Combinatorial Analyis

Fall 2010

Lecture 21: October 04

Lecturer: Neil Calkin

Scribe: Grady Thomas and Honghai Xu

Disclaimer: These notes are intended for students in the class listed above: they are not guaranteed to be complete or even necessarily correct. They may only be redistributed with permission, which you may expect will be liberally granted. Ask first, please.

21.1 What is the distribution of cycles in a random permutation?

Specifically if we pick a permutation of 1, 2, ..., n and a fixed integer k, what is the probability that there are exactly k fixed points?

$$\begin{split} \mathbf{P}(\pi \text{ has no fixed points}) &= \frac{D_n}{n!} \simeq \frac{1}{e} \\ \text{How many permutations have exactly one fixed point? } \binom{n}{1} D_{n-1} \\ \text{How many permutations have exactly k fixed points? } \binom{n}{k} D_{n-k} \\ \text{Denote, temporarily, } \lfloor x + \frac{1}{2} \rfloor \text{ to be the nearest integer to x so,} \end{split}$$

$$P(\pi \text{ has exactly k fixed points}) = \frac{1}{n!} \frac{n!}{k!(n-k)!} D_{n-k}$$
$$= \frac{1}{k!} \frac{\lfloor \frac{(n-k)!}{e} + \frac{1}{2} \rfloor}{(n-k)!}$$
$$\simeq \frac{1}{k!e}$$
$$= \frac{e^{-1}}{k!} + error_{n,k}, \text{ where } |error_{n,k}| < \frac{1}{k!(n-k+1)!}$$

Asymptotically, the number of fixed points is almost Poisson, with mean 1. So, expected number of fixed points is about E[X] where $X \sim Poisson(1)$, so E[X] = 1

Can we count 2-cycles?

One Approach: Compute the probability that there are no 2-cycles. Prove some general abstract nonsense (here, Poisson paradigm) to show distribution is asymptotically Poisson, and deduce the mean.

Exponential generating function for permutations without 2-cycles is

$$\exp\{-\log(1-x) - \frac{x^2}{2}\} = \frac{e^{\frac{-x^2}{2}}}{1-x}$$

We could, if we choose, write $e^{\frac{-x^2}{2}} = \sum \frac{x^{2k}}{k!} \frac{(-1)^k}{2^k}$ and compute exactly as we did with D_n . Excercise: Compute as we did with D_n , get a similar "nearest integer" result.

Alternative Approach: Since $\frac{e^{\frac{-x^2}{2}}}{1-x}$ blows up at x=1 we know that if $\frac{e^{\frac{-x^2}{2}}}{1-x} = \sum_{n\geq 0} t_n \frac{x^n}{n!}$, then for any $|r| < 1, \frac{r^n t_n}{n!} \to 0$ and for any |R > 1, $\limsup_{n\to\infty} \frac{R^n t_n}{n!} \to \infty$

This suggest $t_n \approx cn!$.

Let's see if we can eliminate the singularity at x = 1. At x = 1, $e^{-\frac{x^2}{2}}$ behaves like $e^{-\frac{1}{2}}$. Near x = 1, $\frac{e^{-\frac{x^2}{2}}}{1-x}$ behaves like $\frac{e^{-\frac{1}{2}}}{1-x}$. So, consider $\frac{e^{-\frac{x^2}{2}}}{1-x} - \frac{e^{-\frac{1}{2}}}{1-x}$, say, for $x = 1 - \delta$. $\frac{e^{-\frac{x^2}{2}}}{1-x} - \frac{e^{-\frac{1}{2}}}{1-x} = \frac{e^{-\frac{(1-\delta)^2}{2}} - e^{-\frac{1}{2}}}{\delta} = \frac{e^{-\frac{1}{2}}}{\delta} \cdot (e^{\delta - \frac{\delta^2}{2}} - 1)$

As
$$\delta \to 0$$
, $\left(\frac{e^{\delta - \frac{\delta^2}{2}} - 1}{\delta}\right) \to 1$. Hence, $\frac{e^{-\frac{x^2}{2}} - e^{-\frac{1}{2}}}{1 - x}$ has no singularities in C , and its coefficients approach

0 faster than ϵ^n for all $\epsilon > 0 \Rightarrow \frac{t^n}{n!} = e^{-\frac{1}{2}} + O(\epsilon^n)$, for any fixed $\epsilon > 0$.

Therefore, the probability of an arbitrary permutation π has no two-cycles $\rightarrow e^{-\frac{1}{2}}$ as $n \rightarrow \infty$.

Similarly, the probability of an arbitrary permutation π has no k-cycles $\rightarrow e^{-\frac{1}{k}}$ as $n \rightarrow \infty$. Exercise : Prove this proposition.

Hence a poisson paradigm Theorem would tell us that the number of k-cycles is poisson with mean $\approx \frac{1}{k}$ and hence the number of k-cycles is $\approx \frac{1}{k}$.

As a collary, the expected number of cycles in a random permutation on $\{1, 2, ..., n\}$ is

$$\sum_{k=1}^{n} E(\text{the number of k-cycles}) \approx \sum_{k=1}^{n} \frac{1}{k} \approx H_n.$$
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \approx \log n + r + O(\frac{1}{n}),$$

where r is the Euler Mascheroni Constant.

Let's check the above formula. We notice that for n = 1, 2, 3, 4, the formula is more than just an approximation. The equality holds, as the following table shows.

n	H_n	permutations	E(number of cycles)
1	1	(1)	1
2	$1 + \frac{1}{2} = \frac{3}{2}$	(1)(2);(12)	$\frac{3}{2}$
3	$\frac{3}{2} + \frac{1}{3} = \frac{11}{6}$	(1)(2)(3);(1)(23);(2)(13);(3)(12);(123);(132)	$\frac{11}{6}$
4	$\frac{11}{6} + \frac{1}{4} = \frac{25}{12}$		$\frac{1 \times 4 + 6 \times 3 + 3 \times 2 + 8 \times 2 + 6 \times 1}{4 + 3 + 2 + 2 + 1} = \frac{25}{12}$

Table 21.1: Comparison of values of ${\cal H}_n$ and E(number of cycles)

Exercise : How far does this pattern continue?