Combinatorial Analyis

Fall 2010

Lecture 18: September 27

Lecturer: Neil Calkin
Scribe: Shihwei Chao and Dominique Morgan
Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

18.1 Set Partitions

$A(z)$ is the generating function for necklaces of objects from \mathcal{B}. \mathcal{B} having generating fuction $B(z)$, then

$$
A(z)=\sum_{k=1}^{\infty} \frac{-\varphi(k)}{k} \log \left(1-B\left(z^{k}\right)\right)
$$

Last time: Generating function for set partitions is

$$
b(z)=\sum_{n \geq 0} b_{n} \frac{z^{n}}{n!}=e^{e^{z}-1}
$$

the exponential generating function for b_{n}. What does this tell us about, say, the growth rate of b_{n} ?

$$
\frac{b_{n}}{n!} \leq \frac{e^{e^{x}-1}}{x^{n}}, \quad \forall x>0
$$

minimmized when

$$
\frac{e^{e^{x}-1} \cdot e^{x}}{x^{n}}-\frac{n \cdot e^{e^{x}-1}}{x^{n+1}}=0
$$

i.e. $n=x e^{x}$.

Exercise (NTBHI): Learn about Lambert's W function.
How does $x e^{x}$ behave for $x \in(0, \infty)$?
$\frac{d}{d x}\left(x e^{x}\right)=(x+1) e^{x}>0, \forall x \in(0,1)$ and $\left.x e^{x}\right|_{x=0}=0$ and $\lim _{x \rightarrow \infty} x e^{x}=\infty$. Hence for any real $y \geq 0$,
$y=x e^{x}$ has a unique solution x with $x \geq 0$.
How big should x be if $x e^{x}=n ?$ (n large)
x should be on the order of magnitude of $\log n . x=\log n$ is too big since $\log n \cdot e^{\log n}=n \cdot \log n>n$.
Observe $x=\log \left(\frac{n}{\log n}\right)<\log n$:

$$
\log \left(\frac{n}{\log n}\right) \cdot e^{\log \left(\frac{n}{\log n}\right)}=\frac{n(\log n-\log \log n)}{\log n}<n
$$

So it appears that $x=\log n-\log \log n$ is a better estimate. Set $x=\log n-\log \log n+c$, then

$$
x e^{x}=\frac{\log n-\log \log n+c}{\log n} \cdot n e^{c}
$$

so

$$
e^{-c}=1-\frac{\log \log n}{\log n}+\frac{c}{\log n}
$$

So, assuming c is $o(1)$, terms up to $O\left(c^{2}\right)$, give

$$
1-c=1-\frac{\log \log n}{\log n}+\frac{c}{\log n}
$$

So $c\left(\frac{\log n-1}{\log n}\right)=\frac{\log \log n}{\log n}$, and hence $c=\frac{\log \log n}{\log n-1}$. So our minimizing happens for

$$
x \simeq \log n-\log \log n+\frac{\log \log n}{\log n-1}+o(1)
$$

Then, using, say $x=\log n-\log \log n$,

$$
\begin{gathered}
e^{e^{x}-1}=e^{\frac{n}{\log n}-1}=\left(e^{\frac{1}{\log n}}\right)^{n} \cdot \frac{1}{e} \\
x^{n}=\left(\log n\left(1-\frac{\log \log n}{\log n}\right)\right)^{n} \simeq(\log n)^{n} e^{-\frac{n \log \log n}{\log n}}
\end{gathered}
$$

So

$$
\frac{b_{n}}{n!} \leq e^{\left(\frac{1}{\log n}-\log \log n+\frac{\log \log n}{\log n}\right)^{n}} \cdot \frac{1}{e} \simeq\left(e^{-\log \log n}\right)^{n}<d^{n}
$$

for any fixed $d>0$.
So $\frac{b_{n}}{n!} \rightarrow 0$ very rapidly (but not as rapidly as $\frac{1}{n!}$).

$$
n!\simeq\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}=e^{n \log n-n+\frac{1}{2} \log n+\cdots}
$$

b_{n} grows like

$$
e^{n \log n-n \log \log n-n+n \frac{1+\log \log n}{\log n}+\cdots}
$$

Not very illuminating, it says more if we say $\log b_{n} \simeq n \log n-n \log \log n+\cdots$
If b_{n} doesn't have a simple growth rate, then we probably can't expect some of the following to either ...
Define $S(n, k)$ to be the number of set partitions of $\{1,2, \cdots, n\}$ having exactly k parts.
$S(n, 1)=1$
$S(n, n)=1$
$S(n, k)=\frac{1}{k!} \cdot \#$ onto functions from $\{1,2, \cdots, n\}$ to $\{1,2, \cdots, k\}$
$S(n, n-1)=\binom{n}{2}$
$S(n, 2)=2^{n-1}-1$
$S(n, n-2)=$? part sizes possible: $2,2,1, \cdots, 1$ or $3,1,1, \cdots, 1$.

$$
S(n, n-2)=\binom{n}{3}+\frac{1}{2}\binom{n}{2}\binom{n-2}{2}=\frac{n(n-1)(n-2)}{6}+\frac{n(n-1)(n-2)(n-3)}{8}
$$

This appears perhaps to give a little insight:

$$
S(n, k)=\sum_{\substack{\lambda \vdash n \\ \lambda \text { has } k \text { parts }}}\binom{n}{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}} \frac{1}{i_{1}!i_{2}!i_{3}!\cdots},
$$

where $i_{j}=\#$ copies of j in λ.
Exercise: c_{λ} ?
Easier approach to $S(n, k): S(n+1, k)=S(n, k-1)+k S(n, k)$
compare to Pascal's identity $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
So, $S(1,1)=1$
$S(2,1)=1$
$S(2,2)=1$

				k			
n	1	2	3	4	5	6	7
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	

What about other similar recurrences?
$T(n+1, k)=f(n, k) \cdot T(n, k-1)+g(n, k) \cdot T(n, k)$ where $f(n, k)$ and $g(n, k)$ are nice simple functions.
e.g.
$T(n+1, k)=k \cdot T(n, k-1)+T(n, k) ?$
$T(n+1, k)=T(n, k-1)+n \cdot T(n, k) ?$
$T(n+1, k)=n \cdot T(n, k-1)+T(n, k) ?$
$T(n+1, k)=T(n, k-1)+(n-k) \cdot T(n, k) ?$

Exercise: Investigate these computationally. Are there any nice patterns? Do you ever get nice row sums? diagonal sums? (Due Next Friday on Oct. 8th)

