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Course Syllabus

Mathematical Sciences 405/605
Statistical Methods Il

Instructor: Calvin L. Williams, Ph.D. Class Location: M-103 Martin Hall

Office: 0-323 Martin Hall Class Time9:45-11:15 M-F

Telephone: 656-5241 Office Hours: M-F:2:00-3:00 or By Appointment

E-mail: calvinw@math.clemson.edu WWW: http://www.math.clemson.edutalvinw/MthSc405

I. Text: Linear Statistical Models : An Applied Approach by Bowerman and O’Connell.
Prerequisites: MthSc 301-302 or equivalent

II. Course Description: This course is designed to continue with intermediate probability and statis-
tics at an intermediate level. Emphasis is placed on the understanding of the concepts of techniques
in inferential statistics, data analysis, and regression analysis along with its appropriate application.
This should prepare you for the practical application of regression and other modeling techniques
in more general areas such as engineering, the sciences, education, and management. The intent is
to cover the prescribed text omitting those sections that are unneeded with additional information
given in the form of handouts and take home projects. Although there will be no requirement of a
specific statistical computing package, it would be in your best interest to be familiar with a pack-
age. Examples shown in class will be done using Statistix and SAS. Notes and example code are
available for students wishing to use SAS.

lll. Short Course Itinerary

¢ Brief review of techniques in statistical inference

Least Squares and Simple Linear Regression

Polynomial Regression

Multiple Linear Regression
Diagnostics and Model Building
Indicator variables and the Analysis of Variance

¢ Nonlinear Regression, just a little.

IV. Attendance Policy: All classes should be attended. If not, legitimate excuses must be offered
with respect to the day(s) missed. Attendance will be monitored. It is to the instructors discretion
whether an excuse is legitimate or not. Accordingly, the university’s policy on religious holidays
will be acknowledged and honored. IF YOU ARE ILL STAY HOME. You may call me or e-mail
me in advance of class if you are ailingote that this does not exempt you from examinations,
homework or project due dates.

V. Tardy Professor Policy: If the instructor is more than 15 minutes late for any class you may leave.

VI. Examination Policy: There will be weekly fifty minutes in class closed book quizzes afidah
examination, also closed book. Students should bring a calculator, two clean regulatioél”$ize(8
sheets for scratch work to be turned in with exams, and of course something with which to write,
preferably pencil. There will be no sharing of calculators, scratch sheets, or writing utensils during
the exams.No makeup examinations will be given Any student who misses an examination
without alegitimate excusee.g. a documented medical excusél receive a score oferofor that
exam. A student with degitimate excusewill receive a final score based on all other class work.
More than one missed exam with require withdrawal from the course and/or the receiptliofga fa
final grade.
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VII. Homework Assignments, Case Studies, and Class Project:

There will also be several homework sets and case studies from different application areas assigned
from the text as well as from material covered during class. Although it is imperative that each
student be completely comfortable with these assigned problems and projects, group study is en-
couraged. There will also be a class project as described below.

VIIl. Requirements for Homework Assignments

A. Homework:
(&) Problems will generally be due thext class session after the class session in
which they were assigned unless stated otherwise at the time of the assignment.
(b) Solutions should be written out clearly and completialythe context of the
problem posed.
B. Case Studies:
() Case studies will generally be due Bexondclass session after the class ses-
sion in which they were assigned.
(b) The analysis should includedescriptionof the problem. | will generally in-
clude this with the assignment.
(c) The analysis should includummarystatistics written in anarrative form.
Tables can be included for centrally locating these results.
(d) The analysis should also include any graphical descriptions, along wéh a
rative describing the graphs, plots, etc.
(e) Complete computer printouts, command line results, or any other precursory
results are not necessary and should not be turned in unless requested.

C. Class Project:

(a) The data set must not be taken from any text book, although data from journal
articles are satisfactory. You may even consider collecting your own data. In
other words, the internet or the course web page will be your best source.

(b) Data must have at least 40 cases and at least three measured characteristics.
You can reduce this for you presentations, but must justify your reasons for
doing so.

(c) Write ups should include all of those items required for regular class home-
work, ie, summaries, graphics, exposition, etc.

IX. Grading Policy: The weekly regular quizzes will count as 60% of the final grade, homework sets
and projects 20%, and final exam 20%. The final exam will cover the more important topics covered
during the semester.

X. Grading Scale: A<= 100 - 90,B« 89 - 80,C«< 79 - 70,D<= 69 - 60, andF<= 59 - 0

Xl. Academic Dishonesty:Academic dishonesty will not be tolerated. For information regarding the
definition of acts oficademic dishonesty and the subsequentlpesayou are referred to the 1999-
2000 Student Handbook.
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1 Class Project

Mathematical Sciences 405

Statistical Theory and Methods ||
Project Description, Summer 2000

This project is an opportunity to use the statistical techniques we have learned in class, to answer real-life
guestions. Projects may be done individually, or as a team of 1 or 2, preferably 2. Each team must:

e Choose a question that is of interest to them, and that can be answered via a designed experiment or an
observational study.

e Design and perform an experiment, gathering data to answer the question. Published data are not accept-
able. Data that were gathered for a project in another class are acceptable, provided the guidtiises for
project are met.

e Analyze the data in whatever way is appropriate.
¢ Report the findings.

You will have about 2 weeks to perform your experiment and analyze and report your findings. Plan your time
accordingly.
The team grade will be based on the final report, which should contain the following items.

e A description of the question, and the team’s reasons for wanting to know the answer,

e A description of the techniques used for gathering the data, including how randomization was performed
and how the sample size was chosen,

¢ Analysis and illustration of the findings and conclusions.

e A listing of all the data, and example of a data-collection form (if used) and the details of any unusual
calculations.

Reports should be neatly typed, well-organized and attractive. Graphical displays (either computer-generated or
hand-drawn) are encouraged. Generally, graphs are more effective if they are incorporated into the text, rather
than hidden at the end of the report. You may also use a computer package to aid in the data analysis. If you do
s0, the results should be discussed in the text of your report, and the computer output itself may be included in
an appendix.

A rough draft of the final report will be due approximately 2 weeks before the final report is due. The
critique and rough draft will be given back to the original group, who can change or add finishing touches before
turning in the final report.

The project is worth 100 points. Grades will be based on:

Appropriate and correct procedures 50 pts
Well-written and attractive presentation 20 pts
Grammar, spelling and punctuation 20 pts
Complexity 10 pts

All members of the team will receive the same grade. It is the team’s resjiapsthsee that all members
make a fair contribution. A project proposal (not graded) must be approved before the project is started. An
approved proposal must be turned in with the final report. The proposal should state:

e The question and its motivation
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e Plan for collecting data, details of how randomness will be achieved, planned sample size and reason for
it.

e Proposed analysis.

Due dates



HOMEWORK AND CASE STUDIES DUE DATES

Homework and Case Studies Due Dates

Reading Assignment Chapter 1

Reading Assignment Chapter 2

Homework Assignment: Due: 2.7, 2.10,2.17, 2.19, 2.22
Reading Assignment Chapter 3

Homework Assignment: Due: 3.1, 3.10, 3.21, 3.24, 3.30
Case Study: Medicine: Due: TBA

Reading Assignment Chapter 4

Homework Assignment: Due: 4.7, 4.10,4.14,4.17, 4.23
Reading Assignment Chapter 5

Homework Assignment: Due:5.6, 5.18, 5.25, 5.34, 5.37
Homework Assignment: Due:5.46,5.47, 5.50, 5.52
Reading Assignment Chapter 6

Homework Assignment: Due: 6.9, 6.11, 6.14, 6.15, 6.25
Reading Assignment Chapter 7 Section 8.

Homework Assignment: Due: 7.12, 7.13,7.14,7.15
Reading Assignment Chapter 8

Case Study: Climatology: Due: TBA

Homework Assignment: Due: 8.4, 8.10, 8.17

Reading Assignment Chapter 9

Homework Assignment: Due: 9.3, 9.6, 9.9

Reading Assignment Chapter 10 (10.1,10.4-10.5) and Multicollinearity Handout
Case Study: Inducer: Due: TBA

Homework Assignment: Due: 10.3

Reading Assignment Chapter 11

Homework Assignment: Due: 11.5,11.8,11.9

Reading Assignment Chapter 12

Homework Assignment: Due: TBA

Reading Assignment Chapter 13

Homework Assignment: Due: TBA

Reading Assignment Chapter 14

Homework Assignment: Due: TBA

Reading Assignment Chapter 15

Homework Assignment: Due: TBA



3 INTRODUCTION 1

3 Introduction

At its basic study, Statistics can be partitioned into two or three major foundational areas: data exploration,
data categorization and analysis (eg. modeling), and statistical inference. Data exploration begins in a ex-
ploratory form and becomes more practical and provocative as data and the constraints placed on modeling data
becomes more complex.

4 Data Types

e Quantitative data

— Continuous data
— Discrete data

e Qualitative(categorical) data

— Nominal data
— Ordinal data

5 Descriptive Statistics-Informal data definitions

5.1 Main terms and concepts

Population, population distribution, population parameters, sample, sample statistics, sampling distribution,
point estimator, interval estimator, confidence interval.

e Population: A population is the totality of units under study. That is, units that are unmeasured as well
as those measured. One or more characteristics or attributes are measured and analyzed.

e Cumulative distribution: A population can be described in terms of its cumulative distribution function
which gives the proportion of the population less than each possible value, usually déndt&d< ).

A discretepopulation can be described by a probability function giving the proportion of the population
equal to each possible value.

¢ Density function: A continuous population can be described by a density function, which is the derivative
of the cumulative distribution function. A density function can be approximated by a histogram giving
the proportion of the population lying within each of a series of intervals of values. A piibpdensity
function is like a histogram with an infinite number of infinitely small intervals.

e Sample: A sample is a part of the population from which the characteristic under study is measured and
analyzed in order to make inferences back to the population.

e Samplestatistic: A sample statistic is a mathematical function of the sample values. A statistic is to a
sample what a parameter is to a population. It is customary to denote sample statistics in arabic, such as
the sample meai, and to denote population parameters in greek, such as the populatiopmean

e Estimate: Often we wish to estimate or guess what a population characteristic’s value is under certain
circumstances. We can get an estimate of the characteristic's value based on the characteristic’s value for
a simple random sample. There could be several ways to estimate the population parameter. For different
characteristics there could be different estimates.
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e Simple randonmsample: A simple random sample is a sample taken from the population where every unit
in the population has the same probability of being selected.

e Parameterestimation: Assume a simple random sample of sizis taken from a population with mean
p and variancer?. If these population parameters are unknown, they must be estimated from the sample
data.

5.2 Measures of Location or Central tendency
Let Xy, X, ..., X, denote a random sample of sizerawn from some population
e Mean: The sample mea# is defined by:

o T A )

n

X =

It is the “best” point estimate of the population mgar E(X), when it is unknown.

e Median: The population median is the central value, lying above and below half of the population values.
The sample median is determined similarly, that is, it is the middle value when the sample values are
ordered in ascending or descending orden i odd, the median is just the + 1stvalue. Ifnis evenit
is the average of the middle two points, thg ¢ (5 + 1)stvalues divided by two.

e Mode: The mode is the value at which the density of the population is at a maximum. Some densities
have more than one maximum point and are said to be multimodal. The sample mode is the value that
occurs most often in the sample. If there is a tie for the most often occurring sample value, the sample is
said not to have a mode. If the population is continuous, then all sample values occur only once and the
sample mode has very little use.

e WeightedMean Given that the weight associated withis w; > 0, positive and non-zero for atl z
2?21 wy "

e GeometricMean Given thatx; > 0, positive and non-zero for al GM = ¥/zy - 29 - - -z,

e Harmonic Mean Given thatr; > 0, positive and non-zero for 4ll
HM = nn =4 - - Given equal observations GBMHM< 7.
1 gttt

Tn
xl

=1

e Percentile Trimmed (p%)Mean Delete thep% smallest and the largesto of a samplez,,.(,, is the
arithmetic mean of the remaining data.
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5.3 Quantiles

Quantiles, including percentiles, quartiles, and the median, are useful for a detailed study of a distribution.
e [Quantiles] For a data set consisting bfvalues that when ordered arg) < z(5) < ... < 2y,

1. for any numbep of the formi‘%, wherei is an integer from 1 tm, thep quantile of the data set
will be taken to bex;. (Theith smallest data point will be called tﬁéﬁi guantile.)

2. for any numbep between®2 and2=25 that is not of the forn=22, thep quantile of the data set
will be obtained by linear interpolation between the quantiles corresponding to the two values of
=03 that brackep.
In both cases, the notation g)(will be used to symbolize the quantile.

e Percentile: For a set of measurements arranged in order of magnitudpthiteercentile is the value that
hasp% of the measurements below it a(id0-pPb6 above it.

e Quartiles Q1, @2, Qs3:

@1 is the median of the smallest n/2 observations

If the number n is even - { @3 is the median of the largest n/2 observations

. ) ()1 is the median of the smallest (n —1)/2 observations
It the number i odd { Qs is the median of the largest (n — 1)/2 observations

The1st quartile is25th%tile. The2nd quatrtile is50th%tile and Median. And, th&rd quartile is75th%
tile. Obviously thedth quartile is10Qth%tile.

e Quintiles Pq,P40,Pgs0, and Pgg percentiles:

Py = 2% (n+1)st= 1 (n+1)stobservation.

Py = 2% (n+1)st= 2 (n+1)stobservation.

Pgo = 8 (n+1)st= £ (n+1)stobservation.

Pso = 2% (n+1)st= 2 (n+1)stobservation.

The common thought is to round up on all non-integer values for measures of location.

5.4 Measures of Variability or Spread

This group of measures are also important in giving a detailed study of a distribution. It is important to note
that with measures of variability or spread if the entire set of observations are changed by adding or subtracting
a fixed(constant) amount then the sample statistics are unchanged, but if the are multiplied by a fixed constant,
they sample statistics are changed.

e Range:The sample range is the difference between the largest and the smallest values in the sample. For
many populations, at least in statistical theory, the range is infinite, so the sample range may not tell you
much about the population. The sample range is finite and tends to increase as the sample size increases.
If all the sample values are multiplied by a constant, the sample range is multiplied by the same constant.

¢ Interquartile range: The interquartile range is the difference between the3tequartile and thest
quartile. If the sample values are multiplied by a constant, the sample interquartile range is multiplied by
a constant.

e Variance: The population variance, usually denotedwhen it is clear what population is being consid-
ered, is the expected value of the squared difference of the values from the population mean:

o = B(X — p)?
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5.5

The sample variance?, is defined by:

> _ Ximiz7)?

n—1
(961—5)2—|—(902—f)2_|_..._|_($n_5)2
n—1
nyg vl — (T 902')2‘

n(n —1)

The difference between a value and the mean is called a deviation from the mean. Thus the variance is
the sum of the squared deviations from the mean divided ioythe case of the population, amell in

the case of the sample. When all of the values lie close to the mean, the variance is small but never zero.
If the sample values are multiplied by a constant, the sample variance is multiplied by the square of the
constant.

Standard Deviation: the standard deviation is the square root of the variance, or root-mean-square devi-
ation from the mean, in either the population or the sample. The sample standard deviation is expressed
in the same units as the values in the sample, not squared units like the variance. If all sample values are
multiplies by a constant, the sample standard deviation is multiplied by the same constant.

Standard Deviation:
s=/s*(unbiased variance) 6= v/5%(biased variance)

Standard Error of X as an estimate of the population mean:
s.e(T)=sz=sh/n

Coefficient of variation: The coefficient of variation is a unitless measure of relative variability. It is
defined as the ratio of the standard deviation to the mean expressed as a percentage. The coefficient of
variation is meaningful only if the variable is measured on the ration scale. If the sample values are
multiplied by a constant, the sample coefficient of variation remains unchanged.

Variability:(sample), unbiased  s%= ! > (x2 - 5)2
=1

n—1% !

I . 1 & 2
Variability:(sample), biased RE - Z (xf - f)
=1
Range: R=max{zy,®2,..., 2.} - min{x1, g, ..., 2} = () - 2(1)
Interquartile Range: IQR=0Q)3 -1

Useful for Box Plots:
Inner Fences);-1.5I1QR, @3+1.5IQR
Outer Fences?):-3 IQR, 3+310R

Linear Transformations: Lety; =av;+ b, theny=ar + b, s’ =as2, s, = | a| s,
Important notes: Linear transformations do not change the shape of the data (distribution).

Measures of Shape

SkewnessThe variance is a measure of the overall size of the deviations form the mean. Since the formula
for the variance squares the deviations, both positive and negative deviations contribute to the variance in
the same way. In may distributions, positive deviations may tend to be larger in magnitude than negative
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deviations, or vice vers&kewnests a measure of the tendency of deviations to be larger in one direction
than the other. The population skewness is defined by

BE(X —p)?
0-2

Since the deviations are cubed, rather than squared, the signs of the deviations are maintained. Cubing the
deviations also emphasizes the effects of large deviations. The formula includes a divi$to oémove

the effect of scale, so multiplying all values by a constant does not change the skewness. Skewness can
thus be interpreted as a tendency for one tail of the population to be heavier than the other. The sample

skewness can be calculated by:

where

e Kurtosis: the heaviness of the tails of the population affects the behavior of many statistics. Hence it
is useful to have a measure of tail heaviness. One such meadurgadsis The population kurtosis is
usually defined as:

E(X —p)!
0-4
although some statisticians omit the subtraction of 3. Since deviations are raised to the fourth power,
positive and negative deviations make the same contribution, while large deviations contribute strongly.
Because of the divisar!, multiplying each value by a constant has no effect on kurtosis.

3,

Population kurtosis must lie between -2 and positive infinity, inclusivewslfepresents population skew-
ness andn,4 represents population kurtosis, thg > (m3)* — 2.

There is a myth in the literature that kurtosis measures the peakedness of a density.

Sample skewness and kurtosis are rather unreliable estimators of the corresponding parameters in small
samples. Trust them only if you have a very large sample. However, large values of skewness or kurtosis
may merit attention even in small samples because such values indicate that statistical methods based on
normality assumptions may be inappropriate.

6 Graphical Descriptions of Data

6.1 Boxplots

A boxplot or box-and-whisker plotis a graphical representation of data in which a rectangle is used to summarize
the data distribution. The top and the bottom, sometimes the left and right, of the rectangle represent the third
and first quartiles, respectively. The line inside the rectangle represents the median. The lines extending from
the top and bottom of the rectangle represent either the actual limits of the data, or the limits of the bulk of the
data (with unusual observations, sometimes referred twtgers see below, being represented by individual
symbols [“flagged”] if they are further outodified box plot). The boxplotis particularly useful for comparing

the location and variability of several batches of data, as boxes can be plotted side-by-side on one plot.

6.2 Dotplots

A dotplot is a preliminary remedial graphical representation of the data that groups the data into many small
classes or intervals.
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6.3 Histograms

A histogram is another graphical representation of the distribution of a batch of data. The data values are usually
grouped into mutually exclusive and exhaustive intervals of equal width, and the number of observations in each
interval is determined and represented by a vertical bar. In some variations the widths of the intervals are varied,
resulting in potentially different appearances in the plot.

6.4 Stem and leaf

A stem-and-leaf display is another graphical representation of the distribution of a batch of data. Very similar to
a histogram, it is often accompanied by éaohal information about the data, such as cumulative frequencies and
the position of the median. The plot represents the data values by their numerical values, providing additional
information over the histogram, but the grouping intervals are usually chosen based on using round numbers,
rather than in an attempt to provide the most effective plot.

6.5 Scatter plot

A scatterplot a is a graphical method that can be used to study the joint variation of two variables graphically.
Each observation is represented by a point (x,y) on the plot, indexed by the values on the axes. Each axis is used
for a different variable. Besides showing how (and whether) two variables are related to each other, scatter plots
also can indicate the existence of distinct subgroups in the data. Scatterplots can only be used if there are data

pairs @, y;).

6.6 Density Curves

Density curves are functional and or graphical representations of data that are usually continuous in nature.

6.7 Q-Q plots

Quantile-Quantile Plots are useful for comparing distributions. They are generally used to determine if data in
a sample follow a particular distribution. In statistics in order to make inferences, it is often assumed that data
follow the normal distribution. In which case the quantiles of the sample are compared to the quantiles of the
normal distribution. These are generally referred to as normal probability plots.
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7 Sampling Distributions derived from the normal

7.1 The Normal distribution

The normal distribution is probably the most important probability distribution in statistics! It is a probability
distribution of a continuous random variable, yet it is often used to model the distribution of other continuous
random variables and discrete random variables. The reason for the versatility in using the normal distribution
as a probability distribution model is indicated in the figure below. The basic form of the normal distribution is
that of a bell it has a single mode and is symmetric about its central value. The flexibility in using the normal
distribution is due to the fact that the “bell” may be centered over any number on the real line and it may be
made flat or peaked to correspond to the amount of dispersion that the values of a random variable may assume.
Examples of random variables that have been successfully modeled by the normal distribution are the height
and weight of persons, the diameter of bolts of a specified size produced on a machine, the IQ of persons, and
the lifetime in hours of batteries or light bulbs. Typically, in the type of experiment that produces a random
variable that can be successfully approximated by a normal random variable, the values of the random variable
are produced by a measuring process, where it is known that the measurements tend to cluster symmetrically
about a central valuéA random variable that is an average or a sum of values of another random variable

is, under very general conditions, almost always distributed approximately as a normal random variable,
regardless of the form of the distribution of the random variable with values that are summed or averaged.

An example of such a random variable is the average grade point average of a group of students selected at
random from the population of students at your university or college. The notion that a random variable that is
an average is distributed as a normal random variable is discussed when we describe the central limit theorem.
For a random variable to be normally distributed, the mathematical expression delineating the form of the bell
must be of a specific type as described in the following definition:

fly:po?) = e 22 —o00<y< oo

7.2 t-distribution

Given the sample statistics, the sample mear$;*the sample variance, we now derive distributions based on

the normal distribution. Let X ..., X, be a random sample from aM, o%) distribution. The quantity(?/;j%)
has a Student’s t distribution with- 1 degrees of freedom. The moments of which are 0-ghd Thedensity
function of thet-distribution is given by

—(v41
1 F((V-Iz-l)) ) y? 2 e
fly,v) = WT%) ‘|‘7 -0 Sy

—(v41

< e (L e\

14+ = dy = 1
—eo VTV T'(5) v
EY] =0, v>2 E[Yz] = yiz; Var[Y] = yi27 v>3
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7.3 2-distribution

Let Xy, ..., X, be a random sample from a(M o2) distribution. The quantit;ﬁ%ﬁ has a chi-squared
distribution. Thedensity function of they?-distribution is given by

fly,vr) = ——y5'e7 0<y<oo

7.4 F-distribution

Let Xy, ..., X, be arandom sample from a ., ¢2) population, and letY, ..., Y,, be a random sample
from an independent (\uy, aj) population. If we were interested in comparing the variability of the popula-

tions, one quantity of interest would be the ragé). Information about this ratio is contained %, /5% the
Y

ratio of sample variances. Recall from our previous discussior%l@é)ts—2 has a chi-squared distribution. Then
the ratio of two chi-squares, divided by their respective degrees of freedom Hakisaribution withn — 1=p
numerator ana: — 1 = g denominator degrees of freedom. Note that if the null hypothesis is true then this ratio
is the same ag, given before. Thelensity function of theF-distribution is given by

00 p/2 pTq j%l
/_OO (5) / %qu <1+ (g) y) dy = 1.

The cumulative distribution is given obviously by{ By, —1,.,—1 < f]
Examples of using thidistribution :
For instance,

(@) Pffio1s < 2.54]=0.95
(b) Pifi015 > 3.06] = 0.025
(¢) Fio,15,0.0975 = 3.06

(d) Fio,15,0.95 = 2.54

- 1 -1
(€) F10,15,0.0005 = 75155097 = 552 = 0-28

(M Fi0,15,005 = ———— = 75 = 0.35.

The F distribution can be derived in a more general setting than is done here. A variance ratio may have
an F distribution even if the parent populations are not normal. Kelker (1970) has shown that as long as the
parent populations have a certain type of symmetry (spherical symmetry), then the variance ratio will have an F
distribution.
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8 Analyses of Univariate Data

Univariate data can be broadly classified into one of two types:

1. Cross-sectional data, measurements from a random sample, data in which the ordering is not important in
the analysis.

2. Logitudinal data are measurements (observations) of the same quantity on the same subject ate different
time points.

We will concentrate for the time being on cross-sectional data, considering graphical and numerical de-
scriptions of these data, and finally making inference by determining appropriate models, estimates of model
parameters,and making any inferences warranted by the analysis.

For these data types the theory of the normal distribution plays an important role.

1. Fortheoretical reasons real data are usually considered normally distributed.
2. Once we have determined normality, the data is usually easier to work with.

3. For descriptive reasons as well as reasons corresponding to making inferences on the data. The standard
deviation and mean can be determined readily if the distribution is normal. Other distribution can create
some difficulty in terms of parameter estimation.

It becomes a very important task to determine whether a distribution is normal or nonnormnal. In terms
of numerical measures, this determination can get clouded. For instance, measures of location(mean, median,
mode) can be similar for several distributions.

9 Assessing Normality

9.1 Probability plots

Probability plots are an extremely useful graphical tool for qualitatively assessing the fit of data to a theoret-
ical distribution. Consider a sample of sizérom a uniform distribution orf0,1]. Denote the ordered sample

values byX 1), X(3), ..., X(»). These are called the order statistics. It can be showrtfay;)) = 4. This
suggests plotting the ordered observationg), X(s), - - -, X(,,), against the points{7, -2, ..., 2. This

should be recognized as being the cumulative distribution function of the uniform distribution.

This technique can be extended to other continuous probability laws (distributions). Let's sy ihat
continuous random variable with a strictly increasing cumulative distribution funétjorand ifY = £, ()
thenY has a uniform distribution of0, 1]. Y = F,(z) is known as the probability integral transform. Hence,
the following procedure is suggested. Suppose that it is hypothesized thbdws a certain distributionf-.
Given a sample, zs, ..., x, we plot

Uniform : E (X(k))

F(X(k)) U8 )

n+1
or equivalently

In some cases, F is of the form
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wherep ando are called location and scale paramaters, respectively. The normal distribution is of this form.
We could plot

or, if we plotted

k
-1

the result would be approximately a straight line, if the model were correct
Xy =~ oGt (—) + 4
n

Slight modifications of the procedure are sometimes used. For example, rath@Th@n%), E(X()), the
expected value of the’” smallest observation can be used. But it can be argued that

k k
~ -1 _ -1
E(X(k))NF (n—l-l)_UG <n+1)+u

So, this modification yields very similar results to the original procedure.
The procedure can be viewed from another perspective. Giverf’rh]a{fﬁ} is the% st quantile of
the distribution/’, that is the point such that the probability that a random variable with distribution funktion
is less than it isni—l. We are thus plotting the ordered observation ( which may be viewed as the observed or
empirical quantile) versus the quantile of the theoretical distribution. An example set of observations. We have

tensile strengths from 4 different types of die sets in which we have taken 10 observations each.

Table 1: Tensile Strengths from 4 Die Sets
Observation Diel Die2 Die3 Die4

1 189 169 199 159
2 193 175 202 16.0
3 195 178 21.3 16.8
4 200 180 215 17.2
5 205 183 217 174
6 206 184 218 175
7 207 186 219 17.7
8 20.8 188 219 179
9 21.0 19.2 225 181
10 221 199 230 19.0
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We can get summary statistics for the tensile strengths of these different types of dies. They are:

DIE1 DIE2 DIE3 DIE4
N 10 10 10 10
SUM 203.40 183.40 215.70 173.50
MEAN 20.340 18.340 21.570 17.350
SD 0.9395 0.8592 0.9393 0.9419
VARIANCE 0.8827 0.7382 0.8823 0.8872
SE MEAN 0.2971 0.2717 0.2970 0.2979
C.V. 4.6190 4.6848 4.3548 5.4290
MINIMUM 18.900 16.900 19.900 15.900
1ST QUARTILE 19.450 17.725 21.025 16.600
MEDIAN 20.550 18.350 21.750 17.450
3RD QUARTILE 20.850 18.900 22.050 17.950
MAXIMUM 22.100 19.900 23.000 19.000
MAD 0.5000 0.5000 0.3500 0.5500
BIASED VAR 0.7944 0.6644 0.7941 0.7985
SKEW 0.1641 0.1426 -0.4853 -0.0774
KURTOSIS -0.4912 -0.4141 -0.4211 -0.5424

9.2 Quantile-plots

Let's construct a quantile plot for die types 2 and 3. First, reconsider the table of values. A quantile plot is

Table 2: Tensile Strengths from 4 Precision Die Sets
Observation p=2> Diel Die2 Die3 Die4
1 005 189 169 199 159

2 0.15 193 175 202 16.0
3 0.25 195 178 21.3 16.8
4 0.35 200 180 215 17.2
5 0.45 205 183 217 174
6 0.55 206 184 218 175
7 0.65 20.7 186 219 17.7
8 0.75 208 188 219 179
9 0.85 21.0 192 225 181
10 0.95 221 199 23.0 190

simply a scatterplot of the observation versus it's quantile. So the quantile plot for the third die type is given in
figure 1.

9.3 Quantile-Quantile Plots

Quantile-Quantile plots are useful for comparing distributions. They are generally used to determine if data in
a sample follow a particular distribution. In statistics in order to make inferences, it is often assumed that data
follow the normal distribution. In which case the quantiles of the sample are compared to the quantiles of the
normal distribution. These are generally referred to as normal probability plots.

Let's construct a Q-Q plot for die types 2 and 3. This is given in figure 2. The fact that a significant amount
of points do not fall on the line superimposed signifies that the two sets of observation are different in terms of
there distribution.
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Quantile Plot for Die Set 3
2 T T
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Figure 1: Quantile plot for Die Set

Q-Q plot for Die types 2 and 3
T T

225 + A
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\

2051
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Figure 2: Comparative Quantile-Quantile plot for Die Sets 2 and 3

9.4 Comparable Normal probability plots

Normal Probability Plot
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Figure 3: Ideal normal plot - signifying data is normally distributed
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Normal Probability Plot

Normal Probability Plot
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Figure 4: Figure on left - heavy tailed distribution, figure on right light - tailed
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Figure 5: Figure on left - positive skew (skewed right) , figure on right negative skew (skewed left)

10 Statistical Inference Tests and Confidence Intervals (Chapt. 3 LSM)

10.1 Confidence Intervals

The general form of a confidence interval for some unknown parameter is given by:

where

e 6 is an estimator of the parameter,

g + SD§%SE5

¢ SD; is the sampling distribution of the estimator, and

° SEg is the standard error of the estimator.

That is, if we were to sample the population say, a large but finite number of timhes)100% of the
intervals generated from the samples will contain the true population parameter.
There is a duality between confidence intervals and hypotheses tests. Consider the following example. Let

Xi,...,X, be arandom sample from a normal distribution having unknown meamd known variance?.
We consider testing the following hypothesis:

Ho:p = po

Ho:p # po

Consider a test at a specific levethat rejects fotz — 19| > C', whereC' is determined so thdtr{|z—puo| > C'}
if Hyistrue:C' = 053%. The test thus does not reject when:

|f— ,u0| < 053%
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or
—O'EZ% <T — g < O'EZ%
or
T — 053% <o < T+ 053%
A (1 — a)100% confidence interval fog is
[T —05Z22,7+ 0522]

Comparing the acceptance region of the test to the confidence interval, we sgg liestin the confidence
interval if and only if the hypothesis tests does not reject. In other words, the confidence interval consists
precisely of all those values gf, for which the null hypothesif, : 1 = po is not rejected.

10.2 Tables of Confidence Intervals-Single Sample(Chapt. 3 LSM)

Parameter Assumptions 100(1 — «)% Confidenceinterval
n large,c known,
I or normality, Ttz ﬁ
o? known
I n large,c unknown Ttzao=
U normality,o unknown Tt lojan-17m

P binomial experiment, pEzay/HL
large n

o? normality ( (n=1)5° (n=1)57 )

2 Y o2
Xa grmp—1 X2 df=n—1
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11 Normal Models - Single Sample Tests of Hypothesis (Chapt. 3 LSM)

Table 3: Single Sample Tests of Hypothesis-Normal Models

Null Test Alternative Rejection
Hypothesis Assumptions Statistic Hypothesis Region
"= o n large,c known, or > o 7>z,
. X—
normality,o? known Z =7\/% < o 7<=z,
1 F o | Z|> 242
"= o n large,c unknown > o 7>z,
X—
Z =T\;%O B < fho 7 < =z
1t # fio | Z 12 24
1= lo normality, n small, o 0> Lo T>th 14
o unknown T =S—/_\/% < o T < —th 10
1 F fo | T[> tr—1,0/2
o? = o} normality o? > o X2 >N,
2 (n—1)5? 2
X :( 03) o’ < 03 X < Xi_L(l_a)
X? > X721—1,oz/2
o? # o} or
2 2
X < X1, (1-a/2)
P =po binomial experiment P> Po 7z > 24
n large T 7 < -z,
po(1—po)/n
p 7£ Po | Z |Z Zaf2

15
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Case Study: Education

Mathematical Sciences 405/605
Case Study: Education

Intelligence tests are routinely administered by school guidance counselors and psychcologists as screening
devices for their students. However, are all of these tests really accurate indicators of a student’'s IQ? In a study
t to compare two such tests, the Slosson Intelligence Test (SIT) the Wechsler Intelligence Scale for Children-
Revised (WISC-R), the tests were administered to a sample of 72 children in a large urban school district in
central Ohio. The mean age of the children was 8.5 years with a standard deviation of 16.6 months. Scores on
the two tests for the 72 children were as follows:

Test Mean Standard Deviation
WISC-R Full Scale 86.11 15.65
SITIQ 90.47 14.77

i) Assume that the scores of the 72 students represent a random sample from the population of scores
for all students who might take the test. Find a point estimate for the average grade on the WISC-R
for the population. What is the margin of error for this estimate ?

i) Find a 98% confidence interval for the mean grade on the SIT test.

iii) In fact, the sample taken by the experimenters was limited to students who were not making ade-
guate academic progress in the regular classroom. What impact does this have on the inferences
you can make in parts (b) and (c) ?

TSource: Prewett, Peter N., and D. B. Fowler. “Predictive Validity of the Slosson Intelligence Test with the WISC-R and WRAT-R
Level 1.” Psychology in the Schoad®® (January 1992), p. 17.
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Case Study: General

Mathematical Sciences 405/605

Case Study: General _
Will Your Bill for College Textbooks Continue to Rise?

The number of new U.S. book titles increased from almost 47,000 in 1990 to over 48,000 in 1991. However,
this was still below the historic high of about 56,000 titles attained in 1987 (Grannis, 1992). Can we expect an
increase or decrease in the price of books, especially hardbacks, if there are more competitors on the market?
The following table gives the number of titles and the average price of hardback books classifieding to
23 standard subject groups representing one or more specific Dewey Decimal Classification numbers. Consider

1990 1991
Category Volumes Average Price Volumes Average Price
Agriculture 359 $54.24 371 $57.73
Art 759 42.18 717 44.99
Biography 1,337 28.58 1,416 27.52
Business 748 45.48 790 43.38
Education 562 38.72 556 41.26
Fiction 1,962 19.83 2,062 21.30
General works 1,035 54.77 1,071 51.74
History 1,450 36.43 1,442 39.87
Home economics 357 23.80 341 24.23
Juveniles 3,675 13.01 3,705 16.64
Language 312 42.98 240 51.71
Law 596 60.78 240 63.89
Literature 1,312 35.80 1,265 35.76
Medicine 2,215 72.24 2,078 71.44
Music 184 41.86 173 41.04
Philosophy/Psychology 963 40.58 945 42.74
Poetry/drama 486 32.19 511 33.29
Religion 977 31.31 958 32.33
Science 2,028 74.39 958 80.14
Sociology/Economics 4,504 42.10 4,306 48.83
Sports/recreation 403 30.52 440 30.68
Technology 1,521 76.48 1,620 76.40
Travel 181 3041 156 33.50
Total 27,926 $42.12 26,361 $43.93

the number of volumes and average price per volume in 1990 and 1991 as paired samples for two randomly
chosen years for each of the 23 categories of books. Although there was an increase in the total number of books
in 1991, the number of hardbacks seems relatively unchanged and the average price per volume seems to have
increased over the average 1990 price.

i) Determine whether the difference in the average number of volumes per category for 1991 differs
significantly from the 1990 average, using a significance level of 5%.

i) Determine whether the change in the average price of a hardback book per category in 1991 differs
significantly from that in 1990 at the 5% level of significance.

iii) Summarize your results concerning the difference in the number and price of books per category in
1991 compared with 1990.
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11.1 Two Sample Confidence intervals(Chapt. 3 LSM)

Parameter Assumptions 100(1 — «)% Confidenceinterval
p1 — P2 binomial experiment, (P1—p2) £ 22 \/% + B2
ny, ny large
independence,nn; large, (T1 —Tq) £ zg w/
H1 — 2 o%, o2 known, or
normality, independence, (T1 —72) £ 22 w/
o?, o2 (un)known
independence,nn, small, (T1—Ty) Lt ta S s — 95 ,/
H1 — fho normality,
-1)8? —1)82
0%, a2 unknown, where § = (s (721:;;7122) )5
but equal
independence,nn, small, (T1—72) ts, w/
1 — fa normality,e?, o2 unknown,
2 52\?
()
but unequal wherer = =
| Girm)", (irm)
ny—1 ng —1
p1 — o = up | dependence, normality, n pairs, d+ ten1
independence
2 2 2
g1 . E) 1 E) 1
L normali = =
Ug 0 a ty’ (53 Fnl—l,nQ—l,% ’ 5% Fnl—l,nQ—l,l—%)

18
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12 Two Sample Hypothesis Tests of Hypothesis(Chapt. 3 LSM)
12.1 Binomial Models

Table 4: Two Sample Hypothesis Tests- Binomial Models

Null Test Alternative Rejection
Hypothesis Assumptions Statistic Hypothesis Region
p1 —p2 =0 | binomial experiment Z= M(pl;m) pr—p2 >0 7> 2z,
pq(1/n1+1/n2)
ny, ny large pr—p2 <0 7 < —z,
ﬁ:% pr=—p2F0 | [Z]> 24
p1 — p2 = Ag | binomial experiment p1—p2 > Do 7> 24
P1—p2)—A
ny, N, large Z= A(pj pQ)AAO —pe<DNo | Z< -2,
1 arg V(191 /m1+p202/n2) pr—p 0 -
pr—p2F Do || Z|> 24y
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12.2 Normal Models

Table 5: Two Sample Hypothesis Tests- Normal Models

20

Null Test Alternative Rejection
Hypothesis Assumptions Statistic Hypothesis Region
independence
p1 — p2 = Ao ng, ny large, p1 — p2 > Ao Z > zy
o?, 0% known,
X, -Xq)-A
or ZZ&#% p1 — p2 < Ag Z < =z,
independence
normality, w1 — p2 # Do | Z 1> 24/2
o?, o2 known
1 — o = Ng independence, 1 — o > No Z >z,
Yl—YQ)—AO
n;, Ny large, Zz(— — A 7 < —z,
1, e larg STt M1 — p2 < Qg < =z
0%, o3 unknown mo— g # Do | 71> 2
independence
p1 — po = Do Ny, N small, o p1 — p2 > Do T >ty 4no—2,0
. X1—-X2)=4o
normality, T= (- Xa)- 4o — A T< ~ty 4ns—2.a
% S/t 1 — p2 < Lo S 1+n2-2,
, , M1 — M2 7£ Ao | T |Z tn1+n2—2,a/2
2 2 2 _ (m—1)S7+(nz—-1)S
o1, 03 unknown, | §) = =t
0% =02
independence
p1 — p2 = Ao Ny, Ny small, p1 — p2 > Ao T>t,a
. Y1—Y2)—A0
normality, T= (i Xe) 80 — A T< —t,o
y NG M1 — p2 < By > :
p1 — pi2 # Do | T 1>t 072
2
()
2 2 _ np ' ong
oi, o5 unknown, 3 3
(Sf/m) (%/"2)
ny—1 + ng —1
of # o}
p=2~g normality, n pairs up > Ao T>th-1a
l'[/ — ?
n small T= SDD‘/@% 1wp < N T < ~ty 14
dependence mp # Do | T > th1,0/2
normality, of > o3 F* > Folny o
o = o} independence F*=5%/52 o} < 03 F* <1/Fuy ;0
F= > Fnl,ng,a/Q
o? + o3 or
F < 1/Fn2,n1,oz/2
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Case Study: Medicine

Mathematical Sciences 405/605
Case Study: Medicine

We consider data from Rikkefset al. (1978), who report results of a prospective randomized surgical trial
allocating cirrhotic patients who had bled from varices to either a nonselective shunt (standard operation) or
to a selective shunt (new operation). The dependent variable is the maximal rate of urea synthesis (MRUS),
which is a quantitative test of liver function. Poor liver function is associated with a low MRUS value. MRUS
was measured preoperatively and early postoperatively in eight selective shunt patients and thirteen nonselective
shunt patients. The purposes of the study were to assess preoperatively the comparability of the selective and
the nonselective groups and to longitudinally evaluate the change in liver function of the two groups. Table 1
reports MRUS values for each patient for the preoperative and postoperative periods.

Table 6: Pre and Post Maximal Rate of Urea Synthesis Level (mg urea N/hr/Kg'Bsvid Sample Cell Means,
by Group

Group Subject Pre Post
Selective Shunt 1 51 48
(new operation) 2 35 55

3 66 60
4 40 35
5 39 36
6 46 43
7 52 46
8 42 54
Mean T11= 46.375 T2 = 47.125
Nonselective Shunt 1 34 16
(standard operation) 2 40 36
3 34 16
4 36 18
5 38 32
6 32 14
7 44 20
8 50 43
9 60 45
10 63 67
11 50 36
12 42 34
13 43 32
Mean T91=43.538 T,9=31.462

TRikkers, Layton F., Rudman, Daniel, Galambos, John T., Fulenwider, J. Timothy, Milliken, William J., Kutner, Michael H., Smith,
Robert B., Salam, Atef A., Sones, Peter J., and Warren, W. Dean (1978), "A Randomized, Controlled Trial of the Distal Spenorenal
Shunt,”Annals of Surgeryl88 271-282.
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Case Study: Medicine
Review Questions

i) Based on the pre-operative results, can we say that there is a significant difference in the MRUS for
the two groups of individuals selected to compare these two procedures ? In other words are the
groups comparable ? Givepavalue to support your conclusions.

i) Determine a 95% confidence interval for the difference in the MRUS for the two procedures’ pre-
operative results ?

iii) What if we consider the post-operative results, are they significantly different ? Givweakue to
support your conclusions.

iv) Determine a 99% confidence interval for the difference in the MRUS for the two procedures’ post-
operative results ?

v) Can you suggest a reason for considering a larger confidence level for the post-operative results ?

vi) If there is a significant difference in the post-operative results, what procedure would you suggest
is the more beneficial to the patients ? Explain.
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13 Goodness of Fit Tests

13.1 First a binomial experiment

The following general description has wide applications. Suppose we can describe a situation as a sequence of
trials, each of which has two possible outcomes commonly referred to as 'success’ or failure’. If theiljgobab

of a success at each trial is constant then the number of successes has a binomial distribution. We can summarize
this formally as follows:

1. Thereis a fixed number of trials (n).
2. There are two possible outcomes for each trial ('success’ or ‘failure’).
3. There is a constant probability ofaess (p). This implies that the outcomes of trials are independent.

Binomial Distribution Example: Over a long period of time it has been observed that a given rifleman can hit
a target on a single trial with probability equal to 0.8. Suppose he fires four shots at the target.

1. What is the probability that he will hit the target exactly two times ?
2. What is the probability that he will hit the target at least two times ?
3. What is the probability that he will hit the target exactly four times ?

Assume that the trials are independent and that the probapibtfyhitting the target remains constant
from trial to trial,n = 4 andp = .8. Letx denote the number of shots that hit the target. Thenx f00€, 1,
2,3, 4, we have

o - (2o

= 2,2,( 64)(0.04)

_ WO
= 50 2R (0.64)(0.04)

= 0.1536.
The probability is .1536 that he will hit the target exactly two times.

P(atleasttwd = p(2)+ p(3) + p(4)
= 1-p(0) —p(1)

=1 ( 3 ) (0.8)°(0.2)* ( le ) (0.8)' (0.2)°

= 1-0.0016 — 0.0256
= 9728

The probability is 0.9728 that he will hit the target at least two times.

pla) = ( ) ) (0.8)" (0.2)

A1
= g7(0-4096) (1)

= 0.4096.
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The probability is .4096 that he will hit the target exactly four times.
Note that these probabilities would be incorrect if the rifleman could observe the locataatofit on the

target and thereby adjust his aim. In that case, the trials would be dependgnivantt! likely increase
from trial to trial.

Binomial Distribution Example 2: A student has no knowledge whatsoever of the material to be tested on
a true-false examination, and so the student flips a fair coin in order to determine the response to each
guestion. What is the probability that the student scores at least 60% on a ten-item examination?

Here the binomial variable, X, the number of correct responses) hd$), ando=q = % We need

o3 (V)66

r=6

Now we find that PX > 6) = £23=0.376953.

These calculations can easily be done with a pocket computer. If we want to investigate the probability that
at least 60% of the questions are answered correctly as the number of items on the examination increases,
then use of a computer algebra system is recommended for aiding in the calculation. Many computer
algebra systems contain the binomial probability distribution as a defined probability distribution; for
other systems. the probability distribution function may be entered directly. The following results can be
found wheren is the number of trials angis the probability of at least 60% correct:

n 10 40 80 100
p 0.376953 0.134094 0.0464559 0.028444

Clearly, guessing is not a sensible strategy on a test with a large number of items.

13.2 A Multinomial Experiment

We can extend the binomial model to the case where instead of there being only 2 possible outcomeskhere are
possible outcomes, each with it's own probigpof occurring.

1. The experiment consists nidentical trials.
2. The outcome of each trial falls into oneloflasses or cells.

3. The probability that the outcome of a single trial will fall in a particular cell, sayjcilir; (i=1, 2,... k)
and remains the same from trial to trial. Note that @&; < 1 foralli, andr; + 79 + 73 + ... +7, = 1.

4. The trials are independent.

5. The experimenter is interestedrin, ns, . .., ng, wheren; (i =1,2,...K) is equal to the number of trials
in which the outcome falls in cell Note thatn; + ny + - -+ ng =n.

Definition: (Multinomial random variable) . Let an experiment consist afindependent and identical multi-
nomial trials with parameters,, =, ..., 7. Let n; denote the number of trials that result in outcoime
fori=1,2,...k. Thek-tuple (@, no,..., ng) is called a multinomial random variable with parametersr,

7,... k. The purpose of the chi-squared goodness of fit test is to test the null hypothesis that a given set of
observations is drawn from, or “fits”, a specified probability distribution. We consider two distinct situations:

1. The hypothesized distribution is completely specified before the sampling is done.
2. The hypothesized distribution is completely specified only after the sampling is done.

Case 1 is useful, but case 2 is particularly interesting because it provides an alternative to the usual proce-
dures for testing normality, ie, normal probability plots, Shapiro-Wilks, and Lilliefors tests.
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13.3 Goodness of fit

Generally a researcher would be interested in testing the following hypothesis:

Hy . datafollows a specified model

H, : data does not follow the specified model

or
Hol Tl = T109y T2 = 720, * Tk = TEkO, 1=1...k
Hy: m #7mpo Yi=1...k
Let (ny, no, ..., nx) be a multinomial random variable with parameteys, 75, ..., 7x. Since a function of

random variables is also a random variable, for largfee random variable, under the null hypothesis, that is if
the null hypothesis is true,

k

x? Z (n; — nﬂ'i)2

N nw,;
=1 ¢

follows an approximate chi-squared distribution wkth 1 degrees of freedom, given that; >5 for alli. In
practice, we would reject the null hypothesis in favor of the alternate hypothe$is if Xia as shown in the
figure below, wherer = (k-1).

X2 Distribution

0.091
008l
0.07F
0.06
0.051
0.04F
0031 Prx? > x4 =
0.021 1

0011
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13.4 Exercises

Suppose that a response can fall in ondef5 categories with probabilities,, =y, ..., 75, re-
spectively, and that= 300 responses produced the following category counts: Conduct a test to

Category 1123 |4)|5
Observed count| 47 | 63| 74| 51 | 65

determine if there is a difference the proportion of counts that fall in each of the categories. Use
both an hypothesis testing approach ( witlk- 0.01) and a significance testing approach ie, deter-
mine ap-value to make your decision.

. Gregor Mendel was the first to describe a theory of genetics used is determining genotypes of

offspring. The Mendelian theory states that the number of peas of a certain type falling into the
classifications i) round and yellow, ii) wrinkled and yellow, iii) round and green, and iv) wrinkled

and green should be in the ratio 9:3:3:1. Suppose that 100 such peas revealed 56, 19, 17, and 8 in
the respective classes. Do these data disagree with the Mendelian theory ? Use both an hypothesis
testing approach ( withr = 0.05) and a significance testing approach ie, determipe/aue to

make your decision.

Medical statistics show that deaths due to four major diseases - call them disease A, disease B,
disease C, and disease D, account for 15, 21, 18, and 14 percent, respectively, of all non-accidental
deaths. A study of the cases of 308 non-accidental deaths at a hospital gave the following counts of
patients dying of disease A, disease B, disease C, and disease D:

Number
Disease| of Deaths
A 43
B 76
C 85
D 21
Others 83

Do these data provide sufficient evidence to indicate that the proportion of people dying of diseases
A, B, C, and D at this hospital differ from the proportions accumulated for the population at large ?
Use both an hypothesis testing approach ( with 0.025) and a significance testing approach ie,
determine g-value to make your decision.

Computer systems crash for a number of different reasons, among them are software failures, hard-
ware failures, operator errors, and system overloads. It is believed that 10% of all crashes are due
to software failure, 5% to hardware failure, 25% to operator error, and 40% to system overloading.
Over an extended period of time 150 computer crashes were monitored with the following results:
13 crashes due to software failures, 10 to hardware failures, 42 to operator errors, 65 to system
overloading, and the rest to other causes. Do these data lead us to suspect the accuracy of the stated
percentages ? Use both an hypothesis testing approach &with.05) and a significance testing
approach ie, determinepavalue to make your decision.
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V. Although white has long been the most popular car color, recent trends in fashion and home design
have signaled the emergence of green as the new color of the 1990s. The growth in the popu-
larity of green hues stems partially from an increased interest in the environment and increased
feelings of uncertainty. According to an article in the Press-Enterprise (“White Cars Still Favored,”
1993),“green symbolizes harmony and counteracts emotional stress.” The article cites the top five
colors and the percentage of the market share for four different classes of cars. These data are given
below for the truck-van category:

Medium/Dark
Color White Red Green Red Black
Percentage 29.72 11.00 9.24 9.08 9.01

In an attempt to verify the accuracy of these figures, we take a random sample of 250 trucks and
vans and record their color. Suppose that the number of vehicles falleagmof the five categories
above were 82, 22, 27, 21, and 20, respectively.

(a) Is there any category that is missing in the above classification? How many cars and
trucks fell in that category?

(b) Is there sufficient evidence to indicate that the percentages of trucks and vans differ from
those given above? Find the approximatealue for the test.
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13.5 r x c Tests for homogeneity - or “likeness”

The goodness of fit tests can be extended to those cases where there are two variables under study, and the mair
interest being that of determining if there is an homogeneity or “likeness” between two variables. In this case,
one of the marginal totals is fixed. Assumptions:

1. Two variables - one of which is studiedrdevels and the other atlevels.

2. One of the marginal totals is fixed by the researcher or resources

Variable B Row Totals
11 N2 13 T M(e—1) Nic n.
21 21 123 T M2(c—1) T2c 3.
Variable A
-1 =12 -3 " 1) (e=1) Tr-1)c Nr—1).
Nyl 2 Np3 C Ny(c—1) Type Ty,
Column Totals n1 n .9 n 3 . N (1) N, n.
Variable B Row Totals
11 12 713 T1(e=1) Tlc 1
21 21 23 T T2(c=1) T2c 1
Variable A
Tl Tr=1)2 F(r=1)3 " Fr_1)(e=1) T(r—1)c 1
Tr1 Tr2 T3 C Tr(c=1) Tye 1

Generally a researcher would be interested in testing the following hypothesis:

Hy : The proportions are equal

H, : Atleast one pair of proportions are unequal

or
Ho: mj=my=- =R 1)c=Tre, J=1...C

Hy: my#m; foranyi/ =1...randj=1...c
Under the null hypothesis the proportion are the same, the expected values for each of these cells are given by:
€5 = —n J
Assumptione;; > 5. Under the null hypothesis, that is if the null hypothesisiis true,

ZZ (nij — i)

=1 7=1

X? =
62']’
follows an approximate chi-squared distribution wkth1 degrees of freedom, given thaf > 5 for all i and;.
In practice, we would reject the null hypothesis in favor of the alternate hypothesis if Xia as shown
in the figure below, where = (r-1)x(c-1).
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X2 Distribution

0.091
0.081
0.071
0.061

0.051

0031 P2 > X3 = a

0.021- 1

13.6 Exercises

I. A commercial nuclear power plant contains one or more nuclear power units, thenteiear
power plantusually refers to a single nuclear unit. The Oconee nuclear cluster would have three
units and hence be considered three plants. In a study of the amount of failures in plants similar to
the Oconee plant over the failure history of the plaimé since first failurg the number of failures
reported for 7 plants were considered with the following results:

Number of Failures in
Plant Failure History Period Failure History Period

A 12/82-12/88 35
B 1/78-2/86 16
C 5/76-7/86 18
D 2/83-1/87 9

E 8/83-10/86 13
G 11/78-6/84 8

H 4/84-2/91 11

Ignoring the failure history period, does there appear to be sufficient evidence that the number of
failures is different across all plants ? Use both an hypothesis testing approachq with10)

and a significance testing approach ie, determipgzalue to make your decision. Conduct the test
again, after removing plant A.

II. A study of the purchase decisions for three stock portfolio managers A, B, and C was conducted to
compare the rates of stock purchases that resulted in profits over a time period that was less than or
equal to 1 year. One hundred randomly selected purchases obtained for each of the managers gave
the following results:

Manager
A B C

Purchases that
resulted inaprofit 63 71 55

Purchases that
resulted in no profit 37 29 45
Total 100 100 100

Do the data provide evidence of differences among the rates of successful purchases for the three
managers? Use both an hypothesis testing approach (awitlD.05) and a significance testing
approach ie, determinepavalue to make your decision.
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lll. A study is conducted to test for independence between alilityuend air temperature. These data
are obtained from records on 200 randomly selected days over the last few years. Do these data
indicate an association between these variables ? Use both an hypothesis testing approach ( with
« = 0.10) and a significance testing approach ie, determpreadue to make your decision.

Air quality
Temperature  Poor Fair Good
Below average 1 3 24
Average 12 28 76

Above Average 12 14 30

IV. Anew method for etching semiconductorsis being studied. The quality of the etch is to be compared
to that obtained using two older techniques. The results of the study are given in the table below.
State the null hypothesis of homogeneity mathematically. Use both an hypothesis testing approach
(with « =0.10) and a significance testing approach ie, determjeadue to make your decision.

Quality
Method Excellent Good Fair Poor
High Pressure (old) 113 34 21 32 200
Reactive ion(old) 117 31 25 27 200
Magnetron(new) 130 40 20 10 200
600

Are baby-boomers more likely to increase their investing now that they are reaching middle age?
A poll was conducted by Hal Riney & Partners (Los Angeles Times, June 11, 1990). in which 400
investors were classified according to their age group and their likely investment pattern over the
next 5 years versus the last 5 years. The data are shown below. Notice that there were 200 investors
included from each age group, ie., a fixed marginal. Do these data provide sufficient evidence to

Age Group More Less Same
35-54 90 18 92
55+ 40 60 100

conclude that the investing patterns of the baby-boomers age group differs from that of that of the

older age group ? Use both an hypothesis testing approach (witld.01) and a significance
testing approach ie, determin@&alue to make your decision.
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13.7 Tests for Independence

In the case of testing for independence

Hy : Independence

H,4 : Dependence

or

Hy: myj=mm;, Viandj

Hy 55 75 T35 for some: andj

Variable B Row Totals
11 N2 13 M(e—1) Nic n.
21 21 123 M2(c—1) T2c 3.
Variable A : :
-1 r—1)2 Tr-1)3 Nr—1)(c=1)  M(r-1)c Nr—1).
T Nr2 3 Ny(c—1) Npe Ny,
Column Totals n.q N9 n3 N (1) N, n.
Variable B Row Totals
11 12 713 T1(e=1) Tlc 1.
21 21 23 T2(c=1) T2c 2.
Variable A
Tr=1)1  T(r—1)2 T(-1)3 T(r=1)(c=1) T(r=1)c T(r=1).
T Tr2 r3 Tr(c=1) Trc Ty,
Column Totals 1 T2 T3 T (c=1) e 1

Under the null hypothesis, the expected values for each of these cells are given by:

;. n.j

€ =
/ n

Assumption:e;; > 5.

31
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Under the null hypothesis, that is if the null hypothesis is true,

o> (nij —eiy)?
X2 _ =1 7=1

62]

follows an approximate chi-squared distribution wkth1 degrees of freedom, given thaf > 5 for all i and;.
In practice, we would reject the null hypothesis in favor of the alternate hypothesisif \2 , as shown
in the figure below, where = (r-1)x(c-1).

X2 Distribution

0.091
0.081
0071
0.061

0.051

003F PrX2> X% = a

0.021- 1
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13.8 Exercises

I. A cancer researcher performs what is called a prospective be selecting a large group of individuals
at random and following their progress for a long period of time. At the end of the study period
each individual is classified according to whether or not lung cancer was present and according to
whether the individual has been exposed to an identifiable source of airborne asbestos. The result
of this classification yielded the following table:

Exposure Status  Totals

Exposed Unexposed
Yes 10 40 50
Cancer
No 490 4460 4950
Totals 500 4500 5000

Do these data suggest an association of exposure to airborne asbestos and cancer development ?
Use both an hypothesis testing approach ( with 0.10) and a significance testing approach ie,
determine g-value to make your decision.

II. A problem that sometimes occurs during surgical operations is the occurrence of infections during
blood transfusions. An experiment was conducted to determine whether the injection of antibodies
reduced the probability of infection. An examination of the records of 138 patients produced the
data shown in the accompanying table. Do the data provide sufficient evidence to indicate that
injections of antibodies affect the likelihood of transfusional infections? Use both an hypothesis
testing approach ( withr = 0.01) and a significance testing approach ie, determipe/aue to
make your decision.

Infection No Infection
Antibody 4 78

No antibody 11 45
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Ill. A recent study claims that an increasing proportion of engineering firms are purchasiitigyliab
insurance. This claim is based on a survey of 753 engineering firms. The status of each firm is
recorded for the current and for the previous year. The data upon which the claim is based are shown
in the table below. Do the data support the claim? Explain, based gavhleie of McNemar’s test.

This year
Lastyear Insured Uninsured
Insured 650 5 655
Uninsured 28 70 98
678 75 753

IV. The following table shows the categorization of 204 men awaiting bypass heart saggenging
to the relative degree of each man’s coronary artery obstruction and according to his perceived level
of discomfort due to angina pectoris (Jenkins et al., 1983). Do the data present sufficient evidence

to indicate that the level of angina is dependent on the level of coroners artery obstruction? The
authors report thp-value for a chi-square test to pe= 0.01.

(a) Compute the value of® for the data.

(b) Find thep-value for the test and compare with the authors’ valee0.01.
(c) What conclusions would you reach based on your analysis ?

Arteries Obstructed 75% or More

Level of Angina Oorl 2 3t06 Total
None 3 21 20 44
Mild 2 12 9 23
Moderate 26 20 31 77
Moderate/severe 13 10 18 41

Severe 7 5 7 19
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Case Study: Marketing the Library

35

Case Study: Marketing the Library Can a Marketing Approach Improve Library Services?

Carol Day and Del Loewenthal (1992) studied the responses of young adults in their evaluation of library
services. Of the n = 200 young adults involved in the study-r152 were students, and & 48 were non-
students. The following table presents the number of favorable responses for each group to seven questions in
which the atmosphere, staff, and the design of the library were examined. The entry in the last column labeled

Question

3
4
5
6
7

11

13

Table 7: Favoroble Responses to Attitude Questions for Students and Nonstudents

Question
Libraries are friendly
Libraries are dull
Library staff are helpful
Library staff are less
helpful to teenagers
Libraries are so quiet
they feel uncomfortable
Libraries should be
more brightly decorated
Libraries are badly
signposted

% Student
Favorablen; =152

79.6
77
914
60.5
75.6
29

45.4

121

117

139
92
115
44

69

% Nonstudent
Favorable

56.2
58.3
87.5
45.8
52.05
18.8

43.8

27
28
42
22
25
9

21

no =48 P (x?)

< .01

< .05
N. S.

< .01

< .01
N.S.

N. S.

P(y?) is thep-value for testing the hypothesis of no difference in the proportion of students and nonstudents
answering each questionfavorably. Hence. each question gives risext@ac@ntingency table.

1. Perform atest of homogeneity for each question and verify the repentallie of the rest.

2. Questions 3, 4, and 7, are concerned with the atmosphere of the library; questions 5 and 6 are concerned
with the library staff; and questions 11 and 13 are concerned with the library design. How would you
summarize the results of your analyses regarding the seven questions concerning the image of the library ?

3. With the information given. is it possible to do any further testing concerning the proportion favorable

versus unfavorable responses for two or more questions simultaneously?
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14 Important Formulas and Concepts in Regression Analysis(Chapt. 4 LSM)

14.1 Strategy

Datainvestigation, modelspecification parameteestimation, modelassessmentariableselection

14.2 Simple Linear regression and the principle of Least Squares

Linear model

vi = Bo+ B+ €
where ;, ;) is the:*” data point and
. x; is arealization of the “independent” or predictor random variable X.
. y; is a realization of the “dependent” or prediction random variable Y.

1
2
3. Bo is they-intercept parameter, generally unknown.
4. /3 is the slope orate of changegenerally unknown.
5

. ¢ 1= 1,2,...,n are unobservable “noise” or “error” random variables with mean zero and constant
variances?.

6. 0y + 31 X is called the true unknown “regression function” of y on X. ie, E[¥}=+ 5 X.
One can fit any number of models using least squares

1. linear models
yi = Po+ b
2. polynomials
yi = Do+ Brai+ Baal +-- -+ Byat

3. Other functions that are linear in the parameters to be estimated

3 B3
yi = o+ bxy+ Baxi; +
In| x|
yi = Bo+ ﬁle_m’” + fasin (z1;22i) + Psz1iln (x%l) tan (z3;)

4. nonlinear models that have been “linearized”.
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Suppose we let

€ Yi — (Bo + Bra;)
then

& = [yi—(Bo+ fra)]”.

Let Q be the sum of these squared differences:

Q = Zn:[yi—(ﬁo—l-ﬁl%)]z-

=1

We wish to find estimates af, andg;, call themﬁo andﬁl, that would minimize Q.

0Q  _ (o .
8—% - _2;(yz_ﬁ0_ﬁlwz)
and
9q

I

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve
the following equations:

= =2 ai(yi — Po— Przi).
=1

Z yi = nbo+ b Z T
=1 =1
and

n n n
o~ o~ 9
dowyi = Boy wi+ Py ai.
=1 =1 =1

Solving first forﬁl and them foﬁo we have the following estimates:

G- Doy iy — (i @) (00 vi)
ny iy 9522 - (e wi)z

and
ﬁO — Z 1Y nﬁlz 1 _ y—ﬁlx‘
We can simplify the expression fgi to:
— S,
p = Sxi
where

=t =1 =1

n n n N2 n

=1 =1 =1

and also

Syy = Z(yi—?)z = Zyz?_(Zi:lyz = Zy?—n?z.
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14.3 The fitted regression line(Chapt. 4 LSM)
The fitted regression line is given by after finding estimategifcaind 3,
yi = ﬁo + BI%
Define a residual as:
€ = & = yi—U
that is the actual (original) value of the response minus the fitted (predicted) value. After ngtangE we
can substitute these values back into Q to find this minimum.

Q = Z{yz—(ﬁo-l-ﬁl%)r = > - = Zn:?f

=1 =1 =1

This sum which can be re-written as .
Syy - ﬁlswy = SSE

is called the residual or error sum of squaresgB3n unbiased estimate of is given by

g2 = O9F MSg
n—2
= &2

which is referred to as the mean square error ( or literally the mean of the squared errors).

15 Parsimony in Modeling(Chapt. 4 LSM)

The simplest useful model we can fit to data is a constant function. With this model, the dependent yariable
does not change as the independent variableanges. While different constants could be chosen (for example,

any measure of center), the maais the most commonly chosen constant. If all the data actually has the same y
coordinate, then the data has no variation and a constant function explains the data completely. If, however, the
y values are not constant, then, clearly, there is some variation in the data about the mean. One way to measure
this variation is called the total sum of squares$6fr,;, which is defined

N
SSTot = Z (yz - y)

=1

Notice thatS St,:/(n-1) can be called the sample variance, reinforcing the ideasthias; is a measure of
the variance in the data.

If we are building a model to explain the variation seen in the data, we need to use a model more complicated
than a constant function; we calljt = f(z). If the data lie on this function exactly, then it explains all the
variation. Usually, however, there is some noise to the data causing it to lie about a model function. Sometimes
this noise is due to randomness. Sometimes there is curve which is a better model. Using a line, for instance,
to model perfectly parabolic data, results in data points not lying on the model curve even in the absence of any
random effects. In any case, there are two types of variations in the data: variation explained by the model and
variation not explained by the model. The deviations between the predicted andyactlaés(y; — ) are
calledresiduals The variation not explained by the model is called the residual sum of squa¥eszor. This
is formally defined as
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N
SSRes = Z (yz - g)

=1

One common form of data fitting is called regressiorec8use of this, the variation explained by the model
(regression function) is called the regression sum of squarg€s gr,. This is defined by

N
SSReg = Z (gz - y)

=1

Again this is the deviation from the mean explained by the model.

15.1 Understanding Variation(Chapt. 5 LSM)

Ureogplamed Varadion b

Lapmred Yanabaor iE ol
ri =

Figure 6: Total Variation: Explained and Unexplained

It is easy to show algebraically that

SSTot = SSReg + SSRes

Intuitively this means that the total variation in the data is the sum of the variation explained by the model
as well as the variation not explained by the model. Thus the ratio

SSRey
SSTot

is the fraction (or percentage if multiplied by 100%) of the variation in the data explained by the model. This
ratio is calledR?. Thus

R SSReg
SSTot

Some books cal? the coefficient of determinatiorif the data is almost completely random, then almost
none of the variance in the data is explained by the model. In this 8#4e,, ~ 0 and hence?? =~ 0.

On the other hand if the data has almost no noise and lies very nearly on the model or regression curve, then
SSpes = 0,505S7,: ~ SSge, and hence?? =~ 1.

The observant reader may notice that there are some similarities between this discussion and the discussion
of correlation. Indeed the notatidd® comes from the fact that if we fit a line to data which minimizes the
unexplained variance, the statisf is exactly the correlation squared. For this reason, in simple linear
regressionfz? is denoted by-2.
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15.2 Correlation and Coefficient of Determination(Chapt. 5 LSM)

We can define the Pearson product moment correlation coeffigipas (an estimate of the true population
coefficientp.

[, - (B ()]

The correlation is a measure of tegength and directionf thelinear relationship betweer andy. Note
that it does not imply thax causes or influencesy. It just measures the strength of the relationship. The
coefficient of determination

n

(Sry et - Emml) (s g - el

SSp

SZ/@/

_ SSp
SZ/@/

L [t iy — el >]

=1

can be defined as the proportion of variability in the respogghat can be explained by or accounted for by
the predictorX .
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Inferences on the population correlation coefficient(Chapt. 5 LSM)
Null Hypothesis|  Assumptions Test Statistic | Alternative Hypothesis Rejection Region
p=0 Error assumptions p>0 T>th 2.4
(n>2)
T= le; p#0 | T[> th2.0/2

= ﬁAl_O
MSp
S.T.T

P <0 T S _tn—Q,a

When X and Y have a bivariate normal distribution:

Null Hypothesis| Assumptions Test Statistic Alternative Hypothesis Rejection Region
P =po Error assumpt P> pPo Z > zg
(n>2)
_ Vn— 1+R)(1—
Z= 2 2in Hl—R;EH‘ZEH P 7£ pPo | Z |Z Zaf2
P < po Z < —Zy
15.4 s the regression significant ?(Chapt. 4 LSM)

One of the first question we need to answer is “Is the regression significant”. In the linear case we are
basically asking do we have a linear relationship. Is there statistical evidence to conclude that the slope of the

true regression line is different from zero ?

Null Hypothesis|  Assumptions Test Statistic | Alternative Hypothesis Rejection Region
61=0 Error assumptions 41 >0 T>th 2.4
(n > 2) T=4-0
B1
= ﬁl_? P 7£ 0 | T |Z tn—?,a/?
*\/ Fuz
ﬁl <0 T S _tn—Q,a

If the null hypothesis is rejected then the regression is generally considered “significant”
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Table 8: Analysis of Variance for Regression

Source df  Sum of Squares Mean Square F-test
Regression 1 SSp=(5,, MSIF@ %gs =F*~ [,
Error N2 SSp=Sy, — f1Ss, MSp=228

Total n-1 Sy

Of lesser significance is the test for the intercept tggs 0. It should be noted that the linear model can

Null Hypothesis|  Assumptions Test Statistic | Alternative Hypothesis Rejection Region
0o=0 Error assumptions bg >0 T>t 24
(n>2) T=£520
Bo
Bo # 0 | T[> th_2.0/2
Bo—0

ﬁO <0 T S _tn—Q,a

be re-written so that the intercept term is zero.
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15.5 Distributional properties ofﬁAo and @(Chapt. 5LSM)

The method of least squares along with the Gauss-Markov theorem that the esﬁﬁnatmlsﬁi are the “best

linear unbiased estimators” fgk, and 5;. But what is the distribution of these estimates? Without going into

the derivation of the variances of these estimates and following the assumptions made on the error and response
random variables, we have that

n

025 $22

Bo ~ N | po, —=k

nSzz

Similarly, it can be shown for slope parameter estimfﬁfe,
B ~N (B &).
15.6 Inferences on the parametergo and ﬁAl(Chapt. 5LSM)

Bo — fo

~ oo

~ ly—g.

15.6.1 Confidence Interval for3, and 3;.(Chapt. 5 LSM)
Using the above a (&) (100 %) confidence interval fgt, is given by

ﬁO + tn—?,a/QSﬁAO

Using the above a (&) (100 %) confidence interval fgt, is given by
i £ lugapSs

+ 1,_ Syl —.
n—2,a/2 Sxx
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15.7 Prediction and Estimation(Chapt. 5 LSM)

15.7.1 Inferences about the estimated regression, E({)o)

Suppose we wish to use our regression function to find the mean response, E(y), your téxk liskes
a single measurement at a poigt Then we can use the fitted regression function as an estimate of the mean
response,

I

E(y) = gl’o = @-l-ﬁwo

to get this value. Note that it is important that this new poinbe within the range of the curremtvalues. If
we wish to get a confidence interval for the mean reponse, E(y), at the “new” ¥alue would have:

Gy £ 1 My (L4 Lo =T
Yz af2,n—2 E n + S, .

Predicting a response at a point ¥, yo

Suppose we wish to use our regression to “predict” a response for some future pait,afthe current values
then the best predictor is obviously,

gl’o = ﬁO + ﬁlﬂﬁo

If we wish to get a confidence interval for the future value we would have:

. 1 (z, —7)°
Yo, T las2,n—24| MSE 1+E+57 :

Predicting a mean response of m future measurements at a point,x

Suppose we wish to use our regression to “predictesponses at some future point, sgy Then best estimate
of the the mean of the responggsf the current values then the best predictor is obviously,

U, = Do+ Pixo

If we wish to get a confidence interval for the future value we would have:

~ 1 1 (zo—7)*
Yo ita/ln—z\l MSg (E + - + 5. )
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15.8 Introductory Residual Analysis(Chapt. 6 LSM)

Residuals

¢ = Yi — Ui

Residual Mean

Residual Variance

MSp = =

Standardized Residuals(semi-studentized)

Studentized Residuals

45



15 PARSIMONY IN MODELING(CHAPT. 4 LSM) 46

15.9 Departures from Model to Be Studied by Residuals(Chapt. 6 LSM)

We shall consider the use of residuals for examining six important types of departures from the simple linear
regression model with normal errors:

The regression function is not linear.
. The error terms do not have constant variance.
. The error terms are not independent.

1.
2
3
4. The model fits all but one or a few outlier observations.
5. The error terms are not normally distributed.

6

. One or several important predictor variables have been omitted from the model.

15.10 Diagnostics for Residuals

We take up now some informal diagnostic plots of residuals to provide information on whether any of the six
types of departures from the simple linear regression model just mentioned are present. The following plots of
residuals (or semistudentized residuals) will be utilized here for this purpose:

Plot of residuals against predictor variable.

Plot of absolute or squared residuals against predictor variable.
Plot of residuals against fitted values.

Plot of residuals against time or other sequence.

Plots of residuals against omitted predictor variables.

Box plot of residuals.

N o0 B~ doE

Normal probability plot of residuals.
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15.11 Comparable Normal probability plots(Chapt. 6 LSM)

Normal Probability Plot
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Figure 7: Ideal normal plot - signifying data is normally distributed

Normal Probability Plot Normal Probability Plot

+4 0997 ! +4

0.997-
0.99 - T4 oseof ,/ N ]
0.98 - o 0.98 - J 4+ -
0.95 - afplt 1 095 ! Lo T ’ 4
0.90 [ g* - 0.90 [ /*#}' 4

#
0.75 - - 4 o7sf E

£ z

€ o050 - 4 8 os0 [ 4

S S

& &

0.25 - o 4 o025 g
010 -~ /,fﬁé 4 o0 g
005 [ f?f 4 o005 Lt 7 ]
002 - B 0.02 [ b ! B
£ +
oo1 - 4 o001 R // Bl
0.003 4 4 o0.003}4 / g
0 0.1 0z 0.3 0.4 0.5 0.6 0.7 0.8 oo 1 10 5 o 10 15 20
Data Data
Figure 8: Figure on left - heavy tailed distribution, figure on right light - tailed
Normal Probability Plot Normal Probability Plot

0.997F - - S T T >
0.997- e +4
ool ]
0.98 - - 4 + -

L -7 + 7
0.95 0.95 PR E 7]
0.90 - 0.90 - -7 fgf# 7
0.75 - 075 | e |
£ £

= =

£ o0 - £ o0 - E

S S

& &

0.25 - 0.25 - T
010 1 0.10 - g
005 - - 0.05 - E
&
+ - 0.02 [ Bl
0.02 | - q L+ ]
001 | + - 1 oo (¥
+ -7 0.003 4 4
0.003E I . J | . . ,
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 o 1 2 3 4 5 6 7 )
Data Data

47

Figure 9: Figure on left - positive skew (skewed right) , figure on right negative skew (skewed left)
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16 Transformations to Linearity(Chapt. 6 (13) LSM)

In certain situations, a transformation on X or Y (or both) might “straighten out” the plot so that a linear
relationship would be appropriate for the transformed variables. Polynomial regression may also be employed.
But first consider the following transformations:

Relationship ob? to E(y) Transformation

0% o constant y' =y (no transformation)
o? x E(y) y' = /¥y (square root; Poisson data)
o? < E(y)[1 - E(y)] y = sin~! (/y) (arcsin; binomial proportions €@ y; <1
o” o [E(y)]” y' =1n (y) (log)
o o [E(y)] y' = y'/2 (reciprocal square root)
o o [E(y)]! y' =y~ (reciprocal)
Table 9: Linearizable functions and corresponding linear form
Linearizable Linear
Figure Function Transformation Form
3.13ab y = [oaz™ y = logy, 2’ = logx y =loghy + P12’
3.13c,d y = Fpe” y = Iny y = Infy + fix
3.13ef y = By + Pilogx ' = logx y =06y + Gz’

313g.h y = =5 y=pal = g y =P — pra’
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16.1 Lack of Fit and Introduction to Polynomial Regression(Chapt. 8 LSM)

Assumen; observations at each,: — 1,2, ..., k andn; > 1 at for at least one value ofLet n :Zle n;
denote the total number of observations. Then

kE ny;
Ssyy = Z Z(Yw - Y)2

=1 7=1

and
k

SSR=Y ni(Y; - Y;)?
=1

where SSE 55, - SSR thus
k
SSpp =) 57
=1
where

SSrr=5SSE - SSpEg.

Table 10: Analysis of Variance for Regression Including Partition for Lack of Fit

Source df  Sum of Squares Mean Square F-test

Regression 1  SSR,S., MSR=£%ay  MSR Fips

Error n-2 SSES,, — /1S, MSE2L

lack of fit k-2 SSpp MSLF=S5cr  pr=MSLE J R
pureerror n-k SSpg MSPE=5522

Total n-1 5SSy

RejectH,: Regression is linear, if™* > F, ;_2,,—%. If the null hypothesis is rejected assumption of a
linear fit is inappropriate. In this situation, a transformation on X or Y (or both) might “straighten out” the plot
so that a linear relationship would be appropriate for the transformed variables. Polynomial regression may also
be employed.

The following are the breaking strengths of six bolts at each of five different diameters. Also see exercise

Table 11: Example of Testing for Lack of Fit
Diameter
A1 2 3 4 5
162 171 186 214 245
173 178 186 207 242
1.70 179 190 211 233
166 186 195 218 2.36
174 170 196 217 2.38
172 184 200 207 231

4.10 from text.
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17 Polynomial models(Chapt. 8 LSM)

We begin with a simple quadratic model:

yi = Bo+ Bz + Barl + €

Using the technigue of least squares:

n

Q = Z {yz - (ﬁo—l-ﬁﬁrl-ﬁzw?)r.

=1

We wish to find estimates ¢fy, 5, , andg,, call themﬁo, ﬁl and@, that would minimize Q.

8 e

G—Z = -2 ; (yz — Po — Pra; — ﬁzw?)

8 e

8—2 = -2 ;$2 (yz — Bo — Bra; — ﬁﬂ?)
and

8 e

- ~2 ) ot (v = Bo = froi = Past).

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve
the following equations:

SNy = nbot+ B Y wit By 2l

=1 =1 =1

n n n n
Z%’yi = ﬁozwrl-ﬁﬁzw?—l-ﬁzzﬂﬁ
=1 =1 =1 =1

n n n n

2 o 2, A 3, A 4
doatys = fod al+ By al+ By i
=1 =1 =1 =1
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Case Study: Climatology

Mathematical Sciences 405/605
Case Study: Climatology

Table 1 gives the values of normal average January minimum temperature (y) in degree fahrenheit,4ajitude (

and longitude,) for 56 cities in the United States. It may be of interest to investigate how January temperature
relates to latitude and longitude. For this purpose, it is reasonable to assume an approximate linear relationship
between January temperature and latitude. In addition, some studies have found that, after adjusting for latitude,
a cubic polynomial in longitude accurately predicts normal average January temperatures in the contiguous
United States.

Table 12: Normal Average January Minimum Temperature (y), Latituge @nd Longitudes,) for 56 Loca-
tions in the Contiguous United States

Location y 1 T Location y 1 T
Mobile, AL 44 31.2 88.5 Omaha, NB 13 419 96.1
Montgomery, AL 38 32.9 86.8 Concord, NH 11 435 719
Phoenix, AZ 35 33.6 112.5 Atlantic City, NJ 27 39.8 753
Little Rock, AR 31 354 92.8 Albuquerque, NM 24 351 106.7
Los Angeles, CA 47 343 118.7 Albany, NY 14 426 737
San Francisco, CA 42 38.4 123.0 New York, NY 27 40.8 74.6
Denver, CO 15 40.7 105.3 Charlotte, NC 34 359 815
New Haven, CT 22 41.7 73.4 Raleigh, NC 31 364 78.9
Wilmington, DE 26 40.5 76.3 Bismarck, ND 0 471 101.0
Washington, DC 30 39.7 77.5 Cincinnati, OH 26 39.2 850
Jacksonville, FL 45 31.0 82.3 Cleveland, OH 21 423 825
Key West, FL 65 25.0 82.0 OklahomaCity, OK 28 359 975
Miami, FL 58 26.3 80.7 Portland, OR 33 456 1232
Atlanta, GA 37 33.9 85.0 Harrisburg, PA 24 409 778
Boise, ID 22 43.7 117.1 Philadelphia, PA 24 409 755
Chicago, IL 19 423 88.0 Charleston, SC 38 33.3 808
Indianapolis, IN 21 39.8 86.9 Nashville, TN 31 36.7 87.6
Des Moines, IA 11 41.8 93.6 Amarillo, TX 24 356 101.9
Wichita KS 22 38.1 97.6 Galveston, TX 49 294 955
Louisvilie, KY 27 39.0 86.5 Houston, TX 44 30.1 95.9
New Orleans, LA 45 30.8 90.2 SaltLakeCity, UT 18 41.1 1123
Portland, ME 12 442 70.5 Burlington, VT 7 450 739
Baltimore, MD 25 39.7 77.3 Norfolk, VA 32 370 76.6
Boston, MA 23 427 714 Seattle, WA 33 481 1225
Detroit, Ml 21 43.1 83.9 Spokane, WA 19 481 117.9
Minneapolis, MN 2 459 93.9 Madison, WI 9 434 90.2
St. Louis, MO 24 39.3 90.5 Milwaukee, WI 13 433 88.1
Helena, MT 8 47.1 112.4 Cheyenne, WY 14 41.2 104.9

NOTE: The average minimum temperature for any month is obtained by adding the daily minimum tem-
peratures during that month and dividing by the number of days in that month. The normal average January
minimum temperature (y) was obtained by adding the average minimums for January 1931, January 1932, and
so on, through January 1960 and dividing the total by 30. The variablaadz, are latitude and longitude in
degrees. Source: Long (1972)

fLong, L. H. (ed.) (1972), The 1972 World Aimanac and Book of Facts New York: Newspaper Enterprise Association.
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18 Multiple Linear Regression(Chapt. 8 LSM)

Generally when we wish to determine whether or not certain relationships exist between a response and certain
“condition(s)”, it is not unusual to have two or more variables that can influence a specific outcome. These
variables or “conditions” act synergistically on predicting or estimating an outcome.

Here we will assume on a linear relationship between these variables, but others could also exist.
The multiple linear regression model expresses the response as a funétitiatofct independent predictor
variables.

v = Bo+ bixei + Bove + -+ Bptr + €.

Using the technigue of least squares:

Q = > lyi— (Bo+ Prari + Barai + - + Brawi))

=1

We wish to find estimates gfy, 51, 52, ..., G5 call them@, ﬁl @ - @ that would minimize Q.

S—Z = =2 ZZ:; (i — Bo — Praeys — Botgi — -+ - — Brgi)
S—Z = —QZZ;%' (yi — Bo — Brani — Baai — -+ — Bragi)
S—Z = —2;;9022' (yi — Bo — Brx1i — Batrai — - - — Brri)
and )

3—2 = —QZZ;%' (i — Bo — Prays — Botgs — -+ - — Prgi) -

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve
the following equations:

Zyi = n@+alei+@zw2i+'”+@z$ki
=1 =1 =1 =1

e e e e e
Swwyi = Boy_wii+ By ati+ B2 Y wrivai+ o+ Be Y vriy
=1 =1 =1 =1

=1

n n n n n
Yoariyi = Boy w40y wkivn+ B2y wkivait o+ Bk vk

=1 =1 =1
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18.1 The fitted regression line(Chapt. 8 LSM)
(See Chapter 8 of LSM)

18.2 Is the multiple regression significant ?(Chapt. 8 LSM)
(See Chapter 8 of LSM)

18.3 Inferences on the fitted partial regression coefficients, tkfé’s.(Chapt. 8 LSM)
(See Chapter 8 of LSM)
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Case Study: Computer Science

Mathematical Sciences 405/605
Case Study: Computer Science

The waiting timey that elapses between the time a computing job is submitted to a large computer and the
time at which the job is initiated (computing commences) is a function of many variables, including the priority
assigned to the job, the number and sizes of the jobs already on the computer, the size of the job being submitted,
and so on. A study was initiated to investigate the relationship between waiting time y (in hours) for a job and
z1, the estimated CPU time (in seconds) for the job, andhe CPU utilization factor. The estimated CPU time
x1 IS an estimate of the amount of time that a job will occupy a portion of the computer’s central processing
unit's memory. The CPU utilization factar, is the percentage of the memory bank of the central processing
unit that is occupied at the time the job is submitted. We would expect the waitiny tioiecrease as the size
of the job x, increases and as the CPU utilization faetoincreases. To conduct the stud jobs of varying
sizes were submitted to the computer at randomly assigned times throughout the day. The job waityng time
estimated CPU time; and CPU utilization factor, were recorded for each job. The datse shown below.

(&
(e

T T2 y
2.0000 45.0000 0.0010
9.3000 80.0000 1.1400
5.6000 23.0000 0.0300
3.7000 25.0000 0.0010
12.4000 67.0000 0.7800
18.1000 30.0000 0.3000
13.5000 55.0000 0.6000
26.6000 21.0000 0.2000
34.2000 79.0000 2.2400
38.8000 40.0000 0.4400
56.1000 22.0000 0.0010
60.3000 37.0000 0.3200
13  4.4000 50.0000 0.1600
14 2.6000 66.0000 0.2900
15 20.9000 42.0000 0.4900

O© oo ~NO UL WN PO

el
N R O

A second-order model, E(Y) 8o + B121 + Boxa + fBsz179 + G423 + P53 was selected to model mean
waiting time E(y).

i) Find the values of SSE anef.
i) Find the prediction equation.
iii)y Find R? and interpret its value.

iv) Do the data provide sufficient evidence to indicate that the model contributes information for the
prediction ofy ? Test usingy = 0.10.

TWaiting time data frequently violate the assumptions required for significance tests and confidence intervals in a regression analysis.
The probability distribution for waiting times is often skewed, and its variance increases as the mean waiting time increhsds. Met
are available for coping with this problem, but we will ignore it for the purposes of this introductory discussion.
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MODELS WITH TWO INDEPENDENT VARIABLES

No interaction model

E(y) = fo+ bizy + Bazy
Comments on model parameters:
e [y y-intercept, the value of E(y) when x x; =0
e 1: Change in E(y) for a 1 unitincrease in,xvhen x% is held fixed.
e 5. Change in E(y) for a 1 unitincrease ip,xvhen x is held fixed.

General comments: In particular, a first-order model relating E(y) to two independent quantitative vari-
ables, x and %, graphs as a plane in three-dimensional space. The plane traces the value of E(y) for every
combination of values {x x2) that correspond to points in the,xx; plane. Most response surfaces in the real
world are well behaved (smooth), and they have curvature. Consequently, a first-order model is appropriate only
if the response surface is fairly flat over the x, region that is of interest to you.

Interaction model

E(y) = po+ fixy + Bazg + Bar12g

The assumption that a first-order model will adequately characterize the relationship between E(y) and the
variables x and x, is equivalent to assuming that &nd % do not interact; that is, you assume that the effect on
E(y) of a change in (for a fixed value of x) is the same regardless of the value gfand vice-versa). Thus,

no interaction implies that the effect of changes in one variable (sggrxE(y) is independent of the value of

the second variable (say)

Soaier Picd of AT wm X1 by K7 Soaier Picd of AT wm X1 by K7

YHaT YHaT

Two variablesnteract if the change in E(y) for 1-unit increase (decrease),ifwken % is held fixed) is
dependent on the values of. ¥n which case the lines in the previous plot would cross.

Interaction terms clearly allow more opportunity for individual predictor variables to exhibit joint effects
with other predictor variables. Several interaction terms involving two or more predictor variables can be in-
cluded in regression models but they should not be inserted routinely for several reasons. First the number
of possible interaction terms can be large for regression models with several predictor variables. With only
5 predictor variables there are 10 possible two-variable interaction terms, 10 three-variable interaction terms,
5 four-variable interaction terms, and 1 five-variable interaction term. Use of all predictor variables and their
interactions could result in a complicated model with 32 termsin it.
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18.4 Indicator and Dummy Variables in Multiple regression(Chapt. 12 LSM)
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Case Study: Industrial

Mathematical Sciences 405/605
Case Study: The Petroleum Industry

In the oil industry, water mixes with crude oil during production and transportation. The organic properties of
oil prevent it from dissolving in an inorganic medium; rather, tiny oil particles are suspended within the water.
This water and oil (w/0) suspension is called an emulsion.

Chemists have found that the oil can be extracted from the w/o emulsion electrically. In a high electric field,
the (lighter) emulsified droplets are enlarged while the (heavier) water settles out of the mix gravitationally.
Researchers at the University of Bergen (Norway) conducted a series of experiments to study the factors that
influence the voltage required to separate the water from the oil in w/o emulsionmél of Colloid and
Interface Science. Aug. 19p5The seven independent variables investigated in the study are described below.
Each variable was measured at two levels a “low” level and a “high” level.

e 2. Volume fraction of disperse phase (as a percentage of weight); Low = 40%, High = 80%

e z,: Salinity of emulsion (as a percentage of weight); Low = 1%, High = 4%

e 23 Temperature of emulsion (in C); Low = 4High = 23

e z4: Time delay after emulsification (in hours); Low = 0.25 hour(15minutes), High = 24 hours

e z5: Concentration of surface-active agent, or "surfactant” (as a percentage of weight); Low = 2%, High = 4%
e 2¢: Ratio of two chemicals (Span and Triton) used as surfactants; Low = .25, High =.75

e 7. Amount of solid particles added (as a percentage of weight); Low = .5%, High = 2%

Sixteen w/o emulsions were prepared using different combinations of the independent variables listed above;
then each emulsion was exposed to a high electric field. Iitiaddthree w/o emulsions were tested when all
independent variables were set to 0. For all 19 emulsions, the amount of voltage (kilovolts per centimeter) where
the first sign of macroscopic activity is observed was measured; this value represents the dependenyvariable,
The data for the study are given in Table 1.

1. Propose a model for y as a function of all seven independent variables. Assume that a linear relationship
exists betweegandz;,i=1,2,...,7.

2. Use a statistical software package to fit the model to the data in Table 1.

3. Fully interpret the results of the regression. Part of the analysis should include an interpretatiofi of the
estimates.

4. According to the researchers, the model predicts a negative value for the woftagexperiment #14.
Verify this result.

5. The researchers state that the result, part 4, “is physically not acceptable, and a model with interaction
terms must be proposed.” The model the researchers selected is
E(y) = 0o + (121 + [oxs + f3xs +042129 + Ps2125. Note that the model includes interact)j between
disperse phase volunie;) and salinity(z3) as well as interaction between disperse phase valugme
and surfactant concentrations ). Discuss how these interaction terms affect the hypothetical relationship
betweery andz; . Draw a sketch to support your answer.

6. Fit the interaction model, part 5, to the data. Do the model appear to fit the data better than the model in
part 1? Explain.

7. Interpret thes estimates of the interaction model from part 5.
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8. The researchers concluded that “in order to break; an emulsion with the lowest possible voltage, the

volume fraction of the disperse phaseg ) should high, while the salinity:;) and the amount of surfactant
(25) should be low.” Use this information and the interaction model to find a 95% prediction interaction

for this "low” voltagey. Interpret the interval.



Disperse Phase Time Surfactant ST Solid
Experiment \oltage Volume Salinity Temperature Delay Concentration Ratio Particles

() (1) (22) (23) (24) (25) (re)  (27)
1 .64 40 1 4 .25 2 .25 5
2 .80 80 1 4 .25 4 .25 2
3 3.20 40 4 4 .25 4 .75 5
4 48 80 4 4 .25 2 .75 2
5 1.72 40 1 23 .25 4 .75 2
6 .32 80 1 23 .25 2 .75 5
7 .64 40 4 23 .25 2 .25 2
8 .68 80 4 23 .25 4 .25 5
9 A2 40 1 4 24 2 .75 2
10 .88 80 1 4 24 4 .75 5
11 2.32 40 4 4 24 4 .25 2
12 40 80 4 4 24 2 .25 5
13 1.04 40 1 23 24 4 .25 5
14 A2 80 1 23 24 2 .25 2
15 1.28 40 4 23 24 2 .75 5
16 12 80 4 23 24 4 .75 2
17 1.08 0 0 0 0 0 0 0
18 1.08 0 0 0 0 0 0 0
19 1.04 0 0 0 0 0 0 0

(WS 8 "LdYHD)NOISSINOTH ¥VINITITdILTINN 8T

6S
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Collinearity Diagnostics (Chapt. 10 LSM)

When a regressox;, is nearly a linear combination of other regressors in the model the affected estimates
are unstable and have high standard errors. This problem is calle@tearity or multicollinearity . It is a good
idea to find out which variables are nearly collinear with which other variables. The approB&0O& REG
follows that of Belsley, Kuh, and Welsch (198®EG provides several methods for detecting collinearity with
the COLLIN , COLLINOINT , TOL, andVIF options

The COLLIN option in the MODEL statement requests that a collinearity analysis be done.XXsis
scaled to havés on the diagonal. ICOLLINOINT is specified, the intercept variable is adjusted out first.
Then the eigenvalues and eigenvectors are extracted. The analREi§ins reported with eigenvalues &fX
rather than values from the singular decompositioXofhe singular values oX are the square roots of the
eigenvalues oX’X.

The condition indices are the square roots of the ratio of the largest eigenvelehtondividual eigenvalue.

The largest condition index is the condition number of the scAledhtrix. When this number is large, the data
are said to be ill-conditioned. When this number is extremely large, the estimates may have a fair amount of
numerical error (although the statistical standard error almost always is much greater than the numerical error).

For each variabldREG prints the proportion of the accounted for by each principal componentllihear-
ity problem occurs when a component associated with a high condition index contributes strongly to the variance
of two or more variables.

The VIF option in theMODEL statement provides the variance inflation factors. These factors measure
the inflation in the variances of the parameter estimates due to collinearities that exist among the regressor
(dependent) variables. There are no formal criteria for decidiny/trais large enough to affect the predicted
values. But, there are informal criteria that work quite well in practice. A liberal criteria is any VIFs over 10
suggest multicollinearity. A more conservative criteria would suggest multicollinearity if there are any VIFs
greater than the number of parameters in the model.

TheTOL option requests the tolerance values for the parameter estimates.

For a complete discussion of the methods discussed above, see Belsley, Kuh, and Welsch (1980). For a more
detailed explanation of using the methods WROC REG, see Freund and Littell (1986).

Here is an example using tOLLIN option on the oxidation data given in a class handout and reproduced
at the end of this handout.

proc reg data=oxidata,;
model oxidant=windspd temp humid insolate / tol vif collin;
run;

Influence Diagnostics

The INFLUENCE option requests the statistics proposed by Belsley, Kuh, and Welsch (1980) to measure the
influenceof each observation on the estimates. Influential observations are those that, according to various
criteria, appear to have a larggluenceon the parameter estimates. Ikt ;) be the parameter estimates after
deleting theith observation; let’s,, be the variance estimate after deletingitiheobservation; leK_ ;) be the

X matrix without theith observation(case); It ;) be theith value predicted without using tli observation;

letr; =y, - y be theith residual; and let hbe theith diagonal of the projection matrix for the predictor space,
also called the hat matrix:

hi = x; (X’X)_1 x!

Belsley, Kuh, and Welsch propose a cutoff 2fp/n, wheren is the number of observations used to fit the
model, and is the number of parameters in the model. Observations wihlbes above this cutoff should be
investigated.

For each observatioREG first prints the residual, the studentized residual, and thélhe studentized
residual differs slightly from that in the previous section since the error variance is estimatég)b)yithout
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theith observation, not by*sfor example,
i

RSTUDENT = ——
52y (1= hi)
(%)
Observations witlRSTUDENT larger than 2 in absolute value may need some attention.
The COVRATIO statistic measures the change in the determinant of the covariance matrix of the estimates

by deleting thdth observation:

covratio = Fm0X-wX-0
XX
Belsley, Kuh, and Welsch suggest observations with
3p

ICOVRATIO — 1| > =
n

wherep is the number of parameters in the model, ariglthe number of observations used to fit the model, are
worth investigation.

TheDFFITS statistic is a scaled measure of the change in the predicted value ith thiteservation and is
calculated by deleting thieh observation. A large value indicates that the observation is very influential in its
neighborhood of th& space.

Yi — Y-(5)

52yl
Large values oDFFITS indicate influential observations. A general cutoff to consider is 2; a size-adjusted
cutoff recommended by Belsley, Kuh, and Welsch\i/é%z wheren andp are as defined abovBFFITS is very
similar toCook’s Distance

Cook’s D, for short, is also a scaled measure. Cases for whicts [arge have substantial influence on
3 and on the fitted values, and deletion of them may result in important changes in conclusions. Typically the
case with the largest Dor in large data setsthe cases with the largest fewnl be of interest. A proposed
cut-off, see Weisberg (1985), is if;[s substantially less than 1, deletion of a case will not change the estimate
[ by much. To investigate the influence of a case more closely, the analyst should delete the age &nd
recompute the analysis to see exactly what aspects of it have changed.

The simplest form for Dis

DFFITS =

D; = ‘RSTUDENT? (h—)
P L—h;
If pis fixed, the size of Pwill be determined by two different sources: the siz&&ETUDENT;, a random
variable reflecting lack of fit of the model at thth case, and the potential neflecting the location of; relative
toz. A large value of D may be due to largeSTUDENT;, large h, or both.
DFBETAS are the scaled measures of the change in each parameter estimate and are calculated by deleting
theith observation:

~ ~

ﬁj - ﬁj—(i)
5% (XX)7

DFBETAS; =

where

(X’X);;! is the(j,j)th element of X'X)~" .

In general, large values &fFBETAS indicate observations that are influential in estimating a given param-
eter. Belsley, Kuh, and Welsch recommend 2 as a general cutoff value to indicate influential observations and
2/\/n as a size-adjusted cutoff.

The output below shows the portion of output produced byIMELUENCE option for the oxidation
example. See the subsequent output for the fitted regression equation.
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proc reg data=oxidata;
model oxidant=windspd temp humid insolate / influence;

run;
Table 13: Influence Diagnostics for Ozone Data
Criteria Criteria Cutoff ~Size Adjusted Suspect Cases
h (Hat) 0.33 22,23,30
RSTUDENT 2 11
COVRATIO 0.5 8,11,24
25,29,30
DFFITS 2 0.82 4,22,23
DFBETAS 2 0.37 Parameters
Intercept  WINDSPD TEMP HUMID INSOLATE
4,22 4,22,23 4,21 4,28 22,23

The PARTIAL option produce®ARTIAL regression leverage plots. One plotis printed for each regressor
in the full, current model. For example, plots are produced for regressors included by using ADD statements;
plots are not produced for interim models in the various model-selection methods but only for the full model.

If you use a model-selection method and the final model contains only a subset of the original regressors, the
PARTIAL option still produces plots for all regressors in the full model.

For a given regressor, tHARTIAL regression leverage plot is the plot of the dependent variable and the
regressor after they have been made orthogonal to the other regressors in the model. These can be obtained
by plotting the residuals for the dependent variable against the residuals for the selected regressor, where the
residuals for the dependent variable are calculated with the selected regressor omitted, and the residuals for
the selected regressor are calculated from a model where the selected regressor is regressed on the remaining
regressors. A line fit to the points has a slope equal to the parameter estimate in the full model.

On the plot, points are marked by the number of replicates appearing at one print position. The symbol *’
is used if there are ten or more replicates. if an ID statement is specified, the left-most nonblank character in the
value of the ID variable is used as the plotting symbol.

The following statements use the oxidation data.

proc reg data=oxidata;
model oxidant=windspd temp humid insolate / partial;
run;

References
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Case Study: Toxicity

Mathematical Sciences 405/605
Case Study:Toxicity
100 points

I. The Data: It is known that in mammals the toxicity of various drugs, pesticides, and chemical
carcinogens can be altered by inducing liver enzyme activity. A study to investigate this sort of phe-
nomenain a vertabrate model similar to that of humans is reported in an articleim#récan Jour-
nal of Veterinary ResearchiRegression analysis was used to study the relationship between induced
enzyme activity and detoxification on the insecticide malathion. Butylated hydroxytaluene(BHT)
and 3-methylcholanthrene (MC) were used to induce enzyme activity. Each observation represents
the percentage of activity relative to a control, an untreated lab animal. The response variable is the
percentage of detoxification of malathion. Five enzyme activities were measured and serve as the
predictor variables.

Table 14: Detoxification Data
Inducer Detoxification Enzymel Enzyme?2 Enzyme3 Enzyme4 Enzymeb5

r1 Y L2 L3 Lq 5 5

BHT 146.1040 348.4750 337.5000 108.1220 106.6670 107.6920
BHT 152.5970 233.2200 260.4170 82.2340 80.0000 88.8890
BHT 168.8310 287.4580 273.9580 74.6190 66.6670 87.1790
BHT 178.5710 152.5420 310.4170 86.8020 73.3330 96.5810
BHT 191.5580 276.2710 818.7500 122.8430 86.6670 97.4360
BHT 113.6360 78.6440 156.2500 112.6900 93.3330 94.8720
BHT 188.3120 196.9490 260.4170 79.1880 80.0000 106.8380
BHT 94.1560 101.6950 112.5000 127.9190 93.3330 80.3420
BHT 159.0910 1945760 280.2080 239.5940 106.6670  91.4530
BHT 142.8570 325.4240 326.0420 173.0960 113.3330 100.0000
MC 56.2500 106.3290 90.7560 94.6500 162.7910 114.7370
MC 75.0000 1447260 203.3610 131.6870 255.8140 112.6320
MC 115.6250 136.2870 672.2690 123.4570 191.8600 153.6840
MC 68.7500 154.4300 183.1930 113.1690 133.7210 116.8420
MC 96.8750 385.2320 140.3360 117.2840 174.4190 87.3680
MC 168.7500 583.5440 146.2180 152.2630 273.7560 94,7370
MC 84.3750 489.4510 184.8740 121.3990 255.8140 95.7890
MC 171.8750 4459920 537.8150 150.2060 552.3260 113.6840
MC 109.3750 270.8860 309.2440 185.1850 534.8840 108.4210
MC 103.1250 163.2910 190.7560 139.9180 360.4650 106.3160

(i) Fit a multiple linear regression that models detoxification as a function of the five en-
zymes for each of the two types of inducers.

(i) Using the methods described in your handout on collinearity and influence, determine if
multicollinearity exists foeach of the models and whether or not there are any influential
cases.

(iii) Using the variable selection methods described in class determine the variables that are
“best” in predicting the percentage of detoxification of malathion when looking at BHT
as the inducer and the variables that are “best” in predicting the percentage of detoxifi-
cation of malathion when considering MC as the inducer.
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19 Model-Selection Methods(Chapt. 11 LSM)

Introduction

The nine methods of model selection implementeBROC REG are specified with th&ELECTION=
option in theMODEL statement. Each method is discussed below.

Full Model Fitted (NONE)

This method is the default and provides no model selection capability. The complete model specified in the
MODEL statement is used to fit the model. For many regression analyses, this may be the only method you
need.

Forward Selection (FORWARD)

The forward-selection technique begins with no variables in the model. For each of the independent variables,
FORWARD calculateg= statistics that reflect the variable’s contribution to the model if it is included. The
p-values for thes€ statistics are compared to tBEENTRY= value that is specified in tHdODEL statement

(or to 0.50 if theSLENTRY= option is omitted). If noF statistic has a significance level greater than the
SLENTRY= value,FORWARD stops. Otherwisd;ORWARD adds the variable that has the largestatistic

to the model FORWARD then calculate§ statistics again for the variables still remaining out side the model,

and the evaluation process is repeated. Thus, variables are added one by one to the model until no remaining
variable produces a significaRtstatistic. Once a variable is in the model, it stays.

Backward Elimination (BACKWARD)

The backward-elimination technique begins by calculating statistics for a model, including all of the inde-
pendent variables. Then the variables are deleted from the model one by one until all the variables remaining in
the model produc€ statistics significant at th8LSTAY= level specified in thé¢MODEL statement (or at the
0.10 level if theSLSTAY= option is omitted). Ateach step, the variable showing the smallest contribution to
the model is deleted.

Stepwise (STEPWISE)

The stepwise method is a modification of the forward-selection technique and differs in that variables already

in the model do not necessarily stay there. As in the forward-selection method, variables are added one by one
to the model, and thE statistic for a variable to be added must be significant aSIEENTRY= level. After

a variable is added, however, the stepwise method looks at all the variables already included in the model and
deletes any variable that does not producé& atatistic significant at thBLSTAY = level. Only after this check

is made and the necessary deletions accomplished can another variable be added to the model. The stepwise
process ends when none of the variables outside the model lrastatistic significant at thELENTRY= level

and every variable in the model is significant at 8IESTAY= level, or when the variable to be added to the

model is the one just deleted from it.
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Maximum R? Improvement (MAXR)

The maximumR? improvement technique does not settle on a single model Instead, it tries to find the "best”
one-variable model, the "best” two-variable model, and so forth, although it is not guaranteed to find the model
with the largesR? for each size. Th&AXR method begins by finding the one-variable model producing the
highestR?. Then another variable, the one that yields the greatest incred®% is added. Once the two-
variable model is obtained, each of the variables in the model is compared to each variable not in the model. For
each comparisoMAXR deter mines if removing one variable and replacing it with the other variable increases
R?. After comparing all possible switchelAXR makes the switch that produces the largest increa&g.in
Comparisons begin again, and the process continuesMiAXIR finds that no switch could increa®. Thus,

the two-variable model achieved is considered the "best” two-variable model the technique can find. Another
variable is then added to the model, and the comparing-and-switching process is repeated to find the "best” three-
variable model, and so forth. The difference between the STEPWISE method aiiéd ¥ method is that all
switches are evaluated before any switch is maddAXR . In the STEPWISE method, the “worst” variable

can be removed without considering what adding the best” remaining variable might accomiglisR. may

require much more computer time than STEPWISE.

Minimum R? Improvement (MINR)

The MINR method closely resembl@dAXR , but the switch chosen is the one that produces the smallest
increase irR%. For a given number of variables in the moddlAXR andMINR usually produce the same
“best” model, buMINR considers more models of each size.

R? Selection (RSQUARE)

The RSQUARE method finds subsets of independent variables that best predict a dependent variable by linear
regression in the given sample. You can specify the largest and smallest number of independent variables
to appear in a subset and the number of subsets of each size to be selectddSQUARE method can
efficiently perform all possible subset regressions and print the models in decreasing drRlemafjnitude

within each subset size. Other statistics are available for comparing subsets of different sizes. These statistics,
as well as estimated regression coefficients, can be printed or output to a SAS data set. The subset models
selected byRSQUARE are optimal in terms oR? for the given sample, but they are not necessarily optimal

for the population from which the sample was drawn or for any other sample for which you may want to make
predictions. If a subset model is selected on the basis of a Rrgalue or any other criterion commonly used

for model selection, then all regression statistics computed for that model under the assumption that the model
is given a priori, including all statistics computed REG, are biased. While the SQUARE method is a useful

tool for exploratory model building, no statistical method can be relied on to identify the "true” model. Effective
model building requires substantive theory to suggest relevant predictors and plausible functional forms for the
model. TheRSQUARE method differs from the other selection methods in R&QUARE always identifies

the model with the larges®? for each number of variables considered . The other selection methods are not
guaranteed to find the model with the largR$t RSQUARE requires much more computer time than the other
selection methods, so a different selection method su@TaPWISE is a good choice when there are many
independent variables to consider.

Adjusted R? Selection (ADJRSQ)

This method is similar tRSQUARE, except that the adjustd} statistic is used as the criterion for select-
ing models, and the method finds the models with the highest adjR$tetthin the range of sizes.
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Mallows’ C, Selection (G)

This method is similar tdADJRSQ, except that Mallow’s Cstatistic is used as the criterion for model selection.

Additional Information on Model-Selection Methods

If the RSQUARE or STEPWISE procedure (as documented in SAS User’s Guide: Statistics, Version 5 Edi-
tion) is requestedPROC REG with the appropriate model-selection method is actually used. Reviews of
model-selection methods by Hocking (1976) and Judge et al. (1980) describe these and other variable-selection
methods.
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20 The Analysis of Variance(Chapt. 14 LSM)

20.1 The Completely Randomized Design

Given the common hypothesis:
Ho: M1 = o = .y

Hat g 7£ My {27&]} <r,

there are a number of techniques for comparing means from several populations or processes. One particularly
interesting method is called th&nalysis of Variance Although it seems a misnomer, we will see how the
analysis of variance is used for testing the inequality of means from several populations. For experiments
involvingr means a model of the form:

Yij = Mite; v=12...r 3=1,2,...,n,

can be used. This model is equivalent to the one-factor model used to analyze data resulting from designed
experiments. The simplest of these is the completely randomized design. The analysis of variance (ANOVA) is
especially suited for comparing means of populations when it can be assumed that the population variances are
equal.

Let's assume that the observations fromttitgfferent processes are independent. The sample sjzesed
not be the same but we will keep things simple by making that assumption here. Assume further that the errors
are normally distributed with mean 0 and common varianGgrecall we must make this assumption as stated
above).

The purpose of the ANOVA is to assess whether the means in the model given above are significantly
different from each other. Note that this is different from the analysis of means(ANOM), which compares the
means to an overall mean. Given that id true, ther sample meang;j; provide an unbiased estimate of the
population meap and each of the sample variancesprovides an unbiased estimate of the population variance
aj. Thus, we are taking, in effeatrepeated random samples, each of siZieom the same population. Recall
from Chapter 3, that the variance of the sample mean, denot@@ iByequal to the population varian@
divided by the sample size

0.2
or = ?y

Thus, if the null hypothesis is true, the population variadﬂ;ehould be equal to times the variance of the
sample means:?, ie., 0. = no2. If the null hypothesis is not true, then the equatigr= n ¢ will not hold;
indeed,na% will be greater thararj due to the fact that the population means corresponding topbpulations
are different. This relationship may be seen in the figure below.
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Ho By =k, =1y =H TR

Total Variablity = o; Total Variablity > o;

| My Hy Hy
Hy=H, = =1 %y % # 1

If the r treatment effects are equal, we are drawing the random samples from one distribution with variance
aj. If the r treatments effects are not equal, then the total amount of variability ilY fhegoulation must be
greater thararj as illustrated on the right side of the figure above. The repeated samples wixgizeéd then be
drawn from a “composite” population, indicated in the figure by the shaded area. tigmgs the variability
of the sample average statiskcin repeated samples must be larger thénbecause these samples are being
drawn from a population in which the variability is greater than the one in which the population means are equal.
Therefore, the hypotheses:

Ho: i1 = pe = pr

Hotps # py {i#5} <r

are equivalent to the hypotheses:
2

. 2 —
Ho.nay—ay

. 2 2
H,: nNogz>o,.

That is, we can test the equality of population mean effects by comparing estimatést@b population
variance, andr%, the variance of the sample mean statistic. The analysis of variance procedure does, in fact,
analyze variances to compare means.

The analysis of variance procedure compares an estima&é,dénoted by&j, with an estimate oby;
denoted bysy. If 57 is “much less” tham a% then there is reason to suspect that the null hypothesis is not true.
To determine whethet is significantly less than 52, we compute, the probability that the difference? - 5
could arise by chance, (sampling error)?ffz 65. To illustrate the testing process, consider data from a polish
cannons exercise:

[Example:]. Bauer. Dirks, Palkovic and Wittmer fired tennis balls out of “Polish cannons” inclined
at an angle of 45using three different Propellants and two different Charge Sizes of propellant.
They observed the distances traveled in the air by the tennis balls. Their data are given in the
accompanying table. (Five trials were made for each Propellant/Charge Size combination and
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the values given are in feet.)

Propellant
Lighter Carburetor
Fluid Gasoline Fluid
58 76 90
50 79 86
25ml 53 84 79
49 73 82
59 71 86
Charge Size
65 96 107
59 101 102
5.0ml 61 94 91
68 91 95
67 87 97

For the moment let’s just consider the three types of propellant. And we want to determine if the population
means for the three types of propellant differ. The means model:

Yi; = Mite; 0=1,2,...,3 j=1,2,...,10
Propellant
Lighter Carburetor
Fluid Gasoline Fluid Overall Mean

Propellant means | 7, =58.9 | 7, =85.2| 75;=91.5 Yy =78.53

Since the three sample means are quite dissirfjlar= 58.9 7, = 85.2 andy, = 91.5 we might expect the
analysis of variance procedure to suggest that the null hypothesis should be rejected.

20.2  Estimate of the population variancer;

To calculate a sample estimateaf, we will use the sample variance, s3, ands3. The variance for thith
sample is given by:

n=10

— \2
Z (yij -7,
=1

n=10 2

2 B =1
; yi -
o n—1
Thus,
584504-534-4-67)°
o B4 (507 4 (53)° 4 - (67)° — CHEEGRten
¢ 9
35095 — (589
= ——— 10— 44.7667.

9
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Similarly, s2 = 106.1778 and3 = 78.0556. A critical assumption of analysis of variance is that the popu-
lation variances corresponding to the8 treatments are equal, regardless of whether or not the null-hypothesis
is true (that is, whether or not thigpopulation means are equal). Thus, any differences in the sample variances
must always be attributable to sampling error. The three sample variances appear to be reasonably similar in this
example. But let's apply the F, . test.

max{s?}
106.1778

14.667
= 23718,

which is less than 5.34y=0.05 and obviously less than 8.5, witkr0.01. So the assumption is appropriate.
Sinces?, s3, ands3 each estimate the polulation variancg we can produce an improved estimatergf
over each sample variance taken individually by pooling the three estimates ( recall the pooled estimate of the
population variance in the denominator of th&tatistic used to compare two population means).
The pooled estimate of? is given by:

2 57
Sp = Z?
=1
44.7667 4+ 106.1778 + 78.0556
3

= 76.3333.

20.3 Estimate of the variance the sample mean’

The three sample means dfg. = 58.9 7, = 85.2 andy; = 91.5. To compute the estima‘?ﬁy of the three
sample means we used the variance formula:

r=3
Z @ -7.)°
2 =1
T r—1
In our exampley =78.53. Then
r=3
> @.-7.)"
P |
T r—1
_ (58.9—178.53)" + (85.2 — 78.53)* + (91.5 — 78.53)
N 2
= 299.0234.

If the null hypothesis s trua 3% should be an unbiased estimate of the population variapcts value is:

ne: = (10)(299.0234) = 2990.234.

Sincen 3% > 65 (2990.234> 76.333), the sample means appear to be much too variable to have been drawn
from the same common population with mgarBut is the difference betweem&% and&j statistically signifi-

cant ? We have developed two procedures for testing the equivalence of two population variances. The common
F-test and Hartley’s k... which we recently used. For the usual F-test,

2990.234

I = Z63333
= 39.1734.
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To determine whether the calculated valué isfsignificantly different from 1, we look for the critical valuefof

based on the numerator degrees of freedpmr - 1 = 2, the denominator degrees of freedens r(n-1) = 3(9)

=27, and a selected value®f saya=0.05. From the table in the appendix, we get.Fo.05=3.40 and k30, 0.05=

3.32. Since the calculated value of the statibi{ic= 39.1734) is greater that the critical value(s) (39.1%34

3.40), we reject the null hypothesigHu; = po = s at thea=0.05 significance level. Thus we conclude that

there appears to be strong evidence that the three propellants do produce different mean distances. It is possible
to calculate the observed level of significance, but the closest tabled value yelddue < 0.0005. Thusitis

very likely that the three propellants produce different distances.

20.4 The Analysis of Variance table

A convenient computational format for calculating the statistics necessary to determine whether the null hy-
pothesis should be rejected is provided by the analysis of variance table. Its form is presented in the table
below.

Degrees of Sum of
Source of Variation freedom squares Mean Square F-ratio

Among treatments -1 SS MS, e
Experimental error  r(n-1) SS MSg
Total -1 S%

The first row of the table, “among treatments,” produces the estimate of the varizagldieis denoted by
MS;, (mean square for factor levels) in the table. The second row of the table, “experimental error” produces
the pooled estimate of the population variamjét is denoted by Mg (mean square for error) in the table. The
F-statistic is the ratio of the mean square for treatments, M&d the mean square for error, MS

The formula for MS., is:

r - 2
MSTr = no2 = nZZzlr (gz.l 7.)

The numerator of M is called the sum of squares among treatments and is denoted,bin 3 table.
The formula for MS; is:

(n—1)>"4 s?

_ a2 _ =15
MSL‘T = Uy = r(n — 1)
r n — — 2
(n—1)2I5 Zj:l (yz’j - @/z)

r(n—1)

The numerator of Mg is called the error sum of squares and is denoted hyiS#e table. The “Degree of
freedom” column in the table gives the appropriate divisors of the sums of squares to produce the mean squares.
The last row in the table gives the “Total degrees of freed@m* 1) = (t- 1) + t(n - 1) - and the total sum
of squares given by:

SSr = izn:(?zj—?..f

=1 7=1

Hence, the analysis of variance table can also be given as:

Degrees of Sum of

Source of Variation freedom squares Mean Square F-ratio
n— T s

Among treatments  r-1 nY_ (T -7 ) MStF( iznz_:ﬁl : %?E

Experimental error  r(n - 1) S5 MSg

Total -1 SS
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Notice that S$ gives the sum of the squared deviations of each observati@bout the grand mean of the
datay. Thus, this quantity is a measure of the total variability in the dependent variable.
An important relationship given in the analysis of variance table is:

SST = S5S5T, + SSk

That is, the total sum of squares can be partitioned into the sum of squares due to treatments plus the error
sum of squares. So, for the polish cannon data we have the following analysis of variance table:

Degrees of Sum of

Source of Variation freedom squares  Mean Square F-ratio
Among propellants 3 -1 [2] 5980.467 2990.233 39.173
Experimental error  3(10-1) [27] 2061.000 76.333

Total 3(10)-1[29] 8041.467

Or in Statistix we would get the following:

STUDENT EDITION OF STATISTIX
ONE-WAY AOV FOR DISTANCE BY PROP

SOURCE DF SS MS F P
BETWEEN 2 5980.47 2990.23 39.17 0.0000
WITHIN 27 2061.00 76.3333
TOTAL 29 8041.47
CHI-SQ DF P

BARTLETT'S TEST OF

EQUAL VARIANCES 1.56 2 0.4595
COCHRAN'S Q 0.4637
LARGEST VAR / SMALLEST VAR 2.3718

COMPONENT OF VARIANCE FOR BETWEEN GROUPS 291.390

EFFECTIVE CELL SIZE 10.0
SAMPLE GROUP
PROP MEAN SIZE STD DEV
1 58.900 10 6.6908
2 85.200 10 10.304
3 91.500 10 8.8349
TOTAL 78.533 30 8.7369

CASES INCLUDED 30 MISSING CASES 0
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Suppose we wanted to do the same thing for the Charge size in our example. Then we can let a similar model as
that posed before for the propellant, represent the mean charge.

Yi; = pite; t=1,2. 3=1,2,...,15.
Similarly for Charge type alone we would get:

STUDENT EDITION OF STATISTIX
ONE-WAY AOV FOR DISTANCE BY CHARGE

SOURCE DF SS MS F P
BETWEEN 1 1414.53 1414.53 5.98 0.0210
WITHIN 28 6626.93 236.676
TOTAL 29 8041.47
CHI-SQ DF P

BARTLETT'S TEST OF

EQUAL VARIANCES 0.31 1 0.5767
COCHRAN'S Q 0.5755
LARGEST VAR / SMALLEST VAR 1.3555

COMPONENT OF VARIANCE FOR BETWEEN GROUPS 78.5238

EFFECTIVE CELL SIZE 15.0
SAMPLE GROUP
CHARGE MEAN SIZE STD DEV
1 71.667 15 14.176
2 85.400 15 16.505
TOTAL 78.533 30 15.384

CASES INCLUDED 30 MISSING CASES 0

Here’s a third example of comparing several means and the completely randomized design. The production
manager of a company which manufactures filters for liquids, for use in the pharmaceutical and food industries,
wishes to compare the burst strength of four types of membrane. The first (A) is the company’s own standard
membrane material, the second (B) is a new material the company has developed, and C and D are membrane

Table 15: Burst strength of filter membranes (kPa)
TypeA 955 103.2 93.1 89.3 904 921 93.1 919 0953
TypeB 905 98.1 978 97.0 98.0 952 953 97.1 905
TypeC 86.3 84.0 86.2 80.2 837 934 77.1 86.8 837
TypeD 895 934 875 894 879 86.2 899 895 90.0

materials from other manufacturers. The manager has tested five filter cartridges from ten different batches of
each material. The mean burst strengths for each set of five cartridges are given in above. The data can be
analysed by setting up a multiple regression model. W¥ ket the average burst strength for each set of five
cartridges and,z,,z3 be indicator variables coded as: The coefficients then represent the differences between
the company'’s standard membrane and the others. This sets up four of the six possible comparisons. If we fit
the model

y = Po+ frz1 = +P222 + [azs
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Type A
Type B
Type C
Type D

cor ol
O R OO0OWw
P OO0OO0OWw

we obtain the following results

y=92.84 + 3.242; — 8.21z9 — 2.9523

with s= 3.901 and the table of coefficients below:

Predictor Coef Stdev t-ratio p-value
Constant 92.84 1.234 75.27 0.000
TypeB 3.24 1744 186 0.071
TypeC 821 1744 -471 0.000
TypeD 295 1.744 -1.69 0.099

74
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20.5 Paired Comparisons for Analysis of Variance

I. Bonferroni's Procedure:

i) Equal Sample Sizes: Laet=n;,i=1,...k, the set of confidence intervals with endpoints:

2MSE
n

(Ji. = Uj) £ t(N—p)or

Each confidence interval that does not include zero suggests:; ata.
i) Unequal Sample Sizes:

1 1
(1. —y;) £ t(N—k),a’\/MSE(_ +—)

n;  ny

Each confidence interval that does not include zero suggests;:; ata. Notice here

thata’ = k(ka—l)'

Il. Tukey's Procedure:

i) Equal Sample Sizes: Let; = n,i=1,... k and let), ,, ,, be a critical value of the
Studentized Range Distribution. The set of cofidence intervals with end points

MSFE
n

(Ti. — ;) £ Qo k. N—k foralliandj, i#j

is a collection of simultaneous0(1 — «)% confidence intervals for the differences

between the true treatment meams: 1.;. Each confidence interval that does not include
zero suggestg; # u; ata.

i) Unequal Sample sizes: The set of confidence intervals with endpoints

1 1 1 . L
(9. —y;.) £ %Qa7k7N_k¢MSE(— + —)foralliand j, i#]j

n; n;

is a collection of simultaneous0(1 — «)% confidence intervals for the differences

between the true treatment meaps;- ;. Similarly, each confidence interval that does
not include zero suggests # ; ata.

lll. Duncan’s Mdtiple Range Procedure:
Letn=n,, i
i) Linearly order the k sample means (smallest to largest).

i) Find the value of the least significant studentized rangtor p = 2,3,... k. Table X
denotes the number of degrees of freedom associated with the MSE.

iif) For eachp = 2,3,..., k find the shortest significant rang&5 E,. This value is given
by

(&) Equal sample sizes:

MSFE
n

SSR, =1,

(b) Unequal sample sizes:
SSR, ==r,vMSE
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iv) Consider any subset gfadjacent sample means. Lt — y; | denote the range of the
means in this subgroup. Henge# 1; if

(&) Equal sample sizes:
|§2 - g]| > SSRp

(b) Unequal sample sizes:

2n;m;

Ui — Y > SSR

|9i. — ;.| S »

v) Summaring your results by underlining any subset of adjacent samples means that are
not considered significantly different.

IV. Dunnett's Procedure:
Letn=n,i=1,...kandletd, ,, ., be a critical value for Dunnett’s procedure and let treatment
O be the control group. Dunnett’s procedure for determining significant differences between each
treatment and control at the joint significance levas given by:

Ho:,uozluiizl,...k

Hytpio > pi
po < pii=1,...K
fo 7# fii

Test statisticD, = \Y/% i=1,..k

Rejection Region:

Di > dy g k(n-1)

Di S _da,k,k(n—l) i = 1,. .. k
| Dz |Z da,k,k(n—l)
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20.6 The Randomized Complete Block Design

77
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20.7 Factorial Designs

And finally, we can combine the two factors and create a two-factor model

Yk = Mi+piter =12, j=12,...,r, k=1,2,...,n
More specifically, for our example this would be:
Yk = Mi+p;ter 0=1,2,....3, =12, k=1,2,...,5
Notice that Z3x5 represents the 30 observations. Finally, we can form the interaction model:
Yk = M+t tegr t=12,....3, =12, k=1,2,...,5
For our example recall interactions were of interest. The usual form of the interaction model is:
Yk = proi+Bi+abiten t=1,2,...,a, j=1,2,...,0, k=1,2,...,n

where theu corresponds to an overall mean,corresponds to the “effect” of the first factor, call it Factor A,
measured & levels,( is the “effect” of the second factor, factor B, measured kvels, andy/ corresponds

to the interaction term. The general form the analysis of variance table in this two-factor interaction model is
given below.

Degrees of Sum of

Source of Variation freedom squares Mean Square F-ratio

Factor A a-1 S§=bnza: @, -7.)° MS =324 f= o
i=1

Factor B b-1 sg:anzbj (7, -7.) MSp =34 [ =Rt
j=1

ABinteracion  (a-1)(b-1) SSs=nd ij (T~ B~ 75 470.) MSap=piiaiy [ = Mam
i=1j=1

Experimental Error  ab(n-1) S;%Za: Zb: Zn: (yijk - yij.) ’ MSE=%

i=1 j=1k=1
Total m-1 Sf‘r:i: Zb: Zn: (yijk - ?...)2

=1 j=1k=1

STUDENT EDITION OF STATISTIX

ANALYSIS OF VARIANCE TABLE FOR DISTANCE

SOURCE DF SS MS F P
PROP (A) 2 5980.47 2990.23 122.63 0.0000
CHARGE (B) 1 1414.53 1414.53 58.01 0.0000

A*B 2 61.2667 30.6333 1.26 0.3028
RESIDUAL 24 585.200 24.3833

TOTAL 29 8041.47



21 TABLES 79

21 Tables

21.1 Cumulative Standard Normal Distribution tables

Standard Normal Distribution

Pr{z <z}
Table entry for z is the probability
lying below z (ie. cumulative probabilities)

Priz<zl=vy

z

Table 16: Cumulative Standard Normal distribution probabilities
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 | 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 | 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 | 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 | 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 | 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-29 | 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 | 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 | 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 | 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5( 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 | 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 | 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 1 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1(0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 | 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 | 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 | 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 | 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 | 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5| 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 | 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 | 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 | 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1| 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 | 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-09|0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 | 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 | 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 | 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5(0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4 | 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3(0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 | 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 | 04602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.0 | 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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Standard Normal Distribution

Pr{z <z}
Priz=z1=v Table entry for z is the probability
- lying below z (ie. cumulative probabilities)

z

Table 16: Standard Normal distribution probabilities continued
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 05793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 09032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 09192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
15 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 09452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 09554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 09641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
19 09713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
20 09772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
21 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 09861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
24 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
25 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
26 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 09974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
29 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Pr{Z < z} - Table entry is the critical value below which probability p lies under the cufve

Table 17: Standard Normal Distribution Quantiles

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

0.000
0.025
0.050
0.075
0.100
0.126
0.151
0.176
0.202
0.228
0.253
0.279
0.305
0.332
0.358
0.385
0.412
0.440
0.468
0.496
0.524
0.553
0.583
0.613
0.643
0.674
0.706
0.739
0.772
0.806
0.842
0.878
0.915
0.954
0.994
1.036
1.080
1.126
1.175
1.227
1.282
1.341
1.405
1.476
1.555
1.645
1.751
1.881
2.054
2.326

0.003
0.028
0.053
0.078
0.103
0.128
0.154
0.179
0.204
0.230
0.256
0.282
0.308
0.335
0.361
0.388
0.415
0.443
0.470
0.499
0.527
0.556
0.586
0.616
0.646
0.678
0.710
0.742
0.776
0.810
0.845
0.882
0.919
0.958
0.999
1.041
1.085
1131
1.180
1.232
1.287
1.347
1.412
1.483
1.563
1.655
1.762
1.896
2.075
2.366

0.005
0.030
0.055
0.080
0.105
0.131
0.156
0.181
0.207
0.233
0.259
0.285
0.311
0.337
0.364
0.391
0.418
0.445
0.473
0.502
0.530
0.559
0.589
0.619
0.650
0.681
0.713
0.745
0.779
0.813
0.849
0.885
0.923
0.962
1.003
1.045
1.089
1.136
1.185
1.237
1.293
1.353
1.419
1.491
1572
1.665
1.774
1.911
2.097
2.409

0.008
0.033
0.058
0.083
0.108
0.133
0.159
0.184
0.210
0.235
0.261
0.287
0.313
0.340
0.366
0.393
0.421
0.448
0.476
0.504
0.533
0.562
0.592
0.622
0.653
0.684
0.716
0.749
0.782
0.817
0.852
0.889
0.927
0.966
1.007
1.049
1.094
1.141
1.190
1.243
1.299
1.359
1.426
1.499
1.580
1.675
1.787
1.927
2.120
2.457

0.010
0.035
0.060
0.085
0.111
0.136
0.161
0.187
0.212
0.238
0.264
0.290
0.316
0.342
0.369
0.396
0.423
0.451
0.479
0.507
0.536
0.565
0.595
0.625
0.656
0.687
0.719
0.752
0.786
0.820
0.856
0.893
0.931
0.970
1.011
1.054
1.098
1.146
1.195
1.248
1.305
1.366
1.433
1.506
1.589
1.685
1.799
1.943
2.144
2.512

0.013
0.038
0.063
0.088
0.113
0.138
0.164
0.189
0.215
0.240
0.266
0.292
0.319
0.345
0.372
0.399
0.426
0.454
0.482
0.510
0.539
0.568
0.598
0.628
0.659
0.690
0.722
0.755
0.789
0.824
0.860
0.896
0.935
0.974
1.015
1.058
1.103
1.150
1.200
1.254
1.311
1.372
1.440
1.514
1.598
1.695
1.812
1.960
2.170
2.576

0.015
0.040
0.065
0.090
0.116
0.141
0.166
0.192
0.217
0.243
0.269
0.295
0.321
0.348
0.375
0.402
0.429
0.457
0.485
0.513
0.542
0.571
0.601
0.631
0.662
0.693
0.726
0.759
0.793
0.827
0.863
0.900
0.938
0.978
1.019
1.063
1.108
1.155
1.206
1.259
1.317
1.379
1.447
1.522
1.607
1.706
1.825
1.977
2.197
2.652

0.018
0.043
0.068
0.093
0.118
0.143
0.169
0.194
0.220
0.246
0.272
0.298
0.324
0.350
0.377
0.404
0.432
0.459
0.487
0.516
0.545
0.574
0.604
0.634
0.665
0.697
0.729
0.762
0.796
0.831
0.867
0.904
0.942
0.982
1.024
1.067
1.112
1.160
1.211
1.265
1.323
1.385
1.454
1.530
1.616
1.717
1.838
1.995
2.226
2.748

0.020
0.045
0.070
0.095
0.121
0.146
0.171
0.197
0.222
0.248
0.274
0.300
0.327
0.353
0.380
0.407
0.434
0.462
0.490
0.519
0.548
0.577
0.607
0.637
0.668
0.700
0.732
0.765
0.800
0.834
0.871
0.908
0.946
0.986
1.028
1.071
1.117
1.165
1.216
1.270
1.329
1.392
1.461
1.538
1.626
1.728
1.852
2.014
2.257
2.878

0.023
0.048
0.073
0.098
0.123
0.148
0.174
0.199
0.225
0.251
0.277
0.303
0.329
0.356
0.383
0.410
0.437
0.465
0.493
0.522
0.550
0.580
0.610
0.640
0.671
0.703
0.736
0.769
0.803
0.838
0.874
0.912
0.950
0.990
1.032
1.076
1.122
1.170
1.221
1.276
1.335
1.398
1.468
1.546
1.635
1.739
1.866
2.034
2.290
3.090
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Table 18: Standard

Normal Critical Values

[0

Zy

0.1
0.05
0.025
0.01
0.005
0.001
0.0005
0.0001
0.00009
0.00008
0.00007
0.00006
0.00005
0.00004
0.00003
0.00002
0.00001

1.2816
1.6449
1.96
2.3263
2.5758
3.0902
3.2905
3.719
3.7455
3.775
3.8082
3.8461
3.8906
3.9444
4.0128
4.1075

4.2649
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21.2 t-distribution“tgth)ulﬂgs

Pr{T >t*}
Table entry is the critical valug
above which probability
lies under the curve

Table 19: t-distribution critical values

e}
df 0.4 0.3 0.25 0.2 0.15 0.1 0.05 0.025
0.325 0.727 1.000 1376 1963 3.078 6.314 12.706
0.289 0.617 0816 1.061 1386 1886 2920 4.303
0.277 0584 0.765 0978 1250 1638 2353 3.182
0.271 0569 0.741 0941 1190 1533 2132 2.776
0.267 0.559 0.727 0.920 1.156 1476 2.015 2571
0.265 0.553 0.718 0.906 1.134 1440 1.943  2.447
0.263 0.549 0.711 0.896 1.119 1415 1895 2.365
0.262 0.546 0.706 0.889 1.108 1.397 1.860 2.306
0.261 0.543 0.703 0.883 1.100 1.383 1.833 2.262
10| 0.260 0.542 0.700 0.879 1.093 1.372 1.812 2.228
11| 0.260 0.540 0.697 0.876 1.088 1.363 1.796 2.201
12| 0.259 0539 0.695 0873 1.083 1.356 1.782 2.179
13| 0259 0538 0.694 0870 1.079 1350 1771  2.160
14| 0.258 0.537 0.692 0.868 1.076 1.345 1.761 2.145
15| 0.258 0536 0.691 0.866 1.074 1.341 1.753 2131
16 | 0.258 0535 0.690 0.865 1.071 1.337 1.746 2.120
17 | 0.257 0534 0.689 0.863 1.069 1.333 1.740 2.110
18 | 0.257 0.534 0.688 0.862 1.067 1.330 1.734 2101
19| 0.257 0533 0.688 0.861 1.066 1.328 1.729  2.093
20 | 0.257 0.533 0.687 0.860 1.064 1.325 1.725 2.086
21| 0.257 0.532 0.686 0.859 1.063 1.323 1.721  2.080
221 0.256 0.532 0.686 0.858 1.061 1.321 1.717 2.074
23] 0.256 0.532 0.685 0.858 1.060 1.319 1.714 2.069
241 0.256 0.531 0.685 0.857 1.059 1.318 1.711 2.064
251 0.256 0.531 0.684 0.856 1.058 1.316 1.708 2.060
26 | 0.256 0531 0.684 0.856 1.058 1.315 1.706 2.056
27 1 0.256 0.531 0.684 0.855 1.057 1.314 1.703 2.052
28 | 0.256 0.530 0.683 0.855 1.056 1.313 1.701  2.048
29 | 0.256 0.530 0.683 0.854 1.055 1.311 1.699 2.045
30| 0.256 0.530 0.683 0.854 1.055 1.310 1.697 2.042
35| 0.255 0529 0.682 0.852 1.052 1.306 1.690 2.030
40 | 0.255 0.529 0.681 0.851 1.050 1.303 1.684 2.021
45| 0.255 0.528 0.680 0.850 1.049 1.301 1.679 2.014
50 | 0.255 0.528 0.679 0.849 1.047 1.299 1.676 2.009
55| 0.255 0.527 0.679 0.848 1.046 1.297 1.673 2.004
60 | 0.254 0.527 0.679 0.848 1.046 1.296 1.671  2.000
65| 0.254 0.527 0.678 0.847 1.045 1.295 1.669 1.997
70 | 0.254 0.527 0.678 0.847 1.044 1.294 1.667 1.994
751 0.254 0527 0.678 0.846 1.044 1.293 1.665 1.992
80 | 0.254 0.526 0.678 0.846 1.043 1.292 1.664 1.990
85| 0.254 0.526 0.677 0.846 1.043 1.292 1.663 1.988
90 | 0.254 0.526 0.677 0.846 1.042 1.291 1.662 1.987
95| 0.254 0.526 0.677 0.845 1.042 1.291 1.661 1.985
100 | 0.254 0.526 0.677 0.845 1.042 1.290 1.660 1.984
105 | 0.254 0.526 0.677 0.845 1.042 1.290 1.659 1.983
110 | 0.254 0.526 0.677 0.845 1.041 1.289 1.659 1.982
115 | 0.254 0.526 0.677 0.845 1.041 1.289 1.658 1.981
120 | 0.254 0.526 0.677 0.845 1.041 1.289 1.658 1.980
1000 | 0.253 0.525 0.675 0.842 1.037 1.282 1.646 1.960
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Pr{T >t}
Table entry is the critical valug
above which probability
lies under the curve

Table 19: t-distribution critical values continued

e}
df 0.02 0.01 0.005 0.0025 0.001 0.0005 0.0001
15890 31.821 63.657 127.300 318.309 636.600 3183.099
4.849  6.965 9.925 14.090 22.327  31.600 70.700
3.482 4541 5.841 7.453 10.215 12.920 22.204
2999 3.747 4.604 5.598 7.173 8.610 13.034
2.757 3.365  4.032 4773 5.893 6.869 9.678
2.612 3.143 3.707 4.317 5.208 5.959 8.025
2517 2998  3.499 4.029 4.785 5.408 7.063
2449 2896  3.355 3.833 4.501 5.041 6.442
2.398 2.821  3.250 3.690 4.297 4.781 6.010
10| 2359 2764 3.169 3.581 4.144 4.587 5.694
11| 2328 2718 3.106 3.497 4.025 4.437 5.453
12| 2303 2681  3.055 3.428 3.930 4.318 5.263
13| 2282 2650 3.012 3.372 3.852 4.221 5111
14| 2.264 2.624 2.977 3.326 3.787 4.140 4.985
15| 2249 2.602 2.947 3.286 3.733 4.073 4.880
16 | 2.235 2.583 2.921 3.252 3.686 4.015 4,791
17 | 2224 2567 2.898 3.222 3.646 3.965 4.714
18 | 2.214 2552 2.878 3.197 3.610 3.922 4.648
19| 2205 2539 2.861 3.174 3.579 3.883 4.590
20 | 2197 2528 2.845 3.153 3.552 3.850 4.539
21| 2189 2518 2.831 3.135 3.527 3.819 4.493
22| 2183  2.508 2.819 3.119 3.505 3.792 4.452
23| 2177  2.500 2.807 3.104 3.485 3.768 4.415
24 | 2172  2.492 2.797 3.091 3.467 3.745 4.382
25| 2167  2.485 2.787 3.078 3.450 3.725 4.352
26 | 2162  2.479 2.779 3.067 3.435 3.707 4.324
27 | 2158  2.473 2.771 3.057 3.421 3.690 4.299
28 | 2154  2.467 2.763 3.047 3.408 3.674 4.275
29 | 2150 2.462 2.756 3.038 3.396 3.659 4.254
30 | 2147  2.457 2.750 3.030 3.385 3.646 4.234
35| 2133  2.438 2.724 2.996 3.340 3.591 4.153
40 | 2.123  2.423 2.704 2971 3.307 3.551 4.094
45| 2115 2412 2.690 2.952 3.281 3.520 4.049
50 | 2109  2.403 2.678 2.937 3.261 3.496 4.014
55| 2104 2.396 2.668 2.925 3.245 3.476 3.986
60 | 2.099 2.390 2.660 2.915 3.232 3.460 3.962
65| 2.096 2.385 2.654 2.906 3.220 3.447 3.942
70 | 2.093 2381 2.648 2.899 3.211 3.435 3.926
75| 2.090 2377 2.643 2.892 3.202 3.425 3.911
80| 2.088 2374 2.639 2.887 3.195 3.416 3.899
85| 2086 2371 2.635 2.882 3.189 3.409 3.888
90 | 2.084  2.368 2.632 2.878 3.183 3.402 3.878
95| 2.082 2.366 2.629 2.874 3.178 3.396 3.869
100 | 2.081 2.364 2.626 2.871 3.174 3.391 3.862
105 | 2.080 2.362 2.623 2.868 3.170 3.386 3.855
110 | 2.078 2.361 2.621 2.865 3.166 3.381 3.848
115 | 2.077  2.359 2.619 2.862 3.163 3.377 3.843
120 | 2.076  2.358 2.617 2.860 3.160 3.374 3.837
1000 | 2.056  2.330 2.581 2.813 3.098 3.300 3.733
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21.3 Tables of they?-distribution

Pr{x? > 22} - Table entry is the critical value? above which probability lies under the curve

(upper tail probabilities)

Table 20: Quantiles of the?- distribution

[0

v .9999 .9995 .999 .995 .99 975 .95 .90
1| 1.57E-08 3.93E-07 1.57E-06 3.93E-05 0.0002 0.0010 0.0039 0.0158
2| 0.0002 0.0010 0.0020 0.0100 0.0201 0.0506 0.1026 0.2107
3| 0.0052 0.0153 0.0243 0.0717 0.1148 0.2158 0.3518 0.5844
4 | 0.0284 0.0639 0.0908 0.2070 0.2971 0.4844  0.7107 1.0636
5| 0.0822 0.1581 0.2102 0.4117 0.5543 0.8312 1.1455 1.6103
6| 01724 0.2994 0.3811 0.6757 0.8721 1.2373 1.6354 2.2041
7| 0.3000 0.4849 0.5985 0.9893 1.2390 1.6899 2.1673 2.8331
8 | 0.4636 0.7104 0.8571 1.3444 1.6465 2.1797 2.7326 3.4895
9| 0.6608 0.9717 1.1519 1.7349 2.0879 2.7004 3.3251 4.1682
10 | 0.8889 1.2650 1.4787 2.1559 25582 3.2470  3.9403 4.8652
11| 1.1453 1.5868 1.8339 2.6032 3.0535 3.8157 4.5748 5.5778
12 | 1.4275 1.9344 2.2142 3.0738 3.5706  4.4038 5.2260 6.3038
13| 1.7333 2.3051 2.6172 3.5650 41069 5.0088 5.8919 7.0415
14| 2.0608 2.6967 3.0407 4.0747 46604 5.6287 6.5706 7.7895
15| 2.4082 3.1075 3.4827 4.6009 52293 6.2621  7.2609 8.5468
16 | 2.7739 3.5358 3.9416 5.1422 5.8122 6.9077 7.9616 9.3122
17 | 3.1567 3.9802 4.4161 5.6972 6.4078 7.5642 8.6718 10.0852
18 | 3.5552 4.4394 4.9048 6.2648 7.0149 8.2307 9.3905 10.8649
19| 3.9683 4.9123 5.4068 6.8440 7.6327 8.9065 10.1170 11.6509
20 | 4.3952 5.3981 5.9210 7.4338 8.2604 9.5908 10.8508 12.4426
21| 4.8348 5.8957 6.4467 8.0337 8.8972 10.2829 11.5913 13.2396
22 | 5.2865 6.4045 6.9830 8.6427 9.5425 10.9823 12.3380 14.0415
23 | 5.7494 6.9237 7.5292 9.2604  10.1957 11.6886 13.0905 14.8480
24 | 6.2230 7.4527 8.0849 90.8862 10.8564 12.4012 13.8484 15.6587
25| 6.7066 7.9910 8.6493 10.5197 11.5240 13.1197 14.6114 16.4734
26 | 7.1998 8.5379 9.2221 11.1602 12.1981 13.8439 15.3792 17.2919
27| 7.7019 9.0932 9.8028 11.8076 12.8785 14.5734 16.1514 18.1139
28 | 8.2126 9.6563 10.3909 12.4613 13.5647 15.3079 16.9279 18.9392
29 | 8.7315 10.2268 10.9861  13.1211 14.2565 16.0471 17.7084 19.7677
30| 9.2581 10.8044 11.5880  13.7867 14.9535 16.7908 18.4927 20.5992
35| 11.9957 13.7875 14.6878 17.1918 18.5089 20.5694 22.4650 24.7967
40 | 14.8831 16.9062 17.9164 20.7065 22.1643 24.4330 26.5093 29.0505
45| 17.8940 20.1366 21.2507 24.3110 25.9013 28.3662 30.6123 33.3504
50 | 21.0093 23.4610 24.6739 27.9907 29.7067 32.3574 34.7643 37.6886
55| 24.2141 26.8658 28.1731 31.7348 33.5705 36.3981 38.9580 42.0596
60 | 27.4969 30.3405 31.7383 35.5345 37.4849 40.4817 43.1880 46.4589
65| 30.8483 33.8767 35.3616 39.3831 41.4436 44.6030 47.4496 50.8829
70 | 34.2607 37.4674 39.0364 43.2752 45.4417 48.7576 51.7393 55.3289
75| 37.7279 41.1072 427573 47.2060 49.4750 52.9419 56.0541 59.7946
80 | 41.2445 44.7910 46.5199 51.1719 53.5401 57.1532 60.3915 64.2778
85| 44.8060 485151 50.3203 55.1696 57.6339 61.3888 64.7494 68.7772
90 | 48.4087 52.2758 54.1552 59.1963 61.7541 65.6466 69.1260 73.2911
95| 52.0492 56.0702 58.0220 63.2496 65.8984 69.9249 73.5198 77.8184
100 | 55.7246  59.8957 61.9179 67.3276 70.0649 74.2219 77.9295 82.3581
105 | 59.4323 63.7499 65.8411 71.4282 74.2520 78.5364 82.3537 86.9093
110 | 63.1701 67.6310 69.7894 755500 78.4583 82.8671 86.7916 91.4710
115| 66.9360 71.5371 73.7613 79.6916 82.6824 87.2128 91.2422 96.0427
120 | 70.7281 75.4665 77.7551 83.8516 86.9233 91.5726 95.7046 100.6236
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Pr{x? > 2%} - Table entry is the critical value* above which probability lies under the curve
(upper tail probabilities)
Table 20: Quantiles of thg?- distribution continued
«
v .10 .05 .025 .01 .005 .001 .0005 .0001
1| 2.7055 3.8415 5.0239 6.6349 7.8794 10.8276 12.1157 15.1367
2| 4.6052 5.9915 7.3778 9.2103 10.5966 13.8155 15.2018 18.4207
3| 6.2514 7.8147 9.3484 11.3449 12.8382 16.2662 17.7300 21.1075
4| 7.7794 9.4877  11.1433 13.2767 14.8603 18.4668 19.9974 23.5127
5| 9.2364 11.0705 12.8325 15.0863 16.7496  20.5150 22.1053  25.7448
6 | 10.6446 125916 14.4494 16.8119 18.5476 22.4577 24.1028 27.8563
7| 12.0170 14.0671 16.0128 18.4753 20.2777 24.3219 26.0178 29.8775
8 | 13.3616 15.5073 17.5345 20.0902 21.9550 26.1245 27.8680 31.8276
9 | 14.6837 16.9190 19.0228 21.6660 23.5894  27.8772 29.6658  33.7199
10| 15.9872 18.3070 20.4832 23.2093 25.1882 29.5883 31.4198 35.5640
11| 17.2750 19.6751 21.9200 24.7250 26.7568  31.2641 33.1366  37.3670
12 | 18.5493 21.0261 23.3367 26.2170 28.2995  32.9095 34.8213  39.1344
13| 19.8119 22.3620 24.7356 27.6882 29.8195  34.5282 36.4778  40.8707
14 | 21.0641  23.6848 26.1189 29.1412 31.3193  36.1233 38.1094 42.5793
15| 22.3071  24.9958 27.4884  30.5779 32.8013 37.6973 39.7188  44.2632
16 | 23.5418 26.2962 28.8454  31.9999 34.2672 39.2524  41.3081  45.9249
17 | 24.7690 27.5871 30.1910  33.4087 35.7185 40.7902 42.8792 47.5664
18 | 25.9894  28.8693 315264 34.8053 37.1565 42.3124 44.4338 49.1894
19| 27.2036  30.1435 32.8523 36.1909 38.5823 43.8202 459731 50.7955
20| 28.4120 31.4104 34.1696 37.5662 39.9968 45.3147 47.4985 52.3860
21| 29.6151 32.6706 35.4789  38.9322 41.4011 46.7970 49.0108 53.9620
22| 30.8133 33.9244 36.7807 40.2894  42.7957  48.2679 50.5111 55.5246
23| 32.0069 35.1725 38.0756 41.6384 44.1813 49.7282 52.0002 57.0746
24| 33.1962  36.4150 39.3641 429798 455585 51.1786 53.4788 58.6130
25| 34.3816 37.6525 40.6465 44.3141 46.9279 52.6197 54.9475 60.1403
26 | 35,5632 38.8851 41.9232 45.6417 48.2899 54.0520 56.4069 61.6573
27 | 36.7412  40.1133  43.1945 46.9629 49.6449 55.4760 57.8576  63.1645
28 | 379159 413371 444608 48.2782 50.9934 56.8923 59.3000 64.6624
29| 39.0875 425570 45.7223 495879 52.3356 58.3012 60.7346 66.1517
30| 40.2560 43.7730 46.9792 50.8922 53.6720 59.7031 62.1619 67.6326
35| 46.0588 49.8018 53.2033 57.3421 60.2748 66.6188 69.1986 74.9262
40 | 51.8051 55.7585 59.3417 63.6907 66.7660 73.4020 76.0946 82.0623
45 | 57.5053 61.6562 65.4102 69.9568 73.1661 80.0767 82.8757 89.0695
50| 63.1671 67.5048 71.4202 76.1539 79.4900 86.6608 89.5605 95.9687
55| 68.7962  73.3115 77.3805 82.2921 85.7490 93.1675 96.1632 102.7758
60| 74.3970 79.0819 83.2977 88.3794 919517 99.6072 102.6948 109.5029
65| 79.9730 84.8206 89.1771  94.4221 98.1051 105.9881 109.1639 116.1599
70| 85.5270 90.5312 95.0232 100.4252 104.2149 112.3169 1155776 122.7547
75| 91.0615 96.2167 100.8393 106.3929 110.2856 118.5991 121.9418 129.2937
80| 96.5782 101.8795 106.6286 112.3288 116.3211 124.8392 128.2613 135.7825
85| 102.0789 107.5217 112.3934 118.2357 122.3246 131.0412 134.5403 142.2257
90 | 107.5650 113.1453 118.1359 124.1163 128.2989 137.2084 140.7823 148.6273
95| 113.0377 118.7516 123.8580 129.9727 134.2465 143.3435 146.9903 154.9906
100 | 118.4980 124.3421 129.5612 135.8067 140.1695 149.4493 153.1670 161.3187
105 | 123.9469 129.9180 135.2470 141.6201 146.0696 155.5277 159.3146 167.6140
110 | 129.3851 135.4802 140.9166 147.4143 151.9485 161.5807 165.4353 173.8791
115 | 134.8135 141.0297 146.5711 153.1906 157.8076 167.6102 171.5309 180.1158
120 | 140.2326 146.5674 152.2114 158.9502 163.6482 173.6174 177.6029 186.3260
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21.4 F-distribution tables
Table E: F-critical values
Degrees of freedom in the numerator
DFD p 1 2 3 4 5 6 7 8

0.1| 39.86 495 53.59 55.83 57.24 58.2 58.91 59.44 59.86
0.05| 161.45 199.5 21571 22458 230.16 233.99 236.77 238.88 240.54

1 0.025| 647.79 799.5 864.16 899.58 921.85 937.11 948.22 956.66 963.28
0.01| 4052.2 49995 5403.4 5624.6 5763.6 5859 5928.4 5981.1 60225
0.001| 405284 500000 540379 562500 576405 585937 592873 598144 602284
0.1 8.53 9 9.16 9.24 9.29 9.33 9.35 9.37 9.38
0.05| 18.51 19 19.16 19.25 19.3 19.33 19.35 19.37 19.38

2 0.025| 3851 39 39.17 39.25 39.3 39.33 39.36 39.37 39.39
0.01 98.5 99 99.17 99.25 99.3 99.33 99.36 99.37 99.39
0.001| 9985 999 999.17 999.25 999.3 999.33 999.36 999.37 999.39
0.1 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24
0.05| 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

3 0.025| 17.44 16.04 15.44 15.1 14.88 14.73 14.62 14.54 14.47
0.01| 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
0.001| 167.03 1485 141.11 137.1 13458 132.85 131.58 130.62 129.86
0.1 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

4 0.025| 12.22 10.65 9.98 9.6 9.36 9.2 9.07 8.98 8.90
0.01 21.2 18 16.69 15.98 15.52 15.21 14.98 14.8 14.66
0.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49 48.47
0.1 4.06 3.78 3.62 3.52 3.45 3.4 3.37 3.34 3.32
0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

5 0.025| 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68
0.01| 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
0.001| 47.18 37.12 33.2 31.09 29.75 28.83 28.16 27.65 27.24
0.1 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
0.05 5.99 5.14 4.76 4.53 4.39 4.28 421 4.15 4.10

6 0.025 8.81 7.26 6.6 6.23 5.99 5.82 5.7 5.6 5.52
0.01| 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7.98
0.001| 35.51 27 23.7 21.92 20.8 20.03 19.46 19.03 18.69
0.1 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72
0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

7 0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.9 4.82
0.01| 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
0.001| 29.25 21.69 18.77 17.2 16.21 15.52 15.02 14.63 14.33
0.1 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56
0.05 5.32 4.46 4.07 3.84 3.69 3.58 35 3.44 3.39

8 0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36
0.01| 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
0.001 2541 18.49 15.83 14.39 13.48 12.86 124 12.05 11.77
0.1 3.36 3.01 2.81 2.69 2.61 2.55 251 2.47 2.44
0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

9 0.025 7.21 571 5.08 4.72 4.48 4.32 4.2 4.1 4.03
0.01| 10.56 8.02 6.99 6.42 6.06 5.8 5.61 5.47 5.35
0.001 22.86 16.39 13.9 12.56 11.71 11.13 10.7 10.37 10.11
0.1 3.29 2.92 2.73 2.61 2.52 2.46 241 2.38 2.35
0.05 4.96 4.1 3.71 3.48 3.33 3.22 3.14 3.07 3.02
10 0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78
0.01| 10.04 7.56 6.55 5.99 5.64 5.39 5.2 5.06 4.94
0.001| 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.2 8.96
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Table E: F-critical values
Degrees of freedom in the numerator
DFD p 10 12 15 20 25 30 40 50 60 120 1000
0.1 60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79 63.06 63.30
0.05| 241.88 24391 24595 248.01 249.26 250.1 251.14 251.77 252.2 253.25 254.19
1 0.025| 968.63 976.71 984.87 993.1 998.08 1001.4 1005.6 1008.1 1009.8 1014 1017.7
0.01| 6055.8 6106.3 6157.3 6208.7 6239.8 6260.6 6286.8 6302.5 6313 6339.4 6362.7
0.001| 605621 610668 615764 620908 624017 626099 628712 630285 631337 633972 636301
0.1 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.49
0.05 19.4 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48 19.49 19.49
2 0.025 394 3941 39.43 39.45 39.46 39.46 39.47 39.48 39.48 39.49 39.50
0.01 99.4 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48 99.49 99.50
0.001| 999.4 999.42 999.43 99945 999.46 999.47 999.47 999.48 999.48 999.49 999.50
0.1 5.23 5.22 5.2 5.18 5.17 5.17 5.16 5.15 5.15 5.14 5.13
0.05 8.79 8.74 8.7 8.66 8.63 8.62 8.59 8.58 8.57 8.55 8.53
3 0.025 14.42 14.34 14.25 14.17 14.12 14.08 14.04 14.01 13.99 13.95 13.91
0.01| 27.23 27.05 26.87 26.69 26.58 26.5 26.41 26.35 26.32 26.22 26.14
0.001| 129.25 128.32 127.37 126.42 125.84 125.45 12496 12466 124.47 12397 123.53
0.1 3.92 3.9 3.87 3.84 3.83 3.82 3.8 3.8 3.79 3.78 3.76
0.05 5.96 5.91 5.86 5.8 5.77 5.75 5.72 5.7 5.69 5.66 5.63
4 0.025 8.84 8.75 8.66 8.56 8.5 8.46 8.41 8.38 8.36 8.31 8.26
0.01 14.55 14.37 14.2 14.02 13.91 13.84 13.75 13.69 13.65 13.56 13.47
0.001 48.05 47.41 46.76 46.1 45.7 45.43 45.09 44.88 44.75 44 .4 44.09
0.1 3.3 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.12 3.11
0.05 4.74 4.68 4.62 4.56 452 45 4.46 4.44 4.43 4.4 4.37
5 0.025 6.62 6.52 6.43 6.33 6.27 6.23 6.18 6.14 6.12 6.07 6.02
0.01 10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.2 9.11 9.03
0.001| 26.92 26.42 25.91 25.39 25.08 24.87 24.6 24.44 24.33 24.06 23.82
0.1 2.94 2.9 2.87 2.84 2.81 2.8 2.78 2.77 2.76 2.74 2.72
0.05 4.06 4 3.94 3.87 3.83 3.81 3.77 3.75 3.74 3.7 3.67
6 0.025 5.46 5.37 5.27 5.17 511 5.07 5.01 4,98 4.96 4.9 4.86
0.01 7.87 7.72 7.56 7.4 7.3 7.23 7.14 7.09 7.06 6.97 6.89
0.001 18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21 15.98 15.77
0.1 2.7 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51 2.49 2.47
0.05 3.64 3.57 3.51 3.44 3.4 3.38 3.34 3.32 3.3 3.27 3.23
7 0.025 4.76 4.67 4.57 4.47 4.4 4.36 431 4.28 4.25 4.2 4.15
0.01 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82 5.74 5.66
0.001| 14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.2 12.12 11.91 11.72
0.1 2.54 25 2.46 2.42 2.4 2.38 2.36 2.35 2.34 2.32 2.30
0.05 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01 2.97 2.93
8 0.025 4.3 4.2 4.1 4 3.94 3.89 3.84 3.81 3.78 3.73 3.68
0.01 5.81 5.67 5.52 5.36 5.26 5.2 5.12 5.07 5.03 4.95 4.87
0.001 11.54 11.19 10.84 10.48 10.26 10.11 9.92 9.8 9.73 9.53 9.36
0.1 2.42 2.38 2.34 2.3 2.27 2.25 2.23 2.22 2.21 2.18 2.16
0.05 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.8 2.79 2.75 2.71
9 0.025 3.96 3.87 3.77 3.67 3.6 3.56 3.51 3.47 3.45 3.39 3.34
0.01 5.26 5.11 4.96 4.81 471 4.65 457 452 4.48 4.4 4.32
0.001 9.89 9.57 9.24 8.9 8.69 8.55 8.37 8.26 8.19 8 7.84
0.1 2.32 2.28 2.24 2.2 217 2.16 2.13 212 211 2.08 2.06
0.05 2.98 2.91 2.85 2.77 2.73 2.7 2.66 2.64 2.62 2.58 2.54
10 0.025 3.72 3.62 3.52 3.42 3.35 3.31 3.26 3.22 3.2 3.14 3.09
0.01 4.85 471 4.56 4.41 431 4.25 4.17 412 4.08 4 3.92
0.001 8.75 8.45 8.13 7.8 7.6 7.47 7.3 7.19 7.12 6.94 6.78




21 TABLES

Table E: F-critical values

Degrees of freedom in the numerator

DFD  p 1 2 3 4 5 6 7 8 9
0.1] 323 286 266 254 245 239 234 23 227
0.05| 484 398 359 336 32 309 301 295 290
11 0.025| 672 526 463 428 404 388 376 3.66 3.59
001| 965 721 622 567 532 507 489 474 463
0.001| 19.69 13.81 1156 10.35 9.58 9.05 8.66 8.35 8.12
0.1| 318 281 261 248 239 233 228 224 221
005| 475 389 349 326 311 3 291 285 280
12 0.025| 655 51 447 412 3.89 373 361 351 3.44
0.01| 933 693 595 541 506 482 464 45 4.39
0.001| 1864 1297 108 9.63 8.89 8.38 8 7.71 7.8
0.1| 314 276 256 243 235 228 223 22 216
005| 467 381 341 3.18 3.03 292 283 277 271
13 0.025| 6.41 497 435 4 377 36 348 339 331
001| 907 67 574 521 486 462 444 43 4.19
0.001| 17.82 1231 1021 9.07 835 7.86 7.49 7.21 6.98
01| 31 273 252 239 231 224 219 215 212
005| 46 374 334 311 296 285 276 2.7 265
14 0.025| 6.3 486 424 389 366 35 338 329 321
001| 886 651 556 504 469 446 428 414 403
0.001| 17.14 11.78 973 862 7.92 744 7.08 6.8 6.58
0.1| 3.07 2.7 249 236 227 221 216 212 2.09
005| 454 368 329 306 29 279 271 264 259
15 0.025| 6.2 477 415 38 358 341 329 32 312
001| 868 636 542 489 456 432 414 4 3.89
0.001| 1659 11.34 934 825 7.57 7.09 6.74 6.47 6.26
0.1| 3.05 267 246 233 224 218 213 209 206
005| 449 363 324 301 285 274 266 259 254
16 0.025| 6.12 469 408 373 35 334 322 312 3.05
001| 853 623 529 477 444 42 403 3.89 3.78
0.001| 16.12 1097 901 7.94 727 68 6.46 6.19 598
0.1| 3.03 264 244 231 222 215 21 206 203
005| 445 359 32 296 281 27 261 255 249
17 0.025| 6.04 462 401 3.66 3.44 328 316 3.06 2.98
001| 84 611 519 467 434 41 393 379 3.68
0.001| 15.72 1066 873 7.68 7.02 656 6.22 596 5.75
0.1]| 301 262 242 229 22 213 208 204 200
005| 441 355 3.16 293 277 266 258 251 2.46
18 0.025| 598 456 395 361 338 322 31 301 293
001| 829 601 509 458 425 401 384 371 3.60
0.001| 15.38 10.39 849 7.46 681 635 6.02 576 556
01| 299 261 24 227 218 211 206 202 1.98
0.05| 438 352 313 2.9 274 263 254 248 2.42
19 0.025| 592 451 39 356 333 3.17 305 296 2.88
001| 818 593 501 45 417 394 377 3.63 3.52
0.001| 15.08 10.16 828 7.27 6.62 6.18 585 559 539
0.1]| 297 259 238 225 216 209 204 2 196
005| 435 349 31 287 271 26 251 245 239
20 0.025| 587 446 3.86 351 329 313 301 291 284
001| 81 585 494 443 41 387 37 356 3.46
0.001| 1482 995 81 7.1 6.46 6.02 569 544 524
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Table E: F-critical values

Degrees of freedom in the numerator

DFD p 10 12 15 20 25 30 40 50 60 120 1000
01|225 221 217 212 21 208 205 204 203 2 198
005|285 279 272 265 26 257 253 251 249 245 241

11 0.025| 3.53 343 333 323 316 312 3.06 3.03 3 294 289
001|454 44 425 41 401 394 386 381 378 3.69 361
0.001| 792 763 732 701 681 668 652 642 6.35 6.18 6.02
01219 215 21 206 203 201 199 197 196 193 1091
005|275 269 262 254 25 247 243 24 238 234 230

12 0.025| 3.37 3.28 3.18 3.07 301 296 291 287 285 279 273
001| 43 416 401 386 376 3.7 362 357 354 345 337
0.001| 7.29 7 671 64 622 6.09 593 583 576 559 544
01214 21 205 201 198 19 193 192 19 188 1.85
005|267 26 253 246 241 238 234 231 23 225 221

13 0.025| 3.25 3.15 3.05 295 288 284 278 274 272 266 260
001| 41 396 382 366 357 351 343 338 334 325 3.18
0.001| 6.8 6,52 6.23 593 575 563 547 537 53 514 499
01| 21 205 201 196 193 191 189 187 186 1.83 1.80
005| 2.6 253 246 239 234 231 227 224 222 218 214

14 0.025| 3.15 3.05 295 284 278 273 267 264 261 255 250
001|394 38 366 351 341 335 327 322 318 3.09 3.02
0.001| 64 6.13 585 556 538 525 51 5 494 477 462
01206 202 197 192 189 187 185 183 182 179 1.76
005|254 248 24 233 228 225 22 218 216 211 207

15 0.025| 3.06 296 2.86 276 269 264 259 255 252 246 240
0.01| 3.8 367 352 337 328 321 313 3.08 3.05 29 288
0.001| 6.08 5.81 554 525 507 495 48 47 464 447 433
01203 199 194 189 186 184 181 179 178 1.75 1.72
005|249 242 235 228 223 219 215 212 211 206 2.02

16 0.025| 299 289 279 268 261 257 251 247 245 238 232
001|369 355 341 326 316 31 3.02 297 293 284 276
0.001| 5.81 555 527 499 482 47 454 445 439 423 4.08
0.1 2 19 191 186 183 181 178 176 175 172 1.69
005|245 238 231 223 218 215 21 208 206 201 197

17 0.025| 292 282 272 262 255 25 244 241 238 232 226
0.01| 359 346 331 316 3.07 3 292 287 283 275 266
0.001| 558 532 505 478 46 448 433 424 418 402 3.87
01198 193 189 184 18 178 175 174 172 169 1.66
005|241 234 227 219 214 211 206 204 202 197 192

18 0.025| 2.87 2.77 2.67 256 249 244 238 235 232 226 220
001|351 337 323 3.08 298 292 284 278 275 266 2.58
0.001| 5.39 5.13 487 459 442 43 415 4.06 4 384 3.69
01|19 191 186 181 178 176 173 171 17 167 1.64
005|238 231 223 216 211 2.07 203 2 198 193 1.88

19 0.025| 282 272 262 251 244 239 233 23 227 22 214
0.01| 343 33 315 3 291 284 276 271 267 258 250
0.001| 522 497 47 443 426 414 399 39 384 368 353
01194 189 184 179 176 174 171 169 168 164 161
005|235 228 22 212 207 204 199 197 195 19 185

20 0.025| 2.77 268 257 246 24 235 229 225 222 216 209
0.01| 337 323 3.09 294 284 278 269 264 261 252 243
0.001| 5.08 482 456 4.29 4.12 4 386 377 3.7 354 340
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21 TABLES

Table E: F-critical values

Degrees of freedom in the numerator

DFD  p 1 2 3 4 5 6 7 8 9
0.1] 2.96 257 236 223 214 208 202 198 1.95
0.05| 4.32 347 3.07 2.84 268 257 249 242 237
21 0.025| 5.83 4.42 3.82 348 325 3.09 297 287 280
0.01| 802 578 487 437 404 381 364 351 3.40
0.001| 1459 9.77 7.94 695 6.32 588 556 531 5.11
01| 295 256 235 222 213 206 201 197 1.93
005| 43 344 305 282 266 255 246 24 2.34
22 0.025| 579 438 378 344 322 305 293 284 276
001| 7.95 572 482 431 399 376 359 345 3.35
0.001| 1438 961 7.8 6.81 6.19 576 544 519 4.99
01| 294 255 234 221 211 205 199 1.95 1.92
0.05| 428 342 303 28 264 253 244 237 232
23 0.025| 575 435 375 341 318 3.02 29 281 273
001| 7.88 566 476 426 394 371 354 341 3.30
0.001| 142 947 767 6.7 6.08 565 533 509 4.89
01| 293 254 233 219 21 204 198 194 1091
0.05| 426 34 301 278 262 251 242 236 230
24 0.025| 572 432 372 338 315 299 287 278 270
001| 7.82 561 472 422 39 367 35 336 3.26
0.001| 14.03 9.34 755 659 598 555 523 499 4.80
01| 292 253 232 218 209 202 197 193 1.89
0.05| 424 339 299 276 26 249 24 234 2.28
25 0.025| 569 429 3.69 335 313 297 285 275 2.68
0.01| 7.77 557 468 418 385 363 3.46 3.32 3.22
0.001| 13.88 9.22 745 649 589 546 515 491 471
01| 291 252 231 217 208 201 196 192 1.88
0.05| 4.23 337 298 274 259 247 239 232 227
26 0.025| 566 4.27 3.67 333 31 294 282 273 265
001| 7.72 553 464 414 382 359 342 329 3.18
0.001| 13.74 9.12 7.36 641 58 538 507 4.83 4.64
01| 29 251 23 217 207 2 195 191 1.87
0.05| 421 335 296 273 257 246 237 231 225
27 0.025| 563 424 365 331 3.08 292 28 271 2.63
001| 7.68 549 46 411 378 356 3.39 326 3.15
0.001| 1361 9.02 7.27 6.33 573 531 5 476 457
01| 2.89 25 229 216 2.06 2 194 19 187
0.05| 42 334 295 271 256 245 236 229 224
28 0.025| 561 422 3.63 329 3.06 29 278 269 261
001| 7.64 545 457 407 375 353 336 323 3.12
0.001| 135 893 7.19 625 566 524 493 469 450
01| 2.89 25 228 215 206 199 193 1.89 1.86
0.05| 418 333 293 27 255 243 235 228 222
29 0.025| 559 4.2 361 327 304 288 276 267 259
001| 7.6 542 454 404 373 35 333 32 3.09
0.001| 1339 885 7.12 6.19 559 518 487 464 4.45
01| 2.88 249 228 214 205 198 193 188 1.85
0.05| 417 332 292 269 253 242 233 227 221
30 0.025| 557 4.18 359 325 3.03 2.87 275 265 257
001| 756 5.39 451 402 37 347 33 3.17 3.07
0.001| 1329 877 7.05 6.12 553 512 482 458 4.39
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Table E: F-critical values
| Degrees of freedom in the numerator
DFD p 10 12 15 20 25 30 40 50 60 120 1000
01)192 187 183 178 1.74 172 169 167 166 1.62 1.59
0.05| 232 225 218 21 205 201 196 194 192 187 1.82
21 0.025| 273 264 253 242 236 231 225 221 218 211 2.05
0.01| 331 3.17 3.03 288 279 272 264 258 255 246 237
0.001| 495 4.7 4.44 417 4 388 374 364 358 342 328
01| 19 186 181 176 1.73 1.7 167 165 1.64 16 157
0.05| 23 223 215 207 202 198 194 191 189 184 1.79
22 0025 27 26 25 239 232 227 221 217 214 208 201
0.01| 326 3.12 298 283 273 267 258 253 25 24 232
0.001| 483 458 433 4.06 3.89 3.78 363 354 348 332 3.17
01|189 184 18 174 171 169 166 164 162 159 155
0.05| 227 22 213 205 2 196 191 188 186 181 1.76
23 0.025| 2.67 257 247 236 229 224 218 214 211 204 1.98
0.01| 321 3.07 293 278 269 262 254 248 245 235 227
0.001| 473 4.48 423 396 3.79 3.68 353 344 338 322 3.08
01]188 183 178 1.73 17 167 164 162 161 157 154
0.05| 225 218 211 2.03 197 194 189 186 184 179 174
24 0.025| 264 254 244 233 226 221 215 211 208 201 194
0.01| 3.17 3.03 289 274 264 258 249 244 24 231 222
0.001| 464 439 414 387 371 359 345 336 329 314 299
01187 182 177 172 168 166 163 161 159 156 1.52
0.05| 224 216 209 201 196 192 187 184 182 177 1.72
25 0.025| 261 251 241 23 223 218 212 208 205 198 1.91
0.01] 313 299 285 27 26 254 245 24 236 227 218
0.001| 456 4.31 4.06 3.79 3.63 352 337 328 322 306 291
01|18 181 176 171 167 165 161 159 158 154 151
0.05| 222 215 207 199 194 19 185 182 18 175 1.70
26 0.025| 259 249 239 228 221 216 209 205 203 195 1.89
0.01]3.09 296 281 266 257 25 242 236 233 223 214
0.001| 448 424 399 372 356 344 33 321 315 299 284
0.1]1.85 1.8 1.75 1.7 166 164 16 158 157 153 150
0.05| 22 213 206 197 192 188 184 181 179 173 1.68
27 0.025| 257 247 236 225 218 213 2.07 2.03 2 193 1.86
0.01| 3.06 293 278 263 254 247 238 233 229 22 211
0.001| 441 4.7 392 366 349 338 323 314 308 292 278
01184 179 174 169 165 163 159 157 156 152 148
005|219 212 204 196 191 187 182 179 177 171 1.66
28 0.025| 255 245 234 223 216 211 205 201 198 191 1.84
0011303 29 275 26 251 244 235 23 226 217 208
0.001| 435 411 386 36 343 332 318 3.09 3.02 286 272
01183 178 173 168 164 162 158 156 155 151 147
0.05| 2.18 21 203 194 189 185 181 177 1.75 1.7 1.65
29 0.025| 253 243 232 221 214 209 203 199 196 189 1.82
0.01 3 287 273 257 248 241 233 227 223 214 205
0.001| 429 405 3.8 354 338 327 312 3.03 297 281 266
011|182 177 172 167 163 161 157 155 154 15 146
0.05| 2.16 2.09 201 193 188 184 179 176 174 168 1.63
30 0.025|251 241 231 22 212 207 201 197 194 187 1.80
0.01| 298 284 27 255 245 239 23 225 221 211 202
0.001| 4.24 4 375 349 333 322 3.07 298 292 276 261
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Table E: F-critical values

Degrees of freedom in the numerator

DFD p 1 2 3 4 5 6 7 8 9
0.1] 2.84 244 223 209 2 193 1.87 1.83 1.79
0.05| 4.08 3.23 284 261 245 234 225 218 212
40 0.025| 5.42 405 3.46 313 29 274 262 253 245
001| 7.31 518 431 3.83 351 329 3.12 299 289
0.001| 12.61 825 659 57 5.13 473 444 421 402
01| 281 241 22 206 197 19 184 1.8 1.76
0.05| 4.03 3.18 279 256 24 229 22 213 207
50 0.025| 534 397 339 305 2.83 267 255 246 238
0.01| 7.17 506 4.2 372 341 3.19 3.02 289 2.78
0.001| 12.22 796 634 546 49 451 422 4 3.82
01| 2.79 239 218 204 195 1.87 1.82 1.77 1.74
0.05 4 315 276 253 237 225 217 21 204
60 0.025| 529 3.93 334 301 279 2.63 251 241 233
0.01| 7.08 4.98 4.13 3.65 3.34 312 295 282 272
0.001| 11.97 7.77 6.17 531 476 437 4.09 3.86 3.69
01| 2.76 236 214 2 191 183 1.78 1.73 1.69
0.05| 394 3.09 27 246 231 219 21 203 197
100 0.025| 518 3.83 325 292 27 254 242 232 224
001| 6.9 482 398 351 321 299 282 269 259
0.001| 115 7.41 586 502 448 411 3.83 361 3.44
01| 2.73 233 211 197 188 18 1.75 1.7 166
0.05| 3.89 3.04 265 242 226 214 206 1.98 1.93
200 0.025 5.1 3.76 3.18 285 2.63 247 235 226 2.18
001| 6.76 471 3.88 341 311 2.89 273 26 250
0.001| 11.15 7.15 563 4.81 429 392 365 343 3.26
01| 271 231 209 195 185 1.78 1.72 168 164
005 385 3 261 238 222 211 202 1.95 1.89
1000 0.025| 5.04 3.7 313 28 258 242 23 22 213
001| 6.66 4.63 3.8 3.34 3.04 282 266 253 243
0.001| 10.89 6.96 546 4.65 4.14 378 351 33 3.13
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Table E: F-critical values
\ Degrees of freedom in the numerator
DFD p 10 12 15 20 25 30 40 50 60 120 1000
01176 171 166 161 157 154 151 148 147 142 1.38
0.05| 2.08 2 192 184 178 174 169 166 164 158 1.52
40 0.025/2.39 229 218 207 199 194 188 183 18 172 1.65
0.01| 28 266 252 237 227 22 211 206 202 192 1.82
0.001| 3.87 364 34 314 298 287 273 264 257 241 225
01173 168 163 157 153 15 146 144 142 138 133
0.05{ 203 195 187 178 173 169 163 16 158 151 145
50 0.025| 232 222 211 199 192 187 18 175 172 164 156
0.01| 27 256 242 227 217 21 201 195 191 18 1.70
0.001| 3.67 344 32 295 279 268 253 244 238 221 205
01171 166 16 154 15 148 144 141 14 135 1.30
0.05{199 192 184 175 169 165 159 156 153 147 1.40
60 0.025| 227 217 206 194 187 182 174 1.7 167 158 1.49
001|263 25 235 22 21 203 194 188 184 173 1.62
0.001| 3.54 332 3.08 283 267 255 241 232 225 208 192
01166 161 156 149 145 142 138 135 1.34 128 1.22
0.05{193 1.8 1.77 168 162 157 152 148 145 138 1.30
100 0.025)/2.18 2.08 197 185 1.77 171 164 159 156 146 1.36
001 25 237 222 207 197 189 18 174 169 157 145
0.001| 3.3 3.07 284 259 243 232 217 2.08 201 183 1.64
01163 158 152 146 141 138 134 131 129 123 1.16
0.05{188 18 172 162 156 152 146 141 139 13 121
200 0.025(2.11 201 19 178 1.7 164 156 151 147 137 125
001|241 227 213 197 187 179 169 163 158 145 1.30
0.001|3.12 29 267 242 226 215 2 19 183 164 143
01161 155 149 143 138 135 1.3 127 125 118 1.08
005|184 176 168 158 152 147 141 136 133 124 1.11
1000 0.025/ 206 196 1.8 172 164 158 15 145 141 129 113
001|234 22 206 19 179 172 161 154 15 135 1.16
0.001| 299 277 254 23 214 202 187 177 169 149 1.22
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Table 21: Percentage Points of the Maximum F-Ratio

«=0.05
r

v | 2 3 4 5 6 7 8 9 10 11 12

2 390 875 142 202 266 333 403 475 550 626 704

3 154 278 392 507 620 729 835 939 104 114 124

4 960 155 20.6 252 295 336 375 411 446 480 514

5 7.5 108 137 163 187 208 229 247 265 282 299

6 582 838 104 121 137 150 163 175 186 197 207

7 499 694 844 970 108 118 127 135 143 151 158

8 443 6.00 7.18 812 903 978 105 111 117 122 127

9 403 534 631 711 780 841 895 945 991 103 107
10 372 485 567 634 692 742 787 828 866 9.01 934
12 328 416 479 530 572 609 642 672 700 725 7.48
15 2.86 354 401 437 468 495 519 540 559 577 5093
20 246 295 329 354 376 394 410 424 437 449 459
30 207 240 261 278 291 302 312 321 329 336 339
60 167 185 196 2.04 211 217 222 226 230 233 236
co 100 100 100 1.00 1.00 100 1.00 1.00 100 1.0 1.0

«=0.01
r

v | 2 3 4 5 6 7 8 9 10 11 12

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605

3 475 85 120 151 184 21(6) 24(9) 28(1) 31(0) 33(7) 36(1)

4 232 37 49 59 69 79 89 97 106 113 120

5 149 22 28 33 3 42 46 50 54 57 60

6 111 155 191 22 25 27 30 32 3 36 37

7 889 121 145 165 184 20 22 23 24 26 27

8 750 99 117 132 145 158 169 179 189 198 21

9 654 85 99 111 121 131 139 147 153 160 166
10 58 74 86 96 104 111 118 124 129 134 139
12 491 61 69 76 82 87 91 95 99 102 106
15 407 49 55 60 64 67 71 73 75 78 80
20 332 38 43 46 49 51 53 55 56 58 59
30 263 30 33 34 36 37 38 39 40 41 42
60 196 22 23 24 24 25 25 26 26 27 27
© 10 10 10 10 10 10 10 10 10 10 10
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F - Distribution

PrF > F1=a

Pr{F> F*}
Table entry for F is the probability lying aboveF™ (ie.
tail probabilities)

Table 22: Critical values of the F - distributiom-= 0.05

1

V2 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120
1| 16145 19950 215.71 22458 230.16 233.99 236.77 238.88 240.54 241.88 24595 248.01 250.10 251.14 25220 253.25
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.45 19.46 19.47 19.48 19.49
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.59 8.57 8.55
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.72 5.69 5.66
5 6.61 5.79 541 5.19 5.05 4.95 4.88 4.82 477 4.74 4.62 4.56 4.50 4.46 4.43 4.40
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.77 3.74 3.70
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.34 3.30 3.27
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.04 3.01 2.97
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.83 2.79 2.75

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.70 2.66 2.62 2.58
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.72 2.65 2.57 2.53 2.49 2.45
12 4.75 3.89 3.49 3.26 3.11 3.00 291 2.85 2.80 2.75 2.62 2.54 2.47 2.43 2.38 2.34
13 4.67 3.81 341 3.18 3.03 2.92 2.83 2.77 271 2.67 2.53 2.46 2.38 2.34 2.30 2.25
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.46 2.39 231 2.27 2.22 2.18
15 4.54 3.68 3.29 3.06 2.90 2.79 271 2.64 2.59 2.54 2.40 2.33 2.25 2.20 2.16 2.11
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.35 2.28 2.19 2.15 211 2.06
17 4.45 3.59 3.20 2.96 281 2.70 2.61 2.55 2.49 2.45 231 2.23 2.15 2.10 2.06 2.01
18 441 3.55 3.16 2.93 2.77 2.66 2.58 251 2.46 241 2.27 2.19 2.11 2.06 2.02 1.97
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 242 2.38 2.23 2.16 2.07 2.03 1.98 1.93
20 4.35 3.49 3.10 2.87 271 2.60 251 2.45 2.39 2.35 2.20 2.12 2.04 1.99 1.95 1.90
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 242 2.37 2.32 2.18 2.10 2.01 1.96 1.92 1.87
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.15 2.07 1.98 1.94 1.89 1.84
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.13 2.05 1.96 191 1.86 1.81
24 4.26 3.40 3.01 2.78 2.62 251 2.42 2.36 2.30 2.25 211 2.03 1.94 1.89 1.84 1.79
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.09 201 1.92 1.87 1.82 1.77
30 4.17 3.32 2.92 2.69 2.53 242 2.33 2.27 221 2.16 2.01 1.93 1.84 1.79 1.74 1.68
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.92 1.84 1.74 1.69 1.64 1.58
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.69 1.63 1.58 151
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.84 1.75 1.65 1.59 153 1.47
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.75 1.66 1.55 1.50 1.43 1.35
1000 3.85 3.00 261 2.38 2.22 2.10 2.01 1.94 1.88 1.84 1.67 1.58 1.46 1.40 1.32 1.23

254.25
19.50
8.53
5.63
4.37
3.67
3.23
2.93
271
2.54
241
2.30
221
2.13
2.07
2.01
1.96
1.92
1.88
1.85
1.82
1.79
1.76
1.74
1.71
1.63
151
1.44
1.39
1.26
1.00
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F - Distribution

PrF > F1=a

Table 22: Critical values of the F - distribution (continued) = 0.01

1

Table entry for F is the probability lying aboveF™ (ie.
tail probabilities)

Pr{F> F*}

V2 1 2 3 4 5 6 7 8 9 20 30 40 60 120 ~
219850 99.00 99.17 9925 99.30 99.33 99.36 99.37 99.39 9940 9943 9945 9947 9947 9948 99.49 99.50
3| 3412 3082 2946 2871 2824 2791 2767 2749 2735 2723 2687 26.69 2650 2641 2632 26.22 26.13
4| 2120 18.00 16.69 1598 1552 1521 1498 1480 1466 1455 1420 1402 13.84 1375 13.65 13.56 13.47
5| 16.26 1327 1206 11.39 1097 10.67 1046 10.29 10.16 10.05 9.72 9.55 9.38 9.29 9.20 9.11 9.03
6 | 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.23 7.14 7.06 6.97 6.89
7] 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 5.99 591 5.82 574 5.65
8 | 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5091 5.81 5.52 5.36 5.20 5.12 5.03 495 486
9 | 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 496 481 4.65 4.57 4.48 440 432

10 | 10.04 7.56 6.55 5.99 5.64 5.39 5.20 506 494 4.85 456 441 4.25 4.17 4.08 4.00 3.91
11| 9.65 7.21 6.22 5.67 5.32 5.07 4.89 474 463 454 425 410 3.94 3.86 3.78 3.69 3.61
12| 9.33 6.93 5.95 541 5.06 4.82 464 450 4.39 4.30 4.01 3.86 3.70 3.62 3.54 3.45 3.37
13| 9.07 6.70 5.74 5.21 4.86 4.62 444 430 419 4.10 3.82 3.66 3.51 3.43 3.34 3.25 3.17
14| 8.86 6.51 5.56 5.04 4.69 4.46 4.28 414 403 3.94 3.66 3.51 3.35 3.27 3.18 3.09 3.01
15| 8.68 6.36 5.42 4.89 4.56 4.32 414 400 3.89 3.80 3.52 3.37 3.21 3.13 3.05 2.96 2.87
16 | 8.53 6.23 5.29 4.77 444 420 4.03 3.89 3.78 3.69 3.41 3.26 3.10 3.02 2.93 284 276
17| 8.40 6.11 5.19 4.67 434 410 3.93 3.79 3.68 3.59 3.31 3.16 3.00 2.92 2.83 2.75 2.66
18 | 8.29 6.01 5.09 4.58 425 401 3.84 3.71 3.60 3.51 3.23 3.08 2.92 2.84 2.75 2.66 2.57
19| 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.15 3.00 2.84 2.76 2.67 2.58 2.50
20| 8.10 585 494 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.78 2.69 261 2.52 2.43
21| 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.03 2.88 2.72 2.64 2.55 2.46 2.37
22| 7.95 5.72 4.82 431 3.99 3.76 3.59 345 335 3.26 2.98 2.83 2.67 2.58 2.50 2.40 231
23| 7.88 5.66 4.76 4.26 3.94 3.71 3.54 341 3.30 3.21 2.93 2.78 2.62 2.54 2.45 2.35 2.26
24 | 7.82 5.61 472 4.22 3.90 3.67 3.50 3.36 3.26 3.17 2.89 2.74 2.58 2.49 2.40 231 2.22
25| 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.85 2.70 2.54 2.45 2.36 2.27 2.18
30| 7.56 5.39 451 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.39 2.30 221 211 201
40 | 7.31 5.18 431 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.52 2.37 2.20 2.11 2.02 1.92 1.81
50| 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 242 2.27 2.10 2.01 191 1.80 1.69
60 | 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.35 2.20 2.03 1.94 1.84 1.73 1.61
120 | 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.19 2.03 1.86 1.76 1.66 1.53 1.39
1000 | 6.65 4.62 3.79 3.33 3.03 281 2.65 2.52 242 2.33 2.05 1.89 1.71 1.60 1.48 1.34 1.00
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F - Distribution

PrF > F1=a

Table entry for F is the probability lying aboveF™ (ie.
tail probabilities)

Table 22: Critical values of the F - distribution(continued) = 0.001

1

Pr{F> F*}

V2 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120
2199850 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40 999.43 999.45 999.47 999.47 999.48 999.49
3| 167.03 14850 141.11 137.10 13458 13285 13158 130.62 129.86 129.25 127.37 126.42 12545 12496 124.47 123.97
4 74.14  61.25 56.18 53.44 51.71 50.53 49.66 49.00  48.47 48.05 46.76 46.10 4543 45.09 4475 44.40
5| 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24 26.92 2591 25.39 24.87 24.60 24.33 24.06
6 | 3551 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 18.41 17.56 17.12 16.67 16.44 16.21 15.98
7 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33 14.08 13.32 12.93 12.53 12.33 12.12 1191
8 2541 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 11.54 10.84 10.48 10.11 9.92 9.73 9.53
9 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 9.89 9.24 8.90 8.55 8.37 8.19 8.00

10| 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 8.75 8.13 7.80 7.47 7.30 7.12 6.94
11| 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 7.92 7.32 7.01 6.68 6.52 6.35 6.18
12 | 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 7.29 6.71 6.40 6.09 5.93 5.76 5.59
13| 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98 6.80 6.23 5.93 5.63 5.47 5.30 5.14
14| 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40 5.85 5.56 5.25 5.10 4.94 4.77
15| 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.54 5.25 4.95 4.80 4.64 4.47
16 | 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81 5.27 4.99 4.70 4.54 4.39 4.23
17| 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58 5.05 4.78 4.48 4.33 4.18 4.02
18 | 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39 4.87 4.59 4.30 4.15 4.00 3.84
19 | 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39 5.22 4.70 4.43 4.14 3.99 3.84 3.68
20| 1482 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.56 4.29 4.00 3.86 3.70 3.54
21| 1459 9.77 7.94 6.95 6.32 5.88 5.56 531 511 4.95 4.44 4.17 3.88 3.74 3.58 3.42
22| 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 4.83 4.33 4.06 3.78 3.63 3.48 3.32
23| 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89 4.73 4.23 3.96 3.68 3.53 3.38 3.22
24| 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64 4.14 3.87 3.59 3.45 3.29 3.14
25| 13.88 9.22 7.45 6.49 5.89 5.46 5.15 491 4.71 4.56 4.06 3.79 3.52 3.37 3.22 3.06
30| 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 3.75 3.49 3.22 3.07 2.92 2.76
40 | 1261 8.25 6.59 5.70 5.13 4.73 4.44 421 4.02 3.87 3.40 3.14 2.87 2.73 2.57 241
50 | 12.22 7.96 6.34 5.46 4.90 451 4.22 4.00 3.82 3.67 3.20 2.95 2.68 2.53 2.38 221
60 | 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54 3.08 2.83 2.55 241 2.25 2.08
120 | 11.38 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 3.24 2.78 2.53 2.26 211 1.95 1.77
1000 | 10.86 6.93 5.44 4.64 412 3.76 3.49 3.28 3.11 2.97 2.53 2.28 2.01 1.85 1.68 1.47

999.50
123.50
44.07
23.80
15.76
11.71
9.35
7.82
6.77
6.01
5.43
4.98
461
4.32
4.07
3.86
3.68
3.52
3.39
3.27
3.16
3.07
2.98
2.90
2.60
2.24
2.04
1.90
1.56
1.00
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22 Table credits

1. Table 21.4 Reprinted from: Handbook of Tables for Probability and Statistics, Second Edition. Edited
by William H. Beyer,(© The Chemical Rubber Co., 1968. Used by permission of CRC Press Inc., Boca
Raton, FL.



