
Combinatorial Analyis Fall 2010

Lecture 18: September 27
Lecturer: Neil Calkin Scribe: Shihwei Chao and Dominique Morgan

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be
complete or even necessarily correct. They may only be redistributed with permission, which you may expect
will be liberally granted. Ask first, please.

18.1 Set Partitions

A (z) is the generating function for necklaces of objects from B. B having generating fuction B (z), then

A (z) =

∞∑
k=1

−ϕ (k)

k
log
(
1−B

(
zk
))
.

Last time: Generating function for set partitions is

b (z) =
∑
n≥0

bn
zn

n!
= ee

z−1,

the exponential generating function for bn. What does this tell us about, say, the growth rate of bn?

bn
n!
≤ ee

x−1

xn
, ∀x > 0,

minimmized when
ee

x−1 · ex

xn
− n · eex−1

xn+1
= 0

i.e. n = xex.

Exercise (NTBHI): Learn about Lambert’s W function.

How does xex behave for x ∈ (0,∞)?

d
dx (xex) = (x+ 1) ex > 0, ∀x ∈ (0, 1) and xex |x=0 = 0 and lim

x→∞
xex =∞. Hence for any real y ≥ 0,

y = xex has a unique solution x with x ≥ 0.

How big should x be if xex = n? (n large)

x should be on the order of magnitude of log n. x = log n is too big since log n · elogn = n · log n > n.

Observe x = log
(

n
logn

)
< log n:

log

(
n

log n

)
· elog(

n
log n) =

n (log n− log log n)

log n
< n.

18-1

Lecture 18: September 27 18-2

So it appears that x = log n− log log n is a better estimate. Set x = log n− log log n+ c, then

xex =
log n− log log n+ c

log n
· nec,

so

e−c = 1− log log n

log n
+

c

log n
.

So, assuming c is o (1), terms up to O
(
c2
)
, give

1− c = 1− log log n

log n
+

c

log n
.

So c
(

logn−1
logn

)
= log logn

logn , and hence c = log logn
logn−1 . So our minimizing happens for

x ' log n− log log n+
log log n

log n− 1
+ o (1) .

Then, using, say x = log n− log log n,

ee
x−1 = e

n
log n−1 =

(
e

1
log n

)n
· 1

e
,

xn =

(
log n

(
1− log log n

log n

))n
' (log n)

n
e−

n log log n
log n .

So
bn
n!
≤ e(

1
log n−log logn+ log log n

log n)
n

· 1

e
'
(
e− log logn

)n
< dn

for any fixed d > 0.

So bn
n! → 0 very rapidly (but not as rapidly as 1

n!).

n! '
(n
e

)n√
2πn = en logn−n+ 1

2 logn+···

bn grows like

en logn−n log logn−n+n 1+log log n
log n +···

Not very illuminating, it says more if we say log bn ' n log n− n log log n+ · · ·

If bn doesn’t have a simple growth rate, then we probably can’t expect some of the following to either . . .

Define S (n, k) to be the number of set partitions of {1, 2, · · · , n} having exactly k parts.

S (n, 1) = 1

S (n, n) = 1

S (n, k) = 1
k! ·# onto functions from {1, 2, · · · , n} to {1, 2, · · · , k}

S (n, n− 1) =
(
n
2

)
S (n, 2) = 2n−1 − 1

S (n, n− 2) = ? part sizes possible: 2, 2, 1, · · · , 1 or 3, 1, 1, · · · , 1.

S (n, n− 2) =

(
n

3

)
+

1

2

(
n

2

)(
n− 2

2

)
=
n (n− 1) (n− 2)

6
+
n (n− 1) (n− 2) (n− 3)

8
.

Lecture 18: September 27 18-3

This appears perhaps to give a little insight:

S (n, k) =
∑
λ ` n

λ has k parts

(
n

λ1, λ2, · · · , λk

)
1

i1!i2!i3! · · ·
,

where ij = # copies of j in λ.

Exercise: cλ?

Easier approach to S(n, k): S(n+ 1, k) = S(n, k − 1) + kS(n, k)

compare to Pascal’s identity
(
n+1
k

)
=
(
n
k−1
)

+
(
n
k

)
.

So, S(1, 1) = 1
S(2, 1) = 1
S(2, 2) = 1

k
n 1 2 3 4 5 6 7
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1

What about other similar recurrences?

T (n+ 1, k) = f(n, k) · T (n, k − 1) + g(n, k) · T (n, k) where f(n, k) and g(n, k) are nice simple functions.

e.g.

T (n+ 1, k) = k · T (n, k − 1) + T (n, k)?

T (n+ 1, k) = T (n, k − 1) + n · T (n, k)?

T (n+ 1, k) = n · T (n, k − 1) + T (n, k)?

T (n+ 1, k) = T (n, k − 1) + (n− k) · T (n, k)?

Exercise: Investigate these computationally. Are there any nice patterns? Do you ever get
nice row sums? diagonal sums? (Due Next Friday on Oct. 8th)

