Combinatorial Analysis

Fall 2010

Lecture 17: September 24

Lecturer: Neil Calkin

Scribe: Jeannie Friedel and Shihwei Chao

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

17.1 Another Construction

Again, we'll have a family of nontrivial objects \mathcal{B} with generating function $B(x)$. (The \mathcal{B} will play the role of connected graphs or partitions etc.) Then we can consider all sequences of m elements of \mathcal{B}

$$
\left(b_{1}, b_{2}, b_{2}, \ldots, b_{m}\right)
$$

with repetition allowed. This has generating function $B(x)^{m}$. Since all the elements of \mathcal{B} are nontrivial, i.e. have positive weight, $B(0)=0$, so $|B(x)|_{u}<1$, so $\sum_{m \geq 0} B(x)^{m}$ converges and hence the set of all finite sequences of elements of B has generating function

$$
\frac{1}{1-B(x)}
$$

And, if we wanted to enumerate not just by weight, but by length of sequence as well, we could consider

$$
\sum_{m \geq 0} y^{m} B(x)^{m}=\frac{1}{1-y B(x)}
$$

Example: 01 strings.

17.1.1 New construction

Now we will introduce a new construction: Say that two sequences $\left(b_{1}, b_{2}, \ldots, b_{m}\right),\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ are equivalent, \sim, if one is a cyclic rotation of the other. So, we have

$$
\left(b_{1}, b_{2}, b_{3}, \ldots, b_{m}\right) \sim\left(b_{2}, b_{3}, \ldots, b_{m}, b_{1}\right) \sim\left(b_{3}, b_{4} \ldots, b_{m}, b_{1}, b_{2}\right) \sim \cdots \sim\left(b_{m}, b_{1}, b_{2}, \ldots, b_{m-1}\right)
$$

Now, consider the set

$$
\mathcal{C}_{m}=\mathcal{B}^{m} / \sim
$$

of necklaces, that is, equivalence classes of sequences of length m under \sim. (Note: There is another term, bracelets, which is similar, only reflections cause elements to be in the same equivalence class as well.)

Example: How many necklaces of 0 s and 1 s are there?

m	strings	number
0	empty string	1
1	0,1	2
2	$00,01,11$	3
3	$000,001,011,111$	4
4	$0000,0001,0011,0101,0111,1111$	6
5	$00000,00001,00011,00101$,	8
	$00111,01011,01111,11111$	
6	$000000,000001,000011,000101$,	14
	$001001,000111,001011,010101$,	
	$010011,110110,111010,111100$,	
	111110,111111	

Turns out that the generating function for necklaces of all lengths is

$$
N(x)=\sum \frac{-\varphi(k)}{k} \log \left(1-B\left(x^{k}\right)\right)
$$

This is also known as, or comes from, the Polya Enumeration Theory (PET).

17.2 Counting Set Partitions

Definition 17.1 A set partition of S with k parts is a set

$$
\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}
$$

of nonempty disjoint sets whose union is S. That is,

1. $c_{i} \neq \emptyset$ for all i
2. $c_{i} \cap c_{j}=\emptyset$ for all $i<j$
3. $\bigcup_{j} c_{j}=S$.

17.2.1 Question:

How many set partitions of $\{1,2, \ldots, n\}$ are there? Call this number B_{n}.
Generating functions here need to be different (or at least it is helpful if they are since the number of set partitions of n grows much faster than the number of subsets of $\{1,2, \ldots, n\}$).
We'll use the exponential generating function for the sequence $\left\{B_{n}\right\}_{n \geq 0}$, namely

$$
B(x)=\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}
$$

so that

$$
B_{n}=\left[\frac{x^{n}}{n!}\right] B(x)=n!\left[x^{n}\right] B(x)
$$

(This construction gives $B(x)$ a positive radius of convergence.)

17.2.2 What is $B(x)$?

n	set paritions	
0	$\}$	$B_{0}=1$
1	$\{\{1\}\}$	$B_{1}=1$
2	$\{\{1\},\{2\}\},\{\{1,2\}\}$	$B_{2}=2$
3	$\{\{1\},\{2\},\{3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\{\{2,3\},\{1\}\},\{\{1,2,3\}\}$	$B_{3}=5$
4		$B_{4}=15$

Can we obtain a recurrence for B_{n} ? If we collect/group the set partitions of $\left\{1,2, \ldots, n_{1}\right\}$ according to the size of the part containing $n+1$ we can. Let k be the size of the part containing $n+1$, without counting $n+1$. Then we have

$$
B_{n-1}=\sum_{k=0}^{n}\binom{n}{k} B_{n-k}
$$

Now notice something about multiplying generating exponential functions. Suppose

$$
f(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!} \quad \text { and } \quad g(x)=\sum_{n=0}^{\infty} g_{n} \frac{x^{n}}{n!}
$$

Then,

$$
\begin{aligned}
f(x) g(x) & =f(x)=\sum_{n=0}^{\infty} x^{n} \sum_{k=0}^{n} \frac{f_{k}}{k!} \frac{g_{n-k}}{(n-k)!} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} f_{k} g_{n-k} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k} f_{k} g_{n-k}
\end{aligned}
$$

So,

$$
\left[\frac{x^{n}}{n!}\right] f(x) g(x)=\sum_{k=0}^{n} f_{k} g_{n-k}\binom{n}{k} .
$$

So,

$$
\begin{aligned}
B_{n-1} & =\sum_{k=0}^{n}\binom{n}{k} \cdot 1 \cdot B_{n-k} \\
& =\left[\frac{x^{n}}{n!}\right] e^{x} B(x)
\end{aligned}
$$

Now,

$$
B^{\prime}(x)=\sum_{n \geq 1} \frac{n x^{n-1}}{n!} B(x)
$$

so,

$$
\begin{aligned}
& \begin{aligned}
B_{n+1} & =\left[\frac{x^{n}}{n!}\right] B^{\prime}(x) \\
\Rightarrow \quad \frac{B^{\prime}(x)}{B(x)} & =e^{x}
\end{aligned} \\
& \Rightarrow \quad \frac{d}{d x} \log (B(x))=e^{x} \\
& \Rightarrow \quad \log \left(B(x)=e^{x}+c\right. \\
& \Rightarrow \quad B(x)=e^{e^{x}+c} \\
& \Rightarrow \quad B(x)=e^{e^{x}-1}
\end{aligned}
$$

The last implication comes from the idea that

$$
e^{e^{x}+c}=\sum_{k=0}^{\infty} \frac{\left.3^{x}+c\right)^{k}}{k!}
$$

needs to converge as a power series. So we need

$$
\begin{aligned}
\left|e^{x}+c\right|_{u} & <1 \\
e^{0}+c & =0 \\
c & =-1
\end{aligned}
$$

