do we compute them:

1. $f(x)^{n}: \mathrm{f}$ arbitrary, $n \in \mathbb{N}$
2. $f(x)^{a}: f(0)=1$
3. $e^{f(x)}, f(0)=0$
4. $\log (1+f(x)): f(0)=0$

10.2 Computing $g(x)=f(x)^{n}$

Last time we saw that we can compute $f(x)^{n}$ via iterated squaring:
Compute $f(x)^{2}, f(x)^{2^{2}}, f(x)^{2^{3}}, \ldots$ and multiply appropriate ones to get $f(x)^{n}$. How long will this take to compute coefficients up to $x^{N}, N=2^{k}$ say?
Assume $\mathrm{g}(\mathrm{a})$ is defined over a ring. Multiplication takes time m . Then computing $g(x)^{2}$ up to x^{N} requires computing

$$
\begin{array}{lr}
\sum_{l=0}^{j} g_{l} g_{j-l} & 0 \leq j \leq N \\
n+1 \text { multiplications } & 1+2+3+\ldots+(N+1)=\binom{N+2}{2} \text { total multiplications } \\
n \text { additions } & 1+2+3+\ldots+N=\binom{N+1}{2} \text { total additions }
\end{array}
$$

We need to compute $f(x)^{2^{j}}$ for all j with $2^{j} \leq n$.
So $j \leq \log _{2} n$.
So we need to do $\left\lfloor\log _{2} n\right\rfloor$ squarings. So:

$$
\begin{aligned}
& 2\left\lfloor\log _{2} n\right\rfloor\binom{ N+2}{2} \text { multiplications in } \mathbb{R} \\
& 2\left\lfloor\log _{2} n\right\rfloor\binom{ N+1}{2} \text { additions in } \mathbb{R}
\end{aligned}
$$

For now we will skip the question of the possibility of doing these operations

10.3 Computing $g(x)=e^{f(x)}$

Aside: From here on we are assuming working in \mathbb{Q}. How to compute coefficient of $g(x)=e^{f(x)}, f(0)=0$ for terms up to x^{N} ? Differentiate and multiply by x:

$$
\begin{aligned}
& x \frac{d}{d x} g(x)=x g^{\prime}(x)=\sum_{n \geq 0} n x^{n} g_{n}=\sum_{n \geq 1} n g_{n} x^{n} \\
& x \frac{d}{d x} e^{f(x)} \\
& =x f^{\prime}(x) e^{f(x)} \\
& =x f^{\prime}(x) g(x) \\
& =\left(\sum_{s \geq 0} s f_{n} x^{n}\right)\left(\sum_{r=0} g_{r} x^{r}\right)
\end{aligned}
$$

So extracting the coefficient:

$$
\begin{aligned}
& {\left[x^{n}\right] g^{\prime}(x)} \\
& =n g_{n} \\
& =\sum_{s=0} s f_{s} g_{n-s} \\
& =\sum_{s=1} s f_{s} g_{n-s}
\end{aligned}
$$

Perhaps we can improve things a little:
Let $g(x)=\sum_{s=0}^{\infty} h_{s} \frac{x^{s}}{s!}$ instead. So, $g^{\prime}(x)=\sum_{s=0}^{\infty} h_{s+1} \frac{x^{s}}{s!}$
Then, $\frac{h_{n}}{(n-1)!}=\left[x^{n-1}\right] g^{\prime}(x)$ and, as before, $g^{\prime}(x)=f^{\prime}(x) g(x)$.
exercise NTBHI: Find the recurrence for h_{n} in terms of $h_{0}, h_{1}, \ldots, h_{n-1}$ that this gives.
Computing g_{n} once g_{0}, \ldots, g_{n-1} are computed takes $2 n$ multiplications, $n-1$ additions, and division. So computing g_{N} takes $2\binom{N+1}{2}$ multiplications, $\binom{N}{2}$ additions, and N divisions. So this is quadratic in N. $g(x)=\log (1+f(x))$:

$$
\begin{equation*}
x \frac{d}{d x} \log (1+f(x))=\frac{x f^{\prime}(x)}{1+f(x)} \text { so, } x g^{\prime}(x)(1+f(x))=x f^{\prime}(x) \tag{10.1}
\end{equation*}
$$

exercise: Determine the recurrence you get in the form $n g_{n}=\sum \ldots$. Using this find terms up to x^{10} in $\log (\cos (x))$. (Use Sage/Maple to compare with Taylor series of $\log (\cos (x)))$

10.4 Back to $g(x)=f(x)^{a}$

Differentiating:

$$
\begin{aligned}
& x g^{\prime}(x)=x a f(x)^{a-1} f^{\prime}(x) \\
& \text { so } x g^{\prime}(x) f(x)=x a f^{\prime}(x) g(x) \\
& \text { so }\left[x^{n}\right] x g^{\prime}(x) f(x)=\left[x^{n}\right] x a f^{\prime}(x) g(x) \\
& \sum_{k=0}^{n} k g_{k} f_{n-k}=\sum_{k=0}^{n} a g_{k}(n-k) f_{n-k} \\
& n g_{n}=-\sum_{k=0}^{n-1} k g_{k} f_{n-k}+\sum_{k=0}^{n-1} a(n-k) g_{k} f_{n-k}=\sum_{k=0}^{n-1}\left(a_{n}-(a+1) k\right) g_{k} f_{n-k}
\end{aligned}
$$

exercise: By hand, compute terms up to x^{8} of $\left(1+2 x+4 x^{2}+7 x^{3}\right)^{8}$ and $\left(1+2 x+4 x^{2}+7 x^{3}\right)^{7}$ using

1. Iterated squaring
2. The method above.
