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17.1 Another Construction

Again, we’ll have a family of nontrivial objects B with generating function B(x). (The B will play the role
of connected graphs or partitions etc.) Then we can consider all sequences of m elements of B

(b1, b2, b2, . . . , bm)

with repetition allowed. This has generating function B(x)m. Since all the elements of B are nontrivial, i.e.

have positive weight, B(0) = 0, so |B(x)|u < 1, so
∑
m≥0

B(x)m converges and hence the set of all finite

sequences of elements of B has generating function

1

1−B(x)
.

And, if we wanted to enumerate not just by weight, but by length of sequence as well, we could consider∑
m≥0

ymB(x)m =
1

1− yB(x)
.

Example: 01 strings.

17.1.1 New construction

Now we will introduce a new construction: Say that two sequences (b1, b2, . . . , bm), (c1, c2, . . . , cm) are
equivalent, ∼, if one is a cyclic rotation of the other. So, we have

(b1, b2, b3, . . . , bm) ∼ (b2, b3, . . . , bm, b1) ∼ (b3, b4 . . . , bm, b1, b2) ∼ · · · ∼ (bm, b1, b2, . . . , bm−1)

Now, consider the set
Cm = Bm/ ∼

of necklaces, that is, equivalence classes of sequences of length m under ∼. (Note: There is another term,
bracelets, which is similar, only reflections cause elements to be in the same equivalence class as well.)
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Example: How many necklaces of 0s and 1s are there?

m strings number
0 empty string 1
1 0, 1 2
2 00, 01, 11 3
3 000, 001, 011, 111 4
4 0000, 0001, 0011, 0101, 0111, 1111 6
5 00000, 00001, 00011, 00101, 8

00111, 01011, 01111, 11111
6 000000, 000001, 000011, 000101, 14

001001, 000111, 001011, 010101,
010011, 110110, 111010, 111100,
111110, 111111

Turns out that the generating function for necklaces of all lengths is

N(x) =
∑ −ϕ(k)

k
log
(
1−B(xk)

)
.

This is also known as, or comes from, the Polya Enumeration Theory (PET).

17.2 Counting Set Partitions

Definition 17.1 A set partition of S with k parts is a set

{c1, c2, . . . , ck}

of nonempty disjoint sets whose union is S. That is,

1. ci 6= ∅ for all i

2. ci ∩ cj = ∅ for all i < j

3.
⋃
j

cj = S.

17.2.1 Question:

How many set partitions of {1, 2, . . . , n} are there? Call this number Bn.
Generating functions here need to be different (or at least it is helpful if they are since the number of set
partitions of n grows much faster than the number of subsets of {1, 2, . . . , n}).
We’ll use the exponential generating function for the sequence {Bn}n≥0, namely

B(x) =
∑
n≥0

Bn
xn

n!

so that

Bn =

[
xn

n!

]
B(x) = n![xn]B(x).

(This construction gives B(x) a positive radius of convergence.)
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17.2.2 What is B(x)?

n set paritions
0 {} B0 = 1
1 {{1}} B1 = 1
2 {{1}, {2}}, {{1, 2}} B2 = 2
3 {{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, {{1, 2, 3}} B3 = 5
4 B4 = 15

Can we obtain a recurrence for Bn? If we collect/group the set partitions of {1, 2, . . . , n1} according to the
size of the part containing n + 1 we can. Let k be the size of the part containing n + 1, without counting
n + 1. Then we have

Bn−1 =

n∑
k=0

(
n

k

)
Bn−k

Now notice something about multiplying generating exponential functions. Suppose

f(x) =

∞∑
n=0

fn
xn

n!
and g(x) =

∞∑
n=0

gn
xn

n!
.

Then,

f(x)g(x) = f(x) =

∞∑
n=0

xn
n∑

k=0

fk
k!

gn−k
(n− k)!

=

∞∑
n=0

xn

n!

n∑
k=0

n!

k!(n− k)!
fkgn−k

=

∞∑
n=0

xn

n!

n∑
k=0

(
n

k

)
fkgn−k.

So, [
xn

n!

]
f(x)g(x) =

n∑
k=0

fkgn−k

(
n

k

)
.

So,

Bn−1 =

n∑
k=0

(
n

k

)
· 1 ·Bn−k

=

[
xn

n!

]
exB(x)

Now,

B′(x) =
∑
n≥1

nxn−1

n!
B(x)

so,
Bn+1 =

[
xn

n!

]
B′(x)

⇒ B′(x)
B(x) = ex

⇒ d
dx log(B(x)) = ex

⇒ log(B(x) = ex + c
⇒ B(x) = ee

x+c

⇒ B(x) = ee
x−1
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The last implication comes from the idea that

ee
x+c =

∞∑
k=0

3x + c)k

k!

needs to converge as a power series. So we need

|ex + c|u < 1

e0 + c = 0

c = −1.


