
Combinatorial Analysis Fall 2010

Lecture 13: September 15
Lecturer: Neil Calkin Scribe: Erin Doolittle and Dominic Morgan

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

13.1 Integer Partitions

Computing p(n) via npn =
∑

0≤k≤n−1
pkσ(n− k) requires θ(n) multiplications for pn and θ(n) additions, one

division, and hence θ(n2) additions and multiplications and θ(n) divisions to compute p0, p1, . . ., pn.

Aside: f(n) = θ(g(n)) means ∃c1,c2 > 0 s.t. c1g(n) ≤ |f(n)| ≤ c2g(n). Here g(n) will be a positive function.

Computing σ(1), σ(2), . . ., σ(n) can be done with < n
(
1 + 1

2 + 1
3 + 1

4 + . . .+ 1
n

)
operations:

for j from 1 to n σ(j) = 1 end
for j from 2 to n

for k from 1 to bnj c
σ(jk) = σ(jk) + j

end
end
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n+ bn2 c+ bn3 c+ . . .+ bn2 c < n
(
1
1 + 1

2 + . . .+ 1
n

)
= nHn

Hn = log n+ γ +O
(
1
n

)
So number of operations is < n log n+O(n) (incrementing by 1).
General: Suppose fn is a non-negative sequence and that f(x) =

∑
n≥0

fnx
n has radius of convergence R.

Then, for any x ∈ (0, R), fnx
n ≤ f(x).

Hence fn ≤ inf
x∈(0,R)

f(x)
xn .

Hence, if we solve f ′(x)
xn −

nf(x)
xn = 0, that is, x = nf(x)

f ′(x) say for x∗, fn ≤ f(x∗)
(x∗)n .
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Example: fn = 1
n! , f(x) = ex ⇒ f ′(x) = ex, so x∗ = n and 1

n! ≤
e9

n or n! ≥
(
n
e

)n
.

Truth: n! ∼
(
n
e

)n√
2πn that is n!

(ne )
n√

2πn
→ 1 as n→∞.

Fairly typical behavior: If fn grows nicely, ”smoothly”, then we obtain fn <
f(x∗)
(x∗)n and the ”truth” is

fn ∼ c
nα

f(x∗)
(x∗)n

pn = [xn]
∞∏
k=1

(1− xk)−1 = [xn]
n∏
k=1

(1− xk)−1

So we can obtain an upperbound for pn by pn ≤

n∏
k=1

(1−xk)−1

xn .

Exercise: How good a bound can you use this to give? Hint: pn ≤
n∑
k=1

− log (1− xk)− n log x

13.2 Restricted Partitions

1. Partitions with all parts ≤ k.

2. Partitions with at most k parts.

3. Partitions with all parts distinct.

4. Partitions with only odd parts.

5. Partitions in which parts differ by at least 2.

13.2.1 Ferrers’ Diagram for a Partition

Define a partition (λ1 + λ2 + · · ·+ λk) ` n.
Draw k lines opf dots, left justified, λj dots in the jth line.

7 + 5 + 3 + 3 + 3 + 2 = 23

λ =

6 + 6 + 5 + 2 + 2 + 1 + 1 = 23

λ′ =

There is a natural involution on the set of partitions of n, λ 7→ λ′.
The conjugate, λ′ of λ is the partition whose Ferrers’ diagram is the transpose of that of λ.
Exercise: Using the (i1, i2, · · · ) descriptions of λ, express λ′.

Definition 13.1 The Durfee square of a Ferrers’ diagram is the largest square which fits entirely inside the
Ferrers’ diagram.
A Durfee square has size k if

λk ≥ k

λk+1 < k + 1

Observation: λ has all parts ≤ k =⇒ λ′ has at most k parts.
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Corollary 13.2 Fix k.

generating function for partitions of n into at most k parts

= generating function for partitions of n into parts of size at most k

=

k∏
j=1

(
1− xj

)−1
Corollary 13.3

∞∏
j=1

(
1− xj

)−1
=

∞∑
k=0

xk
2

k∏
j=1

(
1− xj

)−2

µ has ≤ k parts

λ has all parts ≤ k


