Learning Activity Sections 1.1 and 1.2

- 1. Use interval notation to write the domain of each of the following functions.
 - a. $f(x) = \sqrt{x^2 5}$

$$x^2 - 5 \ge 0 \implies x^2 \ge 5 \implies x \le -\sqrt{5} \text{ or } x \ge \sqrt{5}$$

The domain is $(-\infty, -\sqrt{5}] \cup [\sqrt{5}, \infty)$.

b.
$$f(x) = \frac{1}{\sqrt{x^2 - 5}}$$

Same as above, but denominator cannot be zero. Exclude $x = -\sqrt{5}$ and $\sqrt{5}$.

The domain is $\left(-\infty, -\sqrt{5}\right) \cup \left(\sqrt{5}, \infty\right)$.

- 2. Let f(x) = 2x 1, $g(x) = x^2$ and $h(x) = \sin(x)$. Find
 - a. $(f \circ g)(x)$

$$(f \circ g)(x) = f(g(x)) = f(x^2) = 2(x^2) - 1 = 2x^2 - 1$$

b. $(f \circ h)(x)$

$$(f \circ h)(x) = f(h(x)) = f(\sin x) = 2\sin x - 1$$

c. $(f \circ g \circ h)(x)$

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(\sin x)) = f(\sin^2 x) = 2\sin^2 x - 1$$

3. Graph the following function: $f(x) = \begin{cases} -2x - 1 & \text{if } x < -1 \\ 1 & \text{if } -1 \le x \le 1 \\ 2x - 1 & \text{if } x > 1 \end{cases}$

4. If you have the graph y = f(x), how do you obtain:

a.
$$y = f(x+2)$$

Shift y = f(x) to the left by 2 units.

b.
$$y = -3f(x)$$

Steepen y = f(x) vertically by a factor of 3 and reflect about the x-axis.

c.
$$y = f(3x)$$

Steepen y = f(x) horizontally by a factor of 3.

d.
$$y = 4f(x-6) + 9$$

Shift y = f(x) to the right by 6 units and up by 9 units. Then, steepen by a factor of 4.