Lecture 12: September 13

Lecturer: Neil Calkin
Scribe: Jack Cooper/Sarah Anderson

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

12.1 Integer Partitions and Compositions

A partition λ of an integer n is a non-increasing sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ of positive integers so that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n$. We write $\lambda \vdash n$.
A composition of n is a sum $r_{1}+r_{2}+\ldots+r_{k}=n$. Various conventions apply: usually the number of summands is fixed and zero values are allowed.

12.1.1 Composition of n into exactly k non-negative parts

We can consider the generating function approach. Consider the k-tuple $\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ with

$$
\begin{gathered}
r_{1} \in \mathbb{Z}, r_{1} \geq 0 \\
r_{2} \in \mathbb{Z}, r_{2} \geq 0 \\
\vdots \\
r_{k} \in \mathbb{Z}, r_{k} \geq 0 .
\end{gathered}
$$

The generating function for all k-tuples is

$$
\left((1-x)^{-1}\right)^{k}=(1-x)^{-k} .
$$

So the numbers of compositions in k parts ≥ 0 is

$$
\left[x^{n}\right](1-x)^{-k}=(-1)^{n}\binom{-k}{n}=\binom{n+k-1}{n}=\binom{n+k-1}{k-1}
$$

12.1.2 Composition of n into exactly k positive parts

The generating function is

$$
\left(\frac{x}{1-x}\right)^{k}
$$

Hence,

$$
\begin{aligned}
{\left[x^{n}\right] \frac{x^{k}}{(1-x)^{k}} } & =\left[x^{n-k}\right] \frac{1}{(1-x)^{k}} \\
& =\binom{-k}{n-k}(-1)^{n-1} \\
& =\binom{n-1}{k-1}
\end{aligned}
$$

$$
\binom{n-1}{0}+\binom{n-1}{1}+\ldots+\binom{n-1}{n-1}=2^{n-1} .
$$

Description of why this is so:
Take a string of n ones. Choose a subset of the $(n-1)$ spaces between the ones in each in the subset and write a + . Read this as a compositions written as unary. For example, if $n=12, n-1=11$, and the subset is $\{2,6,7,10\}$.

$$
111+111+1+111+1
$$

Thus, we $3+3+1+3+2$. Clearly, we have p_{n}, the number of partitions of n into positive parts $\leq 2^{n-1}$, the number of compositions of n in to positive parts.

12.1.3 Generating functions for partitions

Alternating representations for partitions via numbers of parts of each size. For example, $7+5+5+5+4+3+3+3+1+1$ will be represented as an infinite sequence $\left(i_{1}, i_{2}, i_{3}, \ldots\right), i_{j}=$ number of parts of size j. So in this example, we have ($2,0,4,1,3,0,1,0,0, \ldots$) (only finitely many nonzero a terms). Generating function for i_{1} is $\frac{1}{1-x}$. Generating function for i_{2} is $\frac{1}{1-x^{2}}=1+x^{2}+x^{4}+x^{6}+\ldots$.

$$
\begin{aligned}
i_{3} & =\frac{1}{1-x^{3}} \\
i_{4} & =\frac{1}{1-x^{4}} \\
\vdots & \\
i_{j} & =\frac{1}{1-x^{j}}
\end{aligned}
$$

Hence, the generating function for all partitions is now

$$
\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{-1}=\prod_{j=1}^{\infty}\left(1+x^{j}+x^{2 j}+\ldots\right)
$$

Note that the $j^{\text {th }}$ term in the product $\left(1+x^{j}+x^{2 j}+\ldots\right) \rightarrow_{u} 1$ as $j \rightarrow \infty$ so the product converges.

$$
\begin{aligned}
& p_{0}=1=\text { empty sum } \\
& p_{1}=1=1 \\
& p_{2}=2=2,1+1 \\
& p_{3}=3=3,2+1,1+1+1 \\
& p_{4}=5=4,3+1,2+2,2+1+1,1+1+1+1 \\
& p_{5}=7=5,4+1,3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1
\end{aligned}
$$

Exercise: Show $p_{n} \leq p_{n-1}+p_{n-2}$ for $n \geq 2$.
Hence these p_{n} are less than the Fib numbers for $n \geq 5$. In fact, p_{n} grows slower than α^{n} for all $\alpha>1$.
True growth rate is $\simeq \frac{C}{n} e^{\alpha \sqrt{n}}$.
How to compute p_{n} : let $p(x)=\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{-1}$.
How can we use this to
2. obtain growth rates for p_{n} ?

Well,
1.

$$
\begin{aligned}
& x \frac{d}{d x} p(x)=x \sum_{j=1}^{\infty}\left(\prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-1}\right) \frac{j x^{j-1}}{1-x^{j}}=p(x) \sum_{j=1}^{\infty} \frac{j x^{j}}{\left(1-x^{j}\right)} \\
& \frac{x p^{\prime}(x)}{p(x)}=\sum_{j=1}^{\infty} \frac{j x^{j}}{1-x^{j}}=\sum_{j=1}^{\infty} j x^{j}+j x^{2 j}+j x^{3 j}+\ldots \\
&=\sum_{n=1}^{\infty} x^{n} \sum_{j \mid n} j \\
&=\sum_{n=1}^{\infty} \sigma(n) x^{n}
\end{aligned}
$$

So, $x p^{\prime}(x)=p(x) \sum_{n \geq 1} \sigma(n) x^{n}$. Which means $\left[x^{n}\right] x p^{\prime}(x)=n p_{n}=\sum_{m=1}^{n} p_{n-m} \sigma(m)$. Then,

$$
\begin{aligned}
p_{0} & =1 \\
1 p_{1} & =1 \\
2 p_{2} & =p_{0} \sigma(2)+p_{1} \sigma(1)=4 \Longrightarrow p_{2}=2 \\
3 p_{3} & =p_{0} \sigma(3)+p_{1} \sigma(2)+p_{2} \sigma(1)=9 \Longrightarrow p_{3}=3
\end{aligned}
$$

As an aside to see why the coefficients are divisors of the exponent:

$$
\begin{array}{rrr}
x+x^{2} & +x^{3}+x^{4} & +x^{5}+x^{6} \\
+2 x^{2} & +2 x^{4} & +2 x^{6} \\
+3 x^{3} & +3 x^{6} & +x^{7}+x^{8} \\
& +4 x^{4} & +5 x^{5} \\
& & +4 x^{8} \\
& & +7 x^{7} \\
& & +8 x^{8}
\end{array}
$$

So, $x+(1+2) x^{2}+(1+3) x^{3}+(1+2+4) x^{4}+(1+5) x^{5}+(1+2+3+6) x^{6}+\ldots$

