Combinatorial Analysis

Lecture 11: September 10

Lecturer: Neil Calkin

Scribe: Shihwei Chao and Honghai Xu

Fall 2010

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

11.1 How to Compute $[x^n] f(g(x))$

Back to computing $[x^n] e^{f(x)}$ and more generally $[x^n] f(g(x))$. We want to find $[x^n] f(g(x))$, this is, of course

$$\frac{1}{n!} \left(\frac{d}{dx} \right)^n f\left(g\left(x \right) \right) \bigg|_{x=0}$$

To put this in context: recall the rule for differentiating a product

$$\left(\frac{d}{dx}\right)^{n} f\left(x\right) g\left(x\right) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}\left(x\right) g^{(n-k)}\left(x\right).$$

Exercise : Prove this by induction on n.

Now, how do we differentiate f(g(x))?

Observation:

$$\begin{split} n &= 0, \qquad f(g(x)) = f^{(0)} \left(g\left(x\right)\right) g^{(1)} \left(x\right)^{0}, \text{ silly} \\ n &= 1, \qquad \frac{d}{dx} f\left(g\left(x\right)\right) = f^{(1)} \left(g\left(x\right)\right) g^{(1)} \left(x\right). \\ n &= 2, \quad \left(\frac{d}{dx}\right)^{2} f\left(g\left(x\right)\right) = \frac{d}{dx} \left(f^{(1)} \left(g\left(x\right)\right)\right) g^{(1)} \left(x\right) + f^{(1)} \left(g\left(x\right)\right) \frac{d}{dx} \left(g^{(1)} \left(x\right)\right) \\ &= f^{(2)} \left(g\left(x\right)\right) g^{(1)} \left(x\right)^{2} + f^{(1)} \left(g\left(x\right)\right) g^{(2)} \left(x\right). \\ n &= 3, \quad \left(\frac{d}{dx}\right)^{3} f\left(g\left(x\right)\right) = f^{(3)} \left(g\left(x\right)\right) g^{(1)} \left(x\right)^{3} + f^{(2)} \left(g\left(x\right)\right) 2g^{(1)} \left(x\right) g^{(2)} \left(x\right) + f^{(2)} \left(g\left(x\right)\right) g^{(1)} \left(x\right) g^{(2)} \left(x\right) \\ &+ f^{(1)} \left(g\left(x\right)\right) g^{(3)} \left(x\right) \\ &= f^{(3)} \left(g\left(x\right)\right) g^{(1)} \left(x\right)^{3} + 3f^{(2)} \left(g\left(x\right)\right) g^{(1)} \left(x\right) g^{(2)} \left(x\right) + f^{(1)} \left(g\left(x\right)\right) g^{(3)} \left(x\right). \end{split}$$

Write $f^{(m)}$ for $f^{(m)}(g(x))$ and g_m for $g^{(m)}(x)$. Then $\left(\frac{d}{dx}\right)^3 f(g(x))$ can be rewritten as $f^{(3)}g_1^3 + 3f^{(2)}g_2g_1 + f^{(1)}g_3$.

<u>General term for n</u>: For some $p \leq n$

$$f^{(p)}g_{\lambda_1}g_{\lambda_2}\cdots g_{\lambda_n}$$

with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 1$ positive integers and $\lambda_1 + \lambda_2 + \cdots + \lambda_p = n$.

<u>Definition</u>: An integer partition $\lambda \vdash n$ of n is a non-increasing sequence

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 1$$

of positive integers such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_p = n,$$

where p is the number of parts in the partition, $p = p(\lambda)$, and λ is the size of the largest part.

It appears then, that

$$\left(\frac{d}{dx}\right)^{n} f\left(g\left(x\right)\right) = \sum_{\lambda \vdash n} c_{\lambda} f^{\left(p(\lambda)\right)} g_{\lambda}$$

where g_{λ} denotes $g^{(\lambda_1)}g^{(\lambda_2)}\cdots g^{(\lambda_p)}$.

Exercise : Prove this by induction on n.

Exercise : Given $\lambda \vdash n$, write c_{λ} as a sum over partitions of λ' of n-1. The sum will involve the $c_{\lambda'}$'s.

Hint: $(c_{2,1} \text{ will contribute to } c_{3,1}, c_{2,2}, c_{2,1,1}, c_{2,2} \text{ will contribute (twice) to } c_{3,2}, \text{ and (once) to } c_{2,1,1}, c_{3,2} \text{ comes from } c_{2,2}, c_{3,2} = 2c_{2,2} + c_{3,1}.)$

Exercise : Compute enough c_{λ} 's to conjecture and prove a formula. The formula will be a simple expression form involving factorials or other functions of $\lambda_1, \lambda_2, \dots, \lambda_p, p(\lambda)$ and i_1, i_2, i_3, \dots where i_k is the number of parts of size exactly k.

11.2 Solving Some Special Cases with Exponential Generating Functions

Observation: Once we've done this in too much generality, we see that it would be simpler to consider

$$\left(\frac{d}{dx}\right)^{n} e^{g(x)} = \sum_{\lambda \vdash n} c_{\lambda} e^{g(\lambda)} g(\lambda) \,.$$

This also gives quite a bit of information about c_{λ} when λ has restricted part size. e.g. If λ has part size ≤ 2 , choose g(x) to be a poly of degree 2 so that $g^{(3)} = 0$.

Example: Observation: If we take $g(x) = e^x - 1$, then $g^{(k)}(x) = e^x - 1, \forall k \ge 1$. So

$$\left(\frac{d}{dx}\right)^n e^{e^x - 1} = \sum_{\lambda \vdash n} c_\lambda e^{e^x - 1} e^{P(\lambda)x}.$$

Setting x = 0 on both sides, we get

$$n![x^{n}]e^{e^{x}-1} = [\frac{x^{n}}{n!}]e^{e^{x}-1} = \sum_{\lambda \vdash n} c_{\lambda}1.$$

Lecture 11: September 10

 So

$$\sum_{\lambda \vdash n} c_{\lambda} = \left[\frac{x^n}{n!}\right] e^{e^x - 1}.$$

That is,

$$e^{e^x-1} = \sum_{n\geq 0} b_n \left[\frac{x^n}{n!}\right],$$

where $\sum_{\lambda \vdash n} c_{\lambda} = b_n$. This is the exponential function for b_0, b_1, \dots

Now, by using the exponential function for $b_0, b_1, ...$, we have:

$$\begin{aligned} \frac{d}{dx}(e^{e^x-1}) &= e^{e^x-1}e^x. \quad \Rightarrow \quad \sum_{n\geq 1} \frac{b_n x^{n-1}}{(n-1)!} = (\sum_{n\geq 0} \frac{b_n x^n}{n!})(\sum_{m\geq 0} \frac{b_m x^m}{m!}) = \sum_n \sum_{k=0}^n \frac{b_k x^k}{k!} \frac{x^{n-k}}{(n-k)!} \\ &\Rightarrow \quad [x^{n-1}](\sum_{n\geq 1} \frac{b_n x^{n-1}}{(n-1)!}) = [x^{n-1}](\sum_n \sum_{k=0}^n \frac{b_k x^k}{k!} \frac{x^{n-k}}{(n-k)!}) \\ &\Rightarrow \quad \frac{b_n}{(n-1)!} = \frac{1}{(n-1)!} \sum_{k=0}^{n-1} \binom{n-1}{k} b_k \\ &\Rightarrow \quad b_n = \sum_{k=0}^{n-1} \binom{n-1}{k} b_k. \end{aligned}$$