Lecture 14: September 20

Lecturer: Neil Calkin
Scribe: Honghai Xu and Reid Sanders

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

14.1 Finding upper bound for P_{n}

$$
\begin{aligned}
\sum_{n \geq 0} P_{n} x^{n} & =\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{-1} \\
P_{n} & \leq \frac{\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{-1}}{x^{n}}
\end{aligned} \quad \forall x \in(0,1)
$$

Let x_{n}^{*} be the minimizing value for $P(x) / x^{n}$ We'll rewrite $P(x)$ as

$$
\begin{aligned}
P(x) & =\exp \left\{-\sum_{j=1}^{\infty} \log \left(1-x^{j}\right)\right\} \\
& =\exp \left\{\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{x^{j k}}{k}\right\} \\
& =\exp \left\{\sum_{k=1}^{\infty} \frac{1}{k} \sum_{j=1}^{\infty} x^{j k}\right\} \\
& =\exp \left\{\sum_{k=1}^{\infty} \frac{1}{k} \frac{x^{k}}{1-x^{k}}\right\} \\
& =\exp \left\{\sum_{k=1}^{\infty} \frac{1}{1-x} \frac{(1-x) x^{k}}{k\left(1-x^{k}\right)}\right\}
\end{aligned}
$$

Aside:

$$
\begin{aligned}
\frac{1-x}{1-x^{k}} x^{k} & <\frac{1}{k} & \forall x<1 \\
\text { and } \lim _{x \rightarrow 1} \frac{(1-x) x^{k}}{1-x^{k}} & =\frac{1}{k} &
\end{aligned}
$$

Exercise : Prove this Aside

Thus

$$
\begin{aligned}
P(x) & <\exp \left\{\sum_{k=1}^{\infty} \frac{1}{1-x} \frac{(1-x) x^{k}}{k\left(1-x^{k}\right)}\right\} \\
& =\exp \left\{\frac{\pi^{2}}{6(1-x)}\right\} \\
& \exp \left\{\frac{\pi^{2}}{6 \epsilon} \log (1-\epsilon)\right\} \\
& \text { So } P_{n}<\exp \left\{\frac{\pi^{2}}{6(1-x)}\right\}
\end{aligned}
$$

Minimize the exponent:

$$
\text { Or: } \begin{aligned}
-\pi^{2} 6 \epsilon^{2}+\frac{n}{1-\epsilon} n+\epsilon \pi^{2}-\pi^{2} & =0 \\
\epsilon & =\frac{-\pi^{2}+-\sqrt{\pi^{4}+4(6)\left(\pi^{2}\right)(n)}}{12 n} \\
& =\frac{-\pi^{2}}{12 n}+\sqrt{\frac{\pi^{2}}{6 n}+\frac{\pi^{4}}{144 n}} \\
& \simeq \sqrt{\frac{\pi^{2}}{6 n}} \text { (for now) } \\
\text { Hence: } P_{n} & <\frac{\exp \left\{\frac{\pi^{2}}{6} \frac{1}{\sqrt{\frac{\pi^{2}}{6 n}}}\right\}}{\left(1-\frac{1}{\sqrt{\frac{\pi^{2}}{6 n}}}\right)^{n}} \\
\left(1-\sqrt{\frac{\pi^{2}}{6 n}}\right)^{n} & \simeq \exp \left\{\pi \sqrt{\frac{2 n}{3}}\right\}\left(1+O\left(\frac{1}{n}\right)\right) \\
P_{n} & <\exp \left\{2 \sqrt{\frac{\pi^{2} n}{6}}\right\} \\
& =\exp \left\{\pi \sqrt{\frac{2 n}{3}}\right\}\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

This is actually a very good upper bound for P_{n}. In particular, the number of digits of P_{n} is $O(\sqrt{n})$.

$$
\begin{aligned}
\epsilon & =\frac{\sqrt{\pi^{4}+24\left(\pi^{2}\right)(n)}}{12 n} \\
& =\sqrt{\frac{\pi^{2} n}{6}}\left(\frac{\pi^{2}}{24 n}\right)^{\frac{1}{2}} \\
& =\sqrt{\frac{\pi^{2} n}{6}}\left(1+\frac{1}{2}\left(\frac{\pi^{2}}{24 n}\right)-\frac{1}{2} \frac{1}{2} \frac{1}{2}\left(\frac{\pi^{2}}{24 n}\right)^{2} \ldots\right)
\end{aligned}
$$

So the minimizing point is actually

$$
\sqrt{\frac{\pi^{2}}{6 n}}-\frac{\pi^{2}}{12 n}+O\left(\frac{1}{n^{\frac{3}{2}}}\right)=\sqrt{\frac{\pi^{2}}{6 n}}\left(1-\frac{1}{2} \sqrt{\frac{\pi^{2}}{6 n}}+O\left(\frac{1}{n}\right)\right)
$$

which can be written as

$$
\epsilon\left(1-\frac{\epsilon}{2}+O\left(\frac{1}{n}\right)\right)
$$

Since

$$
\begin{aligned}
\frac{\pi^{2}}{6 \epsilon\left(1-\frac{\epsilon}{2}+O\left(\frac{1}{n}\right)\right)} & =\frac{\pi^{2}}{6 \epsilon}\left(1+\frac{\epsilon}{2}-O\left(\frac{1}{n}\right)\right) \\
& =\frac{\pi^{2}}{6 \epsilon}+\frac{\pi^{2}}{12}+O\left(\frac{1}{n}\right)
\end{aligned}
$$

the numerator becomes

$$
\exp \left\{\frac{\pi^{2}}{6 \epsilon}\right\} \exp \left\{\frac{\pi^{2}}{12}\right\}
$$

and the denominator becomes

$$
\begin{aligned}
\frac{1}{\left(1-\epsilon\left(1-\frac{\epsilon}{2}+O\left(\frac{1}{n}\right)\right)^{n}\right.} & =\frac{1}{\left(1-\epsilon+\frac{\epsilon^{2}}{2}+O\left(\frac{\epsilon}{n}\right)\right)^{n}} \\
& =\frac{1}{\left((1-\epsilon)\left(1+\frac{\epsilon^{2}}{2}\right)\left(1+O\left(\frac{1}{n^{\frac{3}{2}}}\right)\right)\right)^{n}} \\
& =\frac{1}{(1-\epsilon)^{n}\left(1+\frac{\pi^{2}}{6 n}\right)^{n}(1+O(1))} \\
& \approx e^{\frac{\pi^{2}}{6}}
\end{aligned}
$$

So our upper bound takes the form of $e^{\pi \sqrt{\frac{2 n}{3}}} e^{-\frac{\pi^{2}}{12}}$.
So our bound just changes slightly.
Truth: $P_{n} \approx \frac{c}{n} e^{\pi \sqrt{\frac{2 n}{3}}}$.
Remark: We could try to be more precise, and estimate how big $\frac{1}{k}-\frac{x^{k}}{1-x^{k}}(1-x)$ is, and get a better upper bound, but it isn't worth the effort.
Reason is: If ϵ^{k} is big, then $(1-x)^{k} \approx e^{-\epsilon k}$ is small. $k \gg \sqrt{n}$, so the part of $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ which we lose is less than

$$
\sum_{k \geq \sqrt{n}} \frac{1}{k^{2}} \approx \int_{\sqrt{n}}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{\sqrt{n}}
$$

So $P(x)$ looks like

$$
\exp \left\{\frac{1}{\epsilon}\left(\frac{\pi^{2}}{6}-\frac{c}{\sqrt{n}}\right)\right\}=\exp \left\{\frac{\pi^{2}}{6 \epsilon}-\frac{c^{\prime}}{n}\right\}=\exp \left\{\frac{\pi^{2}}{6 \epsilon}\right\}(1+O(1))
$$

