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Question 1

(a) TRUE

(b) FALSE

(c) FALSE

(d) TRUE

(e) FALSE

Question 2

(a) We can write the density function as:

fX(x; θ) =
1√
2πθ

exp
{
− 1

2θ
(x− θ)2

}
= exp

{
− 1

2θ
(x2 − 2θx + θ2)− 1

2
ln(2πθ)

}
= exp

{
− 1

2θ
x2 + x− 1

2
θ − 1

2
ln(2πθ)

}
,

which has the form of a one-parameter exponential family with d1(x) = x2. Therefore, we

know that D =
∑n

i=1 X2
i is a minimal sufficient statistic for θ based on a sample of size n,

X1, . . . , Xn.

(b) From part (a), we see that

l(θ) =
n∑

i=1

ln{fX(Xi; θ)} = − 1
2θ

n∑
i=1

X2
i +

n∑
i=1

Xi −
n

2
θ − n

2
ln(2πθ).

Thus, we have:

l′(θ) =
1

2θ2

n∑
i=1

X2
i −

n

2
− n

2θ
,

and

l′′(θ) = − 1
θ3

n∑
i=1

X2
i +

n

2θ2
.
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Therefore, the expected Fisher information is:

I(θ) = −E{l′′(θ)} =
1
θ3

n∑
i=1

E(X2
i )− n

2θ2
=

n

θ3
(θ2 + θ)− n

2θ2
=

n

θ
+

n

2θ2
,

where we have used the fact that E(X2
i ) = V ar(Xi) + {E(Xi)}2 = θ + θ2. Finally, then, the

Cramér-Rao bound for the variance of unbiased estimators of θ is given by:(
n

θ
+

n

2θ2

)−1

=
2θ2

n(2θ + 1)
.

Now, V ar(X) = 1
nV ar(X1) = θ

n which is clearly larger than
(

n
θ + n

2θ2

)−1 for all θ > 0 [since

clearly n
θ < n

θ + n
2θ2 ].

(c) Since X is not a function of
∑n

i=1 X2
i which is a minimal sufficient, complete statistic (since

we are dealing with a full-rank exponential family here), it cannot be the UMVU estimator.

Indeed, to find the UMVU estimator in this case, we simply need to calculate E
(
X

∣∣ ∑n
i=1 X2

i

)
(since X is clearly an unbiased estimator).

Question 3

(a) We can write the likelihood function as:

L(θ) =
n∏

i=1

fX(Xi; θ) = θn
n∏

i=1

Xθ−1
i = θne(θ−1) ln(

∏n

i=1
Xi).

Therefore, the posterior distribution has the form:

π(θ|X1, . . . , Xn) =
L(θ)π(θ)∫

Θ
L(t)π(t)dt

= c1θ
ne(θ−1) ln(

∏n

i=1
Xi)θα−1e−αθ

= c2θ
n+α−1e−{α−

∑n

i=1
ln(Xi)}θ,

where c1 = αα

Γ(α)
∫

Θ
L(t)π(t)dt

and c2 = c1e
−

∑n

i=1
ln(Xi). Clearly, this has the form of a Gamma

distribution with shape parameter α + n and scale parameter
{
α−

∑n
i=1 ln(Xi)

}−1.

(b) The posterior Bayes estimator is just the mean of the posterior distribution. Therefore, θ̂π =
α+n

α−ln(
∏n

i=1
Xi)

.

(c) Using the MLE we can write the posterior Bayes estimator as:

θ̂π =
α + n

α− ln(
∏n

i=1 Xi)
=

α + n

α + (n/θ̂MLE)
=

αθ̂MLE + nθ̂MLE

αθ̂MLE + n
.

So, for a fixed α, we see that as n tends to infinity the posterior Bayes estimator tends towards

θ̂MLE as it should. Similarly, for a fixed n, we see that as α tends to infinity (which corresponds

to the variance of the posterior tending to zero), we see that the posterior Bayes estimator

tends towards 1 (which is the mean of the posterior distribution).

Question 4

(a) When we remove X1, we can see that the average of the remaining first components is 1
2 (3+4) =

3.5, the average of the remaining second components is 1
2 (2 + 6) = 4 and the average of the
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remaining ratios is 1
2

(
3
2 + 4

6

)
= 1.083. Similarly, when we remove X2, the corresponding

values are 2.5, 5 and 0.458. For removal of X3 we get 2, 3 and 0.875. Therefore, for T1, we

have θ̂1 = 3.5
4 = 0.875, θ̂2 = 2.5

5 = 0.5 and θ̂3 = 2
3 = 0.667 and the average of these three

values is θ̂• = 0.681. Also, T1 itself is equal to 0.667. Thus, the Jackknife estimate of bias is

B̂J = (3 − 1)(0.681 − 0.667) = 0.028. For T2, we see that θ̂1 = 1.083, θ̂2 = 0.458, θ̂3 = 0.875

and this means that θ̂• = 0.806. Finally, then, we see that T2 is 0.806 which means that the

Jackknife estimate of variance is zero.

(b) Using the alternate formula derived in Tutorial 6, we see that the Jackknife estimate of variance

is calculated as:
n− 1

n

n∑
i=1

(θ̂i − θ̂)2.

Therefore, for T1 we have a Jackknife variance estimate of 0.047. Similarly, for T2 we have a

Jackknife variance estimate of 0.135.

(c) We can approximate the MSE of these two estimators as MSEt1 = 0.047+(0.028)2 = 0.04784

and MSEt2 = 0.135. As such, we might prefer T1. Alternatively, it appears that T2 is unbiased

in this case, so we might prefer it on those grounds. Of course, we should note that these MSE

estimates are not necessarily that reliable. In particular, since T2 is just an average, it is easily

seen that the Jackknife bias estimate must be zero, even though it is rarely the case that T2 is

actually unbiased.

END OF EXAMINATION


