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14.1 Finding upper bound for Pn

∑
n≥0

Pnx
n =

∞∏
j=1

(1− xj)−1

Pn ≤
∏∞
j=1(1− xj)−1

xn
∀x ∈ (0, 1)

Let x∗n be the minimizing value for P (x)/xn We’ll rewrite P (x) as

P (x) = exp

−
∞∑
j=1

log(1− xj)


= exp


∞∑
j=1

∞∑
k=1

xjk

k


= exp


∞∑
k=1

1

k

∞∑
j=1

xjk


= exp

{ ∞∑
k=1

1

k

xk

1− xk

}

= exp

{ ∞∑
k=1

1

1− x
(1− x)xk

k(1− xk)

}

Aside:

1− x
1− xk

xk <
1

k
∀x < 1

and lim
x→1

(1− x)xk

1− xk
=

1

k

Exercise : Prove this Aside
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Thus

P (x) < exp

{ ∞∑
k=1

1

1− x
(1− x)xk

k(1− xk)

}

= exp

{
π2

6(1− x)

}
exp

{
π2

6ε
log(1− ε)

}
So Pn < exp

{
π2

6(1− x)

}

Minimize the exponent:

−π26ε2 +
n

1− ε
= 0

Or: 6ε2n+ επ2 − π2 = 0

ε =
−π2 +−

√
π4 + 4(6)(π2)(n)

12n

=
−π2

12n
+

√
π2

6n
+

π4

144n

'
√
π2

6n
(for now)

Hence: Pn <

exp

{
π2

6
1√
π2

6n

}
(1− 1√

π2

6n

)n

(1−
√
π2

6n
)n ' exp

{
π

√
2n

3

}
(1 +O(

1

n
))

Pn < exp

{
2

√
π2n

6

}

= exp

{
π

√
2n

3

}
(1 +O(

1

n
))

This is actually a very good upper bound for Pn. In particular, the number of digits of Pn is O(
√
n).

ε =

√
π4 + 24(π2)(n)

12n

=

√
π2n

6

(
π2

24n

) 1
2

=

√
π2n

6

(
1 +

1

2

(
π2

24n

)
− 1

2

1

2

1

2

(
π2

24n

)2

. . .

)
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So the minimizing point is actually√
π2

6n
− π2

12n
+O(

1

n
3
2

) =

√
π2

6n
(1− 1

2

√
π2

6n
+O(

1

n
)),

which can be written as

ε(1− ε

2
+O(

1

n
)).

Since

π2

6ε(1− ε
2 +O( 1

n ))
=

π2

6ε
(1 +

ε

2
−O(

1

n
))

=
π2

6ε
+
π2

12
+O(

1

n
),

the numerator becomes

exp {π
2

6ε
} exp {π

2

12
},

and the denominator becomes

1

(1− ε(1− ε
2 +O( 1

n ))
n =

1

(1− ε+ ε2

2 +O( εn ))
n

=
1

((1− ε)(1 + ε2

2 )(1 +O( 1

n
3
2

)))
n

=
1

(1− ε)n(1 + π2

6n )
n
(1 +O(1))

≈ e
π2

6 .

So our upper bound takes the form of eπ
√

2n
3 e−

π2

12 .
So our bound just changes slightly.

Truth: Pn ≈ c
ne

π
√

2n
3 .

Remark: We could try to be more precise, and estimate how big 1
k −

xk

1−xk (1− x) is, and get a better upper
bound, but it isn’t worth the effort.

Reason is: If εk is big, then (1− x)
k ≈ e−εk is small. k >>

√
n, so the part of

∞∑
k=1

1
k2 which we lose is less

than

∑
k≥
√
n

1

k2
≈
∫ ∞
√
n

1

x2
dx =

1√
n
.

So P (x) looks like

exp {1

ε
(
π2

6
− c√

n
)} = exp {π

2

6ε
− c′

n
} = exp {π

2

6ε
}(1 +O(1)).


