
Combinatorial Analyis Fall 2010

Lecture 12: September 13
Lecturer: Neil Calkin Scribe: Jack Cooper/Sarah Anderson

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

12.1 Integer Partitions and Compositions

A partition λ of an integer n is a non-increasing sequence λ1, λ2, . . . , λk of positive integers so that
λ1 + λ2 + . . .+ λk = n. We write λ ` n.
A composition of n is a sum r1 + r2 + . . .+ rk = n. Various conventions apply: usually the number of
summands is fixed and zero values are allowed.

12.1.1 Composition of n into exactly k non-negative parts

We can consider the generating function approach. Consider the k-tuple (r1, r2, . . . , rk) with

r1 ∈ Z,r1 ≥ 0

r2 ∈ Z,r2 ≥ 0

...

rk ∈ Z,rk ≥ 0.

The generating function for all k-tuples is

((1− x)−1)k = (1− x)−k.

So the numbers of compositions in k parts ≥ 0 is

[xn](1− x)−k = (−1)n
(
−k
n

)
=

(
n+ k − 1

n

)
=

(
n+ k − 1

k − 1

)
.

12.1.2 Composition of n into exactly k positive parts

The generating function is (
x

1− x

)k
.

Hence,

[xn]
xk

(1− x)k
= [xn−k]

1

(1− x)k

=

(
−k
n− k

)
(−1)n−1

=

(
n− 1

k − 1

)
.
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n− 1

0

)
+

(
n− 1

1

)
+ . . .+

(
n− 1

n− 1

)
= 2n−1.

Description of why this is so:
Take a string of n ones. Choose a subset of the (n− 1) spaces between the ones in each in the subset and
write a +. Read this as a compositions written as unary. For example, if n = 12, n− 1 = 11, and the
subset is {2, 6, 7, 10}.

1 1 1 + 1 1 1 + 1 + 1 1 1 + 1

Thus, we 3 + 3 + 1 + 3 + 2. Clearly, we have pn, the number of partitions of n into positive parts ≤ 2n−1,
the number of compositions of n in to positive parts.

12.1.3 Generating functions for partitions

Alternating representations for partitions via numbers of parts of each size. For example,
7 + 5 + 5 + 5 + 4 + 3 + 3 + 3 + 1 + 1 will be represented as an infinite sequence (i1, i2, i3, . . .), ij = number
of parts of size j. So in this example, we have (2, 0, 4, 1, 3, 0, 1, 0, 0, . . .) (only finitely many nonzero a
terms). Generating function for i1 is 1

1−x . Generating function for i2 is 1
1−x2 = 1 + x2 + x4 + x6 + . . ..

i3 =
1

1− x3

i4 =
1

1− x4
...

ij =
1

1− xj
.

Hence, the generating function for all partitions is now

∞∏
j=1

(1− xj)−1 =

∞∏
j=1

(1 + xj + x2j + . . .).

Note that the jth term in the product (1 + xj + x2j + ...)→u 1 as j →∞ so the product converges.

p0 = 1 = empty sum

p1 = 1 = 1

p2 = 2 = 2, 1 + 1

p3 = 3 = 3, 2 + 1, 1 + 1 + 1

p4 = 5 = 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

p5 = 7 = 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1

Exercise: Show pn ≤ pn−1 + pn−2 for n ≥ 2.

Hence these pn are less than the Fib numbers for n ≥ 5. In fact, pn grows slower than αn for all α > 1.
True growth rate is ' C

n e
α
√
n.

How to compute pn: let p(x) =

∞∏
j=1

(1− xj)−1.

How can we use this to
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2. obtain growth rates for pn?

Well,

1.

x
d

dx
p(x) = x

∞∑
j=1

(

∞∏
k=1

(1− xk)−1)
jxj−1

1− xj
= p(x)

∞∑
j=1

jxj

(1− xj)

xp′(x)

p(x)
=

∞∑
j=1

jxj

1− xj
=

∞∑
j=1

jxj + jx2j + jx3j + ...

=

∞∑
n=1

xn
∑
j|n

j

=

∞∑
n=1

σ(n)xn

So, xp′(x) = p(x)
∑
n≥1

σ(n)xn. Which means [xn]xp′(x) = npn =

n∑
m=1

pn−mσ(m). Then,

p0 = 1

1p1 = 1

2p2 = p0σ(2) + p1σ(1) = 4 =⇒ p2 = 2

3p3 = p0σ(3) + p1σ(2) + p2σ(1) = 9 =⇒ p3 = 3

As an aside to see why the coefficients are divisors of the exponent:

x+ x2 +x3 + x4 +x5 + x6 +x7 + x8

+ 2x2 + 2x4 + 2x6 + 2x8

+3x3 + 3x6

+ 4x4 + 4x8

+5x5

+7x7

+ 8x8

So, x+ (1 + 2)x2 + (1 + 3)x3 + (1 + 2 + 4)x4 + (1 + 5)x5 + (1 + 2 + 3 + 6)x6 + ...


