Combinatorial Analysis

Fall 2010

Lecture 13: September 15

Lecturer: Neil Calkin
Scribe: Erin Doolittle and Dominic Morgan
Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

13.1 Integer Partitions

Computing $\mathrm{p}(\mathrm{n})$ via $n p_{n}=\sum_{0 \leq k \leq n-1} p_{k} \sigma(n-k)$ requires $\theta(n)$ multiplications for p_{n} and $\theta(n)$ additions, one division, and hence $\theta\left(n^{2}\right)$ additions and multiplications and $\theta(n)$ divisions to compute $p_{0}, p_{1}, \ldots, p_{n}$.

Aside: $f(n)=\theta(g(n))$ means $\exists c_{1}, c_{2}>0$ s.t. $c_{1} g(n) \leq|f(n)| \leq c_{2} g(n)$. Here $\mathrm{g}(\mathrm{n})$ will be a positive function.
Computing $\sigma(1), \sigma(2), \ldots, \sigma(n)$ can be done with $<n\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}\right)$ operations:
for j from 1 to $n \quad \sigma(j)=1$ end
for j from 2 to n
for k from 1 to $\left\lfloor\frac{n}{j}\right\rfloor$

$$
\sigma(j k)=\sigma(j k)+j
$$

end
end

1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1	1
	3		3		3		3	1
		4			6			4
			7				7	

6
12
8
15
13
$n+\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+\ldots+\left\lfloor\frac{n}{2}\right\rfloor<n\left(\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}\right)=n H_{n}$
$H_{n}=\log n+\gamma+O\left(\frac{1}{n}\right)$
So number of operations is $<n \log n+O(n)$ (incrementing by 1).
General: Suppose f_{n} is a non-negative sequence and that $f(x)=\sum_{n \geq 0} f_{n} x^{n}$ has radius of convergence R .
Then, for any $x \in(0, R), f_{n} x^{n} \leq f(x)$.
Hence $f_{n} \leq \inf _{x \in(0, R)} \frac{f(x)}{x^{n}}$.
Hence, if we solve $\frac{f^{\prime}(x)}{x^{n}}-\frac{n f(x)}{x^{n}}=0$, that is, $x=\frac{n f(x)}{f^{\prime}(x)}$ say for $x^{*}, f_{n} \leq \frac{f\left(x^{*}\right)}{\left(x^{*}\right)^{n}}$.

Example: $f_{n}=\frac{1}{n!}, f(x)=e^{x} \Rightarrow f^{\prime}(x)=e^{x}$, so $x^{*}=n$ and $\frac{1}{n!} \leq \frac{e^{9}}{n}$ or $n!\geq\left(\frac{n}{e}\right)^{n}$.
Truth: $n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$ that is $\frac{n!}{\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}} \rightarrow 1$ as $n \rightarrow \infty$.
Fairly typical behavior: If f_{n} grows nicely, "smoothly", then we obtain $f_{n}<\frac{f\left(x^{*}\right)}{\left(x^{*}\right)^{n}}$ and the "truth" is
$f_{n} \sim \frac{c}{n^{\alpha}} \frac{f\left(x^{*}\right)}{\left(x^{*}\right)^{n}}$
$p_{n}=\left[x^{n}\right] \prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-1}=\left[x^{n}\right] \prod_{k=1}^{n}\left(1-x^{k}\right)^{-1}$
So we can obtain an upperbound for p_{n} by $p_{n} \leq \frac{\prod_{k=1}^{n}\left(1-x^{k}\right)^{-1}}{x^{n}}$.
Exercise: How good a bound can you use this to give? Hint: $p_{n} \leq \sum_{k=1}^{n}-\log \left(1-x^{k}\right)-n \log x$

13.2 Restricted Partitions

1. Partitions with all parts $\leq k$.
2. Partitions with at most k parts.
3. Partitions with all parts distinct.
4. Partitions with only odd parts.
5. Partitions in which parts differ by at least 2 .

13.2.1 Ferrers' Diagram for a Partition

Define a partition $\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}\right) \vdash n$.
Draw k lines opf dots, left justified, λ_{j} dots in the $j^{\text {th }}$ line.

There is a natural involution on the set of partitions of $n, \lambda \mapsto \lambda^{\prime}$.
The conjugate, λ^{\prime} of λ is the partition whose Ferrers' diagram is the transpose of that of λ.
Exercise: Using the $\left(i_{1}, i_{2}, \cdots\right)$ descriptions of λ, express λ^{\prime}.
Definition 13.1 The Durfee square of a Ferrers' diagram is the largest square which fits entirely inside the Ferrers' diagram.
A Durfee square has size k if

$$
\begin{aligned}
\lambda_{k} & \geq k \\
\lambda_{k+1} & <k+1
\end{aligned}
$$

Observation: λ has all parts $\leq k \Longrightarrow \lambda^{\prime}$ has at most k parts.

Corollary 13.2 Fix k.

$$
\begin{aligned}
& \text { generating function for partitions of } n \text { into at most } k \text { parts } \\
= & \text { generating function for partitions of } n \text { into parts of size at most } k \\
= & \prod_{j=1}^{k}\left(1-x^{j}\right)^{-1}
\end{aligned}
$$

Corollary 13.3

$$
\begin{aligned}
& \prod_{j=1}^{\infty}\left(1-x^{j}\right)^{-1}=\sum_{k=0}^{\infty} x^{k^{2}} \prod_{j=1}^{k}\left(1-x^{j}\right)^{-2} \\
& \lambda \text { has all parts } \leq k
\end{aligned}
$$

