
Combinatorial Analysis Fall 2010

Lecture 11: September 10
Lecturer: Neil Calkin Scribe: Shihwei Chao and Honghai Xu

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

11.1 How to Compute [xn] f (g (x))

Back to computing [xn] ef(x) and more generally [xn] f (g (x)). We want to find [xn] f (g (x)), this is, of
course

1
n!

(
d

dx

)n
f (g (x))

∣∣∣∣
x=0

.

To put this in context: recall the rule for diffferentiating a product(
d

dx

)n
f (x) g (x) =

n∑
k=0

(
n

k

)
f (k) (x) g(n−k) (x) .

Exercise : Prove this by induction on n.

Now, how do we differentiate f (g (x))?

Observation:

n = 0, f(g(x)) = f (0) (g (x)) g(1) (x)0 , silly

n = 1,
d

dx
f (g (x)) = f (1) (g (x)) g(1) (x) .

n = 2,
(
d

dx

)2

f (g (x)) =
d

dx

(
f (1) (g (x))

)
g(1) (x) + f (1) (g (x))

d

dx

(
g(1) (x)

)
= f (2) (g (x)) g(1) (x)2 + f (1) (g (x)) g(2) (x) .

n = 3,
(
d

dx

)3

f (g (x)) = f (3) (g (x)) g(1) (x)3 + f (2) (g (x)) 2g(1) (x) g(2) (x) + f (2) (g (x)) g(1) (x) g(2) (x)

+ f (1) (g (x)) g(3) (x)

= f (3) (g (x)) g(1) (x)3 + 3f (2) (g (x)) g(1) (x) g(2) (x) + f (1) (g (x)) g(3) (x) .

Write f (m) for f (m) (g (x)) and gm for g(m) (x). Then
(
d
dx

)3
f (g (x)) can be rewritten as f (3)g3

1 +3f (2)g2g1 +
f (1)g3.

General term for n: For some p 6 n
f (p)gλ1gλ2 · · · gλn
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with λ1 > λ2 > · · · > λp > 1 positive integers and λ1 + λ2 + · · ·+ λp = n.

Definition: An integer partition λ ` n of n is a non-increasing sequence

λ1 > λ2 > · · · > λp > 1

of positive integers such that
λ1 + λ2 + · · ·+ λp = n,

where p is the number of parts in the partition, p = p (λ), and λ is the size of the largest part.

It appears then, that (
d

dx

)n
f (g (x)) =

∑
λ`n

cλf
(p(λ))gλ

where gλ denotes g(λ1)g(λ2) · · · g(λp).

Exercise : Prove this by induction on n.

Exercise : Given λ ` n, write cλ as a sum over partitions of λ′ of n − 1 . The sum will in-
volve the cλ′ ’s.

Hint: (c2,1 will contribute to c3,1, c2,2, c2,1,1. c2,2 will contribute (twice) to c3,2, and (once) to c2,1,1.
c3,2 comes from c2,2. c3,2 = 2c2,2 + c3,1.)

Exercise : Compute enough cλ’s to conjecture and prove a formula. The formula will be
a simple expression form involving factorials or other functions of λ1, λ2, · · · , λp, p (λ) and i1,
i2, i3, · · · where ik is the number of parts of size exactly k.

11.2 Solving Some Special Cases with Exponential Generating
Functions

Observation: Once we’ve done this in too much generality, we see that it would be simpler to consider(
d

dx

)n
eg(x) =

∑
λ`n

cλe
g(λ)g (λ) .

This also gives quite a bit of information about cλ when λ has restricted part size. e.g. If λ has part size
6 2, choose g (x) to be a poly of degree 2 so that g(3) = 0.

Example: Observation: If we take g(x) = ex − 1, then g(k)(x) = ex − 1,∀k ≥ 1. So(
d

dx

)n
ee

x−1 =
∑
λ`n

cλe
ex−1eP (λ)x.

Setting x = 0 on both sides, we get

n![xn]ee
x−1 = [

xn

n!
]ee

x−1 =
∑
λ`n

cλ1.
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So ∑
λ`n

cλ = [
xn

n!
]ee

x−1.

That is,

ee
x−1 =

∑
n≥0

bn[
xn

n!
],

where
∑
λ`n cλ = bn. This is the exponential function for b0, b1, ....

Now, by using the exponential function for b0, b1, ..., we have:

d

dx
(ee

x−1) = ee
x−1ex. ⇒

∑
n≥1

bnx
n−1

(n− 1)!
= (
∑
n≥0

bnx
n

n!
)(
∑
m≥0

bmx
m

m!
) =

∑
n

n∑
k=0

bkx
k

k!
xn−k

(n− k)!

⇒ [xn−1](
∑
n≥1

bnx
n−1

(n− 1)!
) = [xn−1](

∑
n

n∑
k=0

bkx
k

k!
xn−k

(n− k)!
)

⇒ bn
(n− 1)!

=
1

(n− 1)!

n−1∑
k=0

(
n− 1
k

)
bk

⇒ bn =
n−1∑
k=0

(
n− 1
k

)
bk.


