

Data Analysis and Introductory Statistical Inference with Statistical Formulae and Tables with SAS implementations

June 2000
Calvin L. Williams, Ph.D.
calvinw@math.clemson.edu

## Contents

1 Class Project ..... vii
2 Homework and Case Studies Due Dates ..... ix
3 Introduction ..... 1
4 Data Types ..... 1
5 Descriptive Statistics-Informal data definitions ..... 1
5.1 Main terms and concepts ..... 1
5.2 Measures of Location or Central tendency ..... 2
5.3 Quantiles ..... 3
5.4 Measures of Variability or Spread ..... 3
5.5 Measures of Shape ..... 4
6 Graphical Descriptions of Data ..... 5
6.1 Boxplots ..... 5
6.2 Dotplots ..... 5
6.3 Histograms ..... 6
6.4 Stem and leaf ..... 6
6.5 Scatter plot ..... 6
6.6 Density Curves ..... 6
6.7 Q-Q plots ..... 6
7 Sampling Distributions derived from the normal ..... 7
7.1 The Normal distribution ..... 7
7.2 t-distribution ..... 7
$7.3 \quad \chi^{2}$-distribution ..... 8
7.4 F-distribution ..... 8
8 Analyses of Univariate Data ..... 9
9 Assessing Normality ..... 9
9.1 Probability plots ..... 9
9.2 Quantile-plots ..... 11
9.3 Quantile-Quantile Plots ..... 11
9.4 Comparable Normal probability plots ..... 12
10 Statistical Inference Tests and Confidence Intervals (Chapt. 3 LSM) ..... 13
10.1 Confidence Intervals ..... 13
10.2 Tables of Confidence Intervals-Single Sample(Chapt. 3 LSM) ..... 14
11 Normal Models - Single Sample Tests of Hypothesis (Chapt. 3 LSM) ..... 15
11.1 Two Sample Confidence intervals(Chapt. 3 LSM) ..... 18
12 Two Sample Hypothesis Tests of Hypothesis(Chapt. 3 LSM) ..... 19
12.1 Binomial Models ..... 19
12.2 Normal Models ..... 20
13 Goodness of Fit Tests ..... 23
13.1 First a binomial experiment ..... 23
13.2 A Multinomial Experiment ..... 24
13.3 Goodness of fit ..... 25
13.4 Exercises ..... 26
$13.5 \mathrm{r} \times \mathrm{c}$ Tests for homogeneity - or "likeness" ..... 28
13.6 Exercises ..... 29
13.7 Tests for Independence ..... 31
13.8 Exercises ..... 33
14 Important Formulas and Concepts in Regression Analysis(Chapt. 4 LSM) ..... 36
14.1 Strategy ..... 36
14.2 Simple Linear regression and the principle of Least Squares ..... 36
14.3 The fitted regression line(Chapt. 4 LSM) ..... 38
15 Parsimony in Modeling(Chapt. 4 LSM) ..... 38
15.1 Understanding Variation(Chapt. 5 LSM) ..... 39
15.2 Correlation and Coefficient of Determination(Chapt. 5 LSM) ..... 40
15.3 Inferences on the population correlation coefficient $\rho$ (Chapt. 5 LSM) ..... 41
15.4 Is the regression significant?(Chapt. 4 LSM) ..... 41
15.5 Distributional properties of $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}$ (Chapt. 5 LSM) ..... 43
15.6 Inferences on the parameters $\widehat{\beta_{0}}$ and $\widehat{\beta}_{1}$ (Chapt. 5 LSM) ..... 43
15.6.1 Confidence Interval for $\beta_{0}$ and $\beta_{1}$.(Chapt. 5 LSM) ..... 43
15.7 Prediction and Estimation(Chapt. 5 LSM) ..... 44
15.7.1 Inferences about the estimated regression, $\mathrm{E}(\mathrm{y})\left(\mu_{0}\right)$ ..... 44
15.8 Introductory Residual Analysis(Chapt. 6 LSM) ..... 45
15.9 Departures from Model to Be Studied by Residuals(Chapt. 6 LSM) ..... 46
15.10Diagnostics for Residuals ..... 46
15.11Comparable Normal probability plots(Chapt. 6 LSM) ..... 47
16 Transformations to Linearity(Chapt. 6 (13) LSM) ..... 48
16.1 Lack of Fit and Introduction to Polynomial Regression(Chapt. 8 LSM) ..... 49
17 Polynomial models(Chapt. 8 LSM) ..... 50
18 Multiple Linear Regression(Chapt. 8 LSM) ..... 52
18.1 The fitted regression line(Chapt. 8 LSM) ..... 53
18.2 Is the multiple regression significant?(Chapt. 8 LSM) ..... 53
18.3 Inferences on the fitted partial regression coefficients, the $\hat{\beta}_{i}$ 's.(Chapt. 8 LSM) ..... 53
18.4 Indicator and Dummy Variables in Multiple regression(Chapt. 12 LSM) ..... 56
19 Model-Selection Methods(Chapt. 11 LSM) ..... 64
20 The Analysis of Variance(Chapt. 14 LSM) ..... 67
20.1 The Completely Randomized Design ..... 67
20.2 Estimate of the population variance $\sigma_{y}^{2}$ ..... 69
20.3 Estimate of the variance the sample mean $\sigma_{\bar{y}}^{2}$ ..... 70
20.4 The Analysis of Variance table ..... 71
20.5 Paired Comparisons for Analysis of Variance ..... 75
20.6 The Randomized Complete Block Design ..... 77
20.7 Factorial Designs ..... 78
21 Tables ..... 79
21.1 Cumulative Standard Normal Distribution tables ..... 79
21.2 t-distribution tables ..... 83
21.3 Tables of the $\chi^{2}$-distribution ..... 85
21.4 F-distribution tables ..... 87
22 Table credits ..... 99

## Course Syllabus

# Mathematical Sciences 405/605 Statistical Methods II 

Instructor: Calvin L. Williams, Ph.D.
Office: 0-323 Martin Hall
Telephone: 656-5241
E-mail: calvinw@math.clemson.edu

Class Location: M-103 Martin Hall<br>Class Time:9:45-11:15 M-F<br>Office Hours: M-F:2:00-3:00 or By Appointment<br>WWW: http://www.math.clemson.edu/~calvinw/MthSc405

I. Text: Linear Statistical Models : An Applied Approach by Bowerman and O'Connell.

Prerequisites: MthSc 301-302 or equivalent
II. Course Description: This course is designed to continue with intermediate probability and statistics at an intermediate level. Emphasis is placed on the understanding of the concepts of techniques in inferential statistics, data analysis, and regression analysis along with its appropriate application. This should prepare you for the practical application of regression and other modeling techniques in more general areas such as engineering, the sciences, education, and management. The intent is to cover the prescribed text omitting those sections that are unneeded with additional information given in the form of handouts and take home projects. Although there will be no requirement of a specific statistical computing package, it would be in your best interest to be familiar with a package. Examples shown in class will be done using Statistix and SAS. Notes and example code are available for students wishing to use SAS.
III. Short Course Itinerary

- Brief review of techniques in statistical inference
- Least Squares and Simple Linear Regression
- Polynomial Regression
- Multiple Linear Regression
- Diagnostics and Model Building
- Indicator variables and the Analysis of Variance
- Nonlinear Regression, just a little.
IV. Attendance Policy: All classes should be attended. If not, legitimate excuses must be offered with respect to the day(s) missed. Attendance will be monitored. It is to the instructors discretion whether an excuse is legitimate or not. Accordingly, the university's policy on religious holidays will be acknowledged and honored. IF YOU ARE ILL STAY HOME. You may call me or e-mail me in advance of class if you are ailing. Note that this does not exempt you from examinations, homework or project due dates.
V. Tardy Professor Policy: If the instructor is more than 15 minutes late for any class you may leave.
VI. Examination Policy: There will be weekly fifty minutes in class closed book quizzes and a final examination, also closed book. Students should bring a calculator, two clean regulation $\operatorname{size}\left(8 \frac{1}{2}\right.$ ") sheets for scratch work to be turned in with exams, and of course something with which to write, preferably pencil. There will be no sharing of calculators, scratch sheets, or writing utensils during the exams. No makeup examinations will be given. Any student who misses an examination without a legitimate excuse,e.g. a documented medical excuse, will receive a score of zero for that exam. A student with a legitimate excuse, will receive a final score based on all other class work. More than one missed exam with require withdrawal from the course and/or the receipt of a failing final grade.


## VII. Homework Assignments, Case Studies, and Class Project:

There will also be several homework sets and case studies from different application areas assigned from the text as well as from material covered during class. Although it is imperative that each student be completely comfortable with these assigned problems and projects, group study is encouraged. There will also be a class project as described below.

## VIII. Requirements for Homework Assignments

## A. Homework:

(a) Problems will generally be due the next class session after the class session in which they were assigned unless stated otherwise at the time of the assignment.
(b) Solutions should be written out clearly and completely in the context of the problem posed.

## B. Case Studies:

(a) Case studies will generally be due the second class session after the class session in which they were assigned.
(b) The analysis should include a description of the problem. I will generally include this with the assignment.
(c) The analysis should include summary statistics written in a narrative form. Tables can be included for centrally locating these results.
(d) The analysis should also include any graphical descriptions, along with a narrative describing the graphs, plots, etc.
(e) Complete computer printouts, command line results, or any other precursory results are not necessary and should not be turned in unless requested.

## C. Class Project:

(a) The data set must not be taken from any text book, although data from journal articles are satisfactory. You may even consider collecting your own data. In other words, the internet or the course web page will be your best source.
(b) Data must have at least 40 cases and at least three measured characteristics. You can reduce this for you presentations, but must justify your reasons for doing so.
(c) Write ups should include all of those items required for regular class homework, ie, summaries, graphics, exposition, etc.
IX. Grading Policy: The weekly regular quizzes will count as $60 \%$ of the final grade, homework sets and projects $20 \%$, and final exam $20 \%$. The final exam will cover the more important topics covered during the semester.
X. Grading Scale: $\mathbf{A} \Leftarrow 100-90, \mathbf{B} \Leftarrow 89-80, \mathbf{C} \Leftarrow 79-70, \mathbf{D} \Leftarrow 69-60$, and $\mathbf{F} \Leftarrow 59-0$
XI. Academic Dishonesty: Academic dishonesty will not be tolerated. For information regarding the definition of acts of academic dishonesty and the subsequent penalties, you are referred to the 19992000 Student Handbook.

## 1 Class Project

## Mathematical Sciences 405 Statistical Theory and Methods II Project Description, Summer 2000

This project is an opportunity to use the statistical techniques we have learned in class, to answer real-life questions. Projects may be done individually, or as a team of 1 or 2, preferably 2. Each team must:

- Choose a question that is of interest to them, and that can be answered via a designed experiment or an observational study.
- Design and perform an experiment, gathering data to answer the question. Published data are not acceptable. Data that were gathered for a project in another class are acceptable, provided the guidelines for this project are met.
- Analyze the data in whatever way is appropriate.
- Report the findings.

You will have about 2 weeks to perform your experiment and analyze and report your findings. Plan your time accordingly.

The team grade will be based on the final report, which should contain the following items.

- A description of the question, and the team's reasons for wanting to know the answer,
- A description of the techniques used for gathering the data, including how randomization was performed and how the sample size was chosen,
- Analysis and illustration of the findings and conclusions.
- A listing of all the data, and example of a data-collection form (if used) and the details of any unusual calculations.

Reports should be neatly typed, well-organized and attractive. Graphical displays (either computer-generated or hand-drawn) are encouraged. Generally, graphs are more effective if they are incorporated into the text, rather than hidden at the end of the report. You may also use a computer package to aid in the data analysis. If you do so, the results should be discussed in the text of your report, and the computer output itself may be included in an appendix.

A rough draft of the final report will be due approximately 2 weeks before the final report is due. The critique and rough draft will be given back to the original group, who can change or add finishing touches before turning in the final report.

The project is worth 100 points. Grades will be based on:

| Appropriate and correct procedures | 50 pts |
| :--- | :--- |
| Well-written and attractive presentation | 20 pts |
| Grammar, spelling and punctuation | 20 pts |
| Complexity | 10 pts |

All members of the team will receive the same grade. It is the team's responsibility to see that all members make a fair contribution. A project proposal (not graded) must be approved before the project is started. An approved proposal must be turned in with the final report. The proposal should state:

- The question and its motivation
- Plan for collecting data, details of how randomness will be achieved, planned sample size and reason for it.
- Proposed analysis.

Due dates:

## 2 Homework and Case Studies Due Dates

- Reading Assignment Chapter 1
- Reading Assignment Chapter 2
- Homework Assignment: Due: 2.7, 2.10, 2.17, 2.19, 2.22
- Reading Assignment Chapter 3
- Homework Assignment: Due: 3.1, 3.10, 3.21, 3.24, 3.30
- Case Study: Medicine: Due: TBA
- Reading Assignment Chapter 4
- Homework Assignment: Due: 4.7, 4.10, 4.14, 4.17, 4.23
- Reading Assignment Chapter 5
- Homework Assignment: Due:5.6, 5.18, 5.25, 5.34, 5.37
- Homework Assignment: Due:5.46,5.47, 5.50, 5.52
- Reading Assignment Chapter 6
- Homework Assignment: Due: 6.9, 6.11, 6.14, 6.15, 6.25
- Reading Assignment Chapter 7 Section 8.
- Homework Assignment: Due: 7.12, 7.13, 7.14, 7.15
- Reading Assignment Chapter 8
- Case Study: Climatology: Due: TBA
- Homework Assignment: Due: 8.4, 8.10, 8.17
- Reading Assignment Chapter 9
- Homework Assignment: Due: 9.3, 9.6, 9.9
- Reading Assignment Chapter 10 (10.1,10.4-10.5) and Multicollinearity Handout
- Case Study: Inducer: Due: TBA
- Homework Assignment: Due: 10.3
- Reading Assignment Chapter 11
- Homework Assignment: Due: 11.5, 11.8, 11.9
- Reading Assignment Chapter 12
- Homework Assignment: Due: TBA
- Reading Assignment Chapter 13
- Homework Assignment: Due: TBA
- Reading Assignment Chapter 14
- Homework Assignment: Due: TBA
- Reading Assignment Chapter 15
- Homework Assignment: Due: TBA


## 3 Introduction

At its basic study, Statistics can be partitioned into two or three major foundational areas: data exploration, data categorization and analysis (eg. modeling), and statistical inference. Data exploration begins in a exploratory form and becomes more practical and provocative as data and the constraints placed on modeling data becomes more complex.

## 4 Data Types

## - Quantitative data

## - Continuous data

- Discrete data
- Qualitative(categorical) data
- Nominal data
- Ordinal data


## 5 Descriptive Statistics-Informal data definitions

### 5.1 Main terms and concepts

Population, population distribution, population parameters, sample, sample statistics, sampling distribution, point estimator, interval estimator, confidence interval.

- Population: A population is the totality of units under study. That is, units that are unmeasured as well as those measured. One or more characteristics or attributes are measured and analyzed.
- Cumulative distribution: A population can be described in terms of its cumulative distribution function which gives the proportion of the population less than each possible value, usually denoted, $\operatorname{Pr}(X \leq x)$.
A discrete population can be described by a probability function giving the proportion of the population equal to each possible value.
- Density function: A continuous population can be described by a density function, which is the derivative of the cumulative distribution function. A density function can be approximated by a histogram giving the proportion of the population lying within each of a series of intervals of values. A probability density function is like a histogram with an infinite number of infinitely small intervals.
- Sample: A sample is a part of the population from which the characteristic under study is measured and analyzed in order to make inferences back to the population.
- Sample statistic: A sample statistic is a mathematical function of the sample values. A statistic is to a sample what a parameter is to a population. It is customary to denote sample statistics in arabic, such as the sample mean $X$, and to denote population parameters in greek, such as the population mean $\mu$.
- Estimate: Often we wish to estimate or guess what a population characteristic's value is under certain circumstances. We can get an estimate of the characteristic's value based on the characteristic's value for a simple random sample. There could be several ways to estimate the population parameter. For different characteristics there could be different estimates.
- Simple random sample: A simple random sample is a sample taken from the population where every unit in the population has the same probability of being selected.
- Parameter estimation: Assume a simple random sample of size $n$ is taken from a population with mean $\mu$ and variance $\sigma^{2}$. If these population parameters are unknown, they must be estimated from the sample data.


### 5.2 Measures of Location or Central tendency

Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample of size $n$ drawn from some population

- Mean: The sample mean $X$ is defined by:

$$
X=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

It is the "best" point estimate of the population mean $\mu=\mathrm{E}(\mathrm{X})$, when it is unknown.

- Median: The population median is the central value, lying above and below half of the population values. The sample median is determined similarly, that is, it is the middle value when the sample values are ordered in ascending or descending order. If $n$ is odd, the median is just the $\frac{n}{2}+1$ st value. If $n$ is even it is the average of the middle two points, the $\left(\frac{n}{2}\right)+\left(\frac{n}{2}+1\right)$ st values divided by two.
- Mode: The mode is the value at which the density of the population is at a maximum. Some densities have more than one maximum point and are said to be multimodal. The sample mode is the value that occurs most often in the sample. If there is a tie for the most often occurring sample value, the sample is said not to have a mode. If the population is continuous, then all sample values occur only once and the sample mode has very little use.
- Weighted Mean Given that the weight associated with $x_{i}$ is $w_{i}>0$, positive and non-zero for all $i: \bar{x}$ $=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$
- Geometric Mean Given that $x_{i}>0$, positive and non-zero for all $i$ : $\mathrm{GM}=\sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}}$
- Harmonic Mean Given that $x_{i}>0$, positive and non-zero for all $i$ :
$\mathrm{HM}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}}$. Given equal observations $\mathrm{GM} \leq \mathrm{HM} \leq \bar{x}$.
- Percentile Trimmed (p\%) Mean Delete the $p \%$ smallest and the largest $p \%$ of a sample. $\bar{x}_{\text {tr }(p)}$ is the arithmetic mean of the remaining data.


### 5.3 Quantiles

Quantiles, including percentiles, quartiles, and the median, are useful for a detailed study of a distribution.

- [Quantiles] For a data set consisting of $n$ values that when ordered are $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$,

1. for any number $\mathbf{p}$ of the form $\frac{i-0.5}{n}$, where $i$ is an integer from 1 to $n$, the $\mathbf{p}$ quantile of the data set will be taken to be $x_{i}$. (The $i$ th smallest data point will be called the $\frac{i-0.5}{n}$ quantile.)
2. for any number $\mathbf{p}$ between $\frac{0.5}{n}$ and $\frac{n-0.5}{n}$ that is not of the form $\frac{i-0.5}{n}$, the $\mathbf{p}$ quantile of the data set will be obtained by linear interpolation between the quantiles corresponding to the two values of $\frac{i-0.5}{n}$ that bracket $\mathbf{p}$.
In both cases, the notation $\mathrm{Q}(\mathbf{p})$ will be used to symbolize the $\mathbf{p}$ quantile.

- Percentile: For a set of measurements arranged in order of magnitude, the $p$ th percentile is the value that has $p \%$ of the measurements below it and (100-p)\% above it.
- Quartiles $Q_{1}, Q_{2}, Q_{3}$ :

If the number $n$ is even $: \begin{cases}Q_{1} & \text { is the median of the smallest } n / 2 \text { observations } \\ Q_{3} & \text { is the median of the largest } n / 2 \text { observations }\end{cases}$
If the number $n$ is odd $: \begin{cases}Q_{1} & \text { is the median of the smallest }(n-1) / 2 \text { observations } \\ Q_{3} & \text { is the median of the largest }(n-1) / 2 \text { observations }\end{cases}$
The 1 st quartile is 25 th \% tile. The 2nd quartile is 50 th $\%$ tile and Median. And, the 3rd quartile is 75 th $\%$ tile. Obviously the 4 th quartile is 100 th $\%$ tile.

- Quintiles $P_{20}, P_{40}, P_{60}$, and $P_{80}$ percentiles:
$P_{20}=\frac{20}{100}(\mathrm{n}+1)$ st $=\frac{1}{5}(\mathrm{n}+1)$ st observation.
$P_{40}=\frac{40}{100}(\mathrm{n}+1) s t=\frac{2}{5}(\mathrm{n}+1)$ st observation.
$P_{60}=\frac{60}{100}(\mathrm{n}+1) s t=\frac{3}{5}(\mathrm{n}+1)$ st observation.
$P_{80}=\frac{80}{100}(\mathrm{n}+1) s t=\frac{4}{5}(\mathrm{n}+1)$ st observation.
The common thought is to round up on all non-integer values for measures of location.


### 5.4 Measures of Variability or Spread

This group of measures are also important in giving a detailed study of a distribution. It is important to note that with measures of variability or spread if the entire set of observations are changed by adding or subtracting a fixed(constant) amount then the sample statistics are unchanged, but if the are multiplied by a fixed constant, they sample statistics are changed.

- Range: The sample range is the difference between the largest and the smallest values in the sample. For many populations, at least in statistical theory, the range is infinite, so the sample range may not tell you much about the population. The sample range is finite and tends to increase as the sample size increases. If all the sample values are multiplied by a constant, the sample range is multiplied by the same constant.
- Interquartile range: The interquartile range is the difference between the the 3rd quartile and the 1 st quartile. If the sample values are multiplied by a constant, the sample interquartile range is multiplied by a constant.
- Variance: The population variance, usually denoted $\sigma^{2}$ when it is clear what population is being considered, is the expected value of the squared difference of the values from the population mean:

$$
\sigma^{2}=E(X-\mu)^{2}
$$

The sample variance, $s^{2}$, is defined by:

$$
\begin{aligned}
s^{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
& =\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n-1} \\
& =\frac{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)} .
\end{aligned}
$$

The difference between a value and the mean is called a deviation from the mean. Thus the variance is the sum of the squared deviations from the mean divided by $n$ in the case of the population, and $n-1$ in the case of the sample. When all of the values lie close to the mean, the variance is small but never zero. If the sample values are multiplied by a constant, the sample variance is multiplied by the square of the constant.

- Standard Deviation: the standard deviation is the square root of the variance, or root-mean-square deviation from the mean, in either the population or the sample. The sample standard deviation is expressed in the same units as the values in the sample, not squared units like the variance. If all sample values are multiplies by a constant, the sample standard deviation is multiplied by the same constant.


## - Standard Deviation:

$s=\sqrt{s^{2}}$ (unbiased variance) or $\tilde{s}=\sqrt{\tilde{s}^{2}}$ (biased variance)

- Standard Error of $\bar{X}$ as an estimate of the population mean:
s.e $(\bar{x})=s_{\bar{x}}=\mathrm{s} / \sqrt{n}$
- Coefficient of variation: The coefficient of variation is a unitless measure of relative variability. It is defined as the ratio of the standard deviation to the mean expressed as a percentage. The coefficient of variation is meaningful only if the variable is measured on the ration scale. If the sample values are multiplied by a constant, the sample coefficient of variation remains unchanged.
- Variability:(sample), unbiased $\quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}^{2}-\bar{x}\right)^{2}$
- Variability:(sample), biased $\quad \tilde{s}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{2}-\bar{x}\right)^{2}$
- Range: $\quad R=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}-\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=x_{(n)}-x_{(1)}$
- Interquartile Range: $I Q R=Q_{3}-Q_{1}$
- Useful for Box Plots:

Inner Fences: $Q_{1}-1.5 \mathrm{IQR}, \quad Q_{3}+1.5 \mathrm{IQR}$
Outer Fences: $Q_{1}-3$ IQR,$\quad Q_{3}+3$ IQR

- Linear Transformations: Let $y_{i}=\mathrm{a} x_{i}+\mathrm{b}$, then $\bar{y}=\mathrm{a} \bar{x}+\mathrm{b}, s_{y}^{2}=\mathrm{a}^{2} s_{x}^{2}, s_{y}=|\mathrm{a}| s_{x}$

Important notes: Linear transformations do not change the shape of the data (distribution).

### 5.5 Measures of Shape

- Skewness: The variance is a measure of the overall size of the deviations form the mean. Since the formula for the variance squares the deviations, both positive and negative deviations contribute to the variance in the same way. In may distributions, positive deviations may tend to be larger in magnitude than negative
deviations, or vice versa. Skewness is a measure of the tendency of deviations to be larger in one direction than the other. The population skewness is defined by

$$
\frac{E(X-\mu)^{3}}{\sigma^{2}}
$$

Since the deviations are cubed, rather than squared, the signs of the deviations are maintained. Cubing the deviations also emphasizes the effects of large deviations. The formula includes a divisor of $\sigma^{3}$ to remove the effect of scale, so multiplying all values by a constant does not change the skewness. Skewness can thus be interpreted as a tendency for one tail of the population to be heavier than the other. The sample skewness can be calculated by:

$$
\frac{m_{3}}{\left(m_{2}\right)^{\frac{3}{2}}}
$$

where

$$
m_{j}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x\right)^{j}
$$

- Kurtosis: the heaviness of the tails of the population affects the behavior of many statistics. Hence it is useful to have a measure of tail heaviness. One such measure is kurtosis. The population kurtosis is usually defined as:

$$
\frac{E(X-\mu)^{4}}{\sigma^{4}}-3,
$$

although some statisticians omit the subtraction of 3 . Since deviations are raised to the fourth power, positive and negative deviations make the same contribution, while large deviations contribute strongly. Because of the divisor $\sigma^{4}$, multiplying each value by a constant has no effect on kurtosis.
Population kurtosis must lie between -2 and positive infinity, inclusive. If $m_{3}$ represents population skewness and $m_{4}$ represents population kurtosis, the $m_{4} \geq\left(m_{3}\right)^{2}-2$.
There is a myth in the literature that kurtosis measures the peakedness of a density.
Sample skewness and kurtosis are rather unreliable estimators of the corresponding parameters in small samples. Trust them only if you have a very large sample. However, large values of skewness or kurtosis may merit attention even in small samples because such values indicate that statistical methods based on normality assumptions may be inappropriate.

## 6 Graphical Descriptions of Data

### 6.1 Boxplots

A boxplot or box-and-whiskerplot is a graphical representation of data in which a rectangle is used to summarize the data distribution. The top and the bottom, sometimes the left and right, of the rectangle represent the third and first quartiles, respectively. The line inside the rectangle represents the median. The lines extending from the top and bottom of the rectangle represent either the actual limits of the data, or the limits of the bulk of the data (with unusual observations, sometimes referred to as outliers see below, being represented by individual symbols ["flagged"] if they are further out, modified box plot). The boxplot is particularly useful for comparing the location and variability of several batches of data, as boxes can be plotted side-by-side on one plot.

### 6.2 Dotplots

A dotplot is a preliminary remedial graphical representation of the data that groups the data into many small classes or intervals.

### 6.3 Histograms

A histogram is another graphical representation of the distribution of a batch of data. The data values are usually grouped into mutually exclusive and exhaustive intervals of equal width, and the number of observations in each interval is determined and represented by a vertical bar. In some variations the widths of the intervals are varied, resulting in potentially different appearances in the plot.

### 6.4 Stem and leaf

A stem-and-leaf display is another graphical representation of the distribution of a batch of data. Very similar to a histogram, it is often accompanied by additional information about the data, such as cumulative frequencies and the position of the median. The plot represents the data values by their numerical values, providing additional information over the histogram, but the grouping intervals are usually chosen based on using round numbers, rather than in an attempt to provide the most effective plot.

### 6.5 Scatter plot

A scatterplot a is a graphical method that can be used to study the joint variation of two variables graphically. Each observation is represented by a point ( $\mathrm{x}, \mathrm{y}$ ) on the plot, indexed by the values on the axes. Each axis is used for a different variable. Besides showing how (and whether) two variables are related to each other, scatter plots also can indicate the existence of distinct subgroups in the data. Scatterplots can only be used if there are data pairs $\left(x_{i}, y_{i}\right)$.

### 6.6 Density Curves

Density curves are functional and or graphical representations of data that are usually continuous in nature.

### 6.7 Q-Q plots

Quantile-Quantile Plots are useful for comparing distributions. They are generally used to determine if data in a sample follow a particular distribution. In statistics in order to make inferences, it is often assumed that data follow the normal distribution. In which case the quantiles of the sample are compared to the quantiles of the normal distribution. These are generally referred to as normal probability plots.

## 7 Sampling Distributions derived from the normal

### 7.1 The Normal distribution

The normal distribution is probably the most important probability distribution in statistics! It is a probability distribution of a continuous random variable, yet it is often used to model the distribution of other continuous random variables and discrete random variables. The reason for the versatility in using the normal distribution as a probability distribution model is indicated in the figure below. The basic form of the normal distribution is that of a bell it has a single mode and is symmetric about its central value. The flexibility in using the normal distribution is due to the fact that the "bell" may be centered over any number on the real line and it may be made flat or peaked to correspond to the amount of dispersion that the values of a random variable may assume. Examples of random variables that have been successfully modeled by the normal distribution are the height and weight of persons, the diameter of bolts of a specified size produced on a machine, the IQ of persons, and the lifetime in hours of batteries or light bulbs. Typically, in the type of experiment that produces a random variable that can be successfully approximated by a normal random variable, the values of the random variable are produced by a measuring process, where it is known that the measurements tend to cluster symmetrically about a central value. A random variable that is an average or a sum of values of another random variable is, under very general conditions, almost always distributed approximately as a normal random variable, regardless of the form of the distribution of the random variable with values that are summed or averaged. An example of such a random variable is the average grade point average of a group of students selected at random from the population of students at your university or college. The notion that a random variable that is an average is distributed as a normal random variable is discussed when we describe the central limit theorem. For a random variable to be normally distributed, the mathematical expression delineating the form of the bell must be of a specific type as described in the following definition:

$$
\begin{gathered}
f\left(y: \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}-\infty \leq y \leq \infty \\
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y=1 \\
E[Y]=\mu ; \quad E\left[Y^{2}\right]=\sigma^{2}+\mu^{2} ; \quad \operatorname{Var}[Y]=\sigma^{2}
\end{gathered}
$$

## 7.2 t-distribution

Given the sample statistics $\bar{X}$, the sample mean, $S^{2}$ the sample variance, we now derive distributions based on the normal distribution. Let $X_{1}, \ldots, X_{n}$ be a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution. The quantity $\frac{(\bar{X}-\mu)}{S / \sqrt{n}}$ has a Student's tistribution with $n-1$ degrees of freedom. The moments of which are 0 and $\frac{n}{n-2}$. The density function of the $t$-distribution is given by

$$
\begin{gathered}
f(y, \nu)=\frac{1}{\sqrt{\pi \nu}} \frac{\Gamma\left(\frac{(\nu+1)}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{y^{2}}{\nu}\right)^{\frac{-(\nu+1)}{2}}-\infty \leq y \leq \infty \\
\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi \nu}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{y^{2}}{\nu}\right)^{\frac{-(\nu+1)}{2}} d y=1 . \\
E[Y]=0, \quad \nu \geq 2 ; \quad E\left[Y^{2}\right]=\frac{\nu}{\nu-2} ; \quad \operatorname{Var}[Y]=\frac{\nu}{\nu-2}, \quad \nu \geq 3
\end{gathered}
$$

## $7.3 \quad \chi^{2}$-distribution

Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ be a random sample from a $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution. The quantity $\frac{(n-1) S^{2}}{\sigma^{2}}$ has a chi-squared distribution. The density function of the $\chi^{2}$-distribution is given by

$$
\begin{gathered}
f(y, \nu)=\frac{1}{2^{\frac{L}{2}} \Gamma\left(\frac{\nu}{2}\right)} y^{\frac{\nu}{2}-1} e^{-\frac{y}{2}} \quad 0 \leq y \leq \infty \\
\int_{0}^{\infty} \frac{1}{2^{\frac{L}{2}} \Gamma\left(\frac{\nu}{2}\right)} y^{\frac{\nu}{2}-1} e^{-\frac{y}{2}} d y=1 . \\
E[Y]=\nu ; \quad E\left[Y^{2}\right]=2 \nu+\nu^{2} ; \quad \operatorname{Var}[Y]=2 \nu
\end{gathered}
$$

### 7.4 F-distribution

Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ be a random sample from a $\mathrm{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$ population, and let $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{m}$ be a random sample from an independent $\mathrm{N}\left(\mu_{y}, \sigma_{y}^{2}\right)$ population. If we were interested in comparing the variability of the populations, one quantity of interest would be the ratio $\frac{\sigma_{\bar{x}}^{2}}{\sigma_{y}^{2}}$. Information about this ratio is contained in $S_{X}^{2} / S_{Y}^{2}$ the ratio of sample variances. Recall from our previous discussion that $\frac{(n-1) S S^{2}}{\sigma^{2}}$ has a chi-squared distribution. Then the ratio of two chi-squares, divided by their respective degrees of freedom has an $f$-distribution with $n-1=\mathrm{p}$ numerator and $m-1=\mathrm{q}$ denominator degrees of freedom. Note that if the null hypothesis is true then this ratio is the same as $f$, given before. The density function of the $F$-distribution is given by

$$
\begin{gathered}
f(y, \nu)=\left(\frac{p}{q}\right)^{p / 2} \frac{\Gamma\left(\frac{(p+q)}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)} y^{p / 2-1}\left(1+\left(\frac{p}{q}\right) y\right)^{\frac{-(p+q)}{2}}-\infty \leq y \leq \infty \\
\int_{-\infty}^{\infty}\left(\frac{p}{q}\right)^{p / 2} \frac{\Gamma\left(\frac{(p+q)}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)} y^{p / 2-1}\left(1+\left(\frac{p}{q}\right) y\right)^{\frac{-(p+q)}{2}} d y=1 .
\end{gathered}
$$

The cumulative distribution is given obviously by $\operatorname{Pr}\left[f_{n_{1}-1, n_{2}-1} \leq f\right]$
Examples of using the $f$-distribution:
For instance,
(a) $\operatorname{Pr}\left[f_{10,15} \leq 2.54\right]=0.95$
(b) $\operatorname{Pr}\left[f_{10,15}>3.06\right]=0.025$
(c) $F_{10,15,0.0 .975}=3.06$
(d) $F_{10,15,0.95}=2.54$
(e) $F_{10,15,0.0 .025}=\frac{1}{F_{15,10,0.0 .975}}=\frac{1}{3.52}=0.28$
(f) $F_{10,15,0.05}=\frac{1}{F_{15,10,0.0 .95}}=\frac{1}{2.85}=0.35$.

The F distribution can be derived in a more general setting than is done here. A variance ratio may have an F distribution even if the parent populations are not normal. Kelker (1970) has shown that as long as the parent populations have a certain type of symmetry (spherical symmetry), then the variance ratio will have an F distribution.

## 8 Analyses of Univariate Data

Univariate data can be broadly classified into one of two types:

1. Cross-sectional data, measurements from a random sample, data in which the ordering is not important in the analysis.
2. Logitudinal data are measurements (observations) of the same quantity on the same subject ate different time points.

We will concentrate for the time being on cross-sectional data, considering graphical and numerical descriptions of these data, and finally making inference by determining appropriate models, estimates of model parameters,and making any inferences warranted by the analysis.

For these data types the theory of the normal distribution plays an important role.

1. For theoretical reasons real data are usually considered normally distributed.
2. Once we have determined normality, the data is usually easier to work with.
3. For descriptive reasons as well as reasons corresponding to making inferences on the data. The standard deviation and mean can be determined readily if the distribution is normal. Other distribution can create some difficulty in terms of parameter estimation.

It becomes a very important task to determine whether a distribution is normal or nonnormnal. In terms of numerical measures, this determination can get clouded. For instance, measures of location(mean, median, mode) can be similar for several distributions.

## 9 Assessing Normality

### 9.1 Probability plots

Probability plots are an extremely useful graphical tool for qualitatively assessing the fit of data to a theoretical distribution. Consider a sample of size $n$ from a uniform distribution on [0,1]. Denote the ordered sample values by $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$. These are called the order statistics. It can be shown that $E\left(X_{(j)}\right)=\frac{j}{n+1}$. This suggests plotting the ordered observations $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$, against the points $\frac{1}{n+1}, \frac{2}{n+1}, \ldots, \frac{n}{n+1}$. This should be recognized as being the cumulative distribution function of the uniform distribution.

This technique can be extended to other continuous probability laws (distributions). Let's say that $X$ is a continuous random variable with a strictly increasing cumulative distribution function $F_{x}$, and if $Y=F_{x}(x)$ then $Y$ has a uniform distribution on $[0,1] . Y=F_{x}(x)$ is known as the probability integral transform. Hence, the following procedure is suggested. Suppose that it is hypothesized that $X$ follows a certain distribution, $F$. Given a sample $x_{1}, x_{2}, \ldots, x_{n}$ we plot

$$
\begin{aligned}
F\left(X_{(k)}\right) & \text { vs } \frac{k}{n+1} \text { Uniform: } \mathrm{E}\left(X_{(k)}\right) \\
& =\frac{k}{n+1}
\end{aligned}
$$

or equivalently

$$
X_{(k)} \quad \text { vs } \quad F^{-1}\left(\frac{k}{n+1}\right)
$$

In some cases, $F$ is of the form

$$
F(x)=G\left(\frac{x-\mu}{\sigma}\right)
$$

where $\mu$ and $\sigma$ are called location and scale paramaters, respectively. The normal distribution is of this form. We could plot

$$
\frac{X_{(k)}-\mu}{\sigma} \quad \text { vs. } \quad G^{-1}\left(\frac{k}{n+1}\right)
$$

or, if we plotted

$$
X_{(k)} \quad \text { vs. } \quad G^{-1}\left(\frac{k}{n+1}\right)
$$

the result would be approximately a straight line, if the model were correct

$$
X_{(k)} \approx \sigma G^{-1}\left(\frac{k}{n+1}\right)+\mu
$$

Slight modifications of the procedure are sometimes used. For example, rather than $G^{-1}\left(\frac{k}{n+1}\right), E\left(X_{(k)}\right)$, the expected value of the $k^{t h}$ smallest observation can be used. But it can be argued that

$$
E\left(X_{(k)}\right) \approx F^{-1}\left(\frac{k}{n+1}\right)=\sigma G^{-1}\left(\frac{k}{n+1}\right)+\mu
$$

So, this modification yields very similar results to the original procedure.
The procedure can be viewed from another perspective. Given that $F^{-1}\left[\frac{k}{n+1}\right]$ is the $\frac{k}{n+1}$ st quantile of the distribution $F$, that is the point such that the probability that a random variable with distribution function $F$ is less than it is $\frac{k}{n+1}$. We are thus plotting the ordered observation ( which may be viewed as the observed or empirical quantile) versus the quantile of the theoretical distribution. An example set of observations. We have tensile strengths from 4 different types of die sets in which we have taken 10 observations each.

Table 1: Tensile Strengths from 4 Die Sets

| Observation | Die 1 | Die 2 | Die 3 | Die 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 18.9 | 16.9 | 19.9 | 15.9 |
| 2 | 19.3 | 17.5 | 20.2 | 16.0 |
| 3 | 19.5 | 17.8 | 21.3 | 16.8 |
| 4 | 20.0 | 18.0 | 21.5 | 17.2 |
| 5 | 20.5 | 18.3 | 21.7 | 17.4 |
| 6 | 20.6 | 18.4 | 21.8 | 17.5 |
| 7 | 20.7 | 18.6 | 21.9 | 17.7 |
| 8 | 20.8 | 18.8 | 21.9 | 17.9 |
| 9 | 21.0 | 19.2 | 22.5 | 18.1 |
| 10 | 22.1 | 19.9 | 23.0 | 19.0 |

We can get summary statistics for the tensile strengths of these different types of dies. They are:

|  | DIE1 | DIE2 | DIE3 | DIE4 |
| :--- | ---: | ---: | ---: | ---: |
| N | 10 | 10 | 10 | 10 |
| SUM | 203.40 | 183.40 | 215.70 | 173.50 |
| MEAN | 20.340 | 18.340 | 21.570 | 17.350 |
| SD | 0.9395 | 0.8592 | 0.9393 | 0.9419 |
| VARIANCE | 0.8827 | 0.7382 | 0.8823 | 0.8872 |
| SE MEAN | 0.2971 | 0.2717 | 0.2970 | 0.2979 |
| C.V. | 4.6190 | 4.6848 | 4.3548 | 5.4290 |
| MINIMUM | 18.900 | 16.900 | 19.900 | 15.900 |
| IST QUARTILE | 19.450 | 17.725 | 21.025 | 16.600 |
| MEDIAN | 20.550 | 18.350 | 21.750 | 17.450 |
| 3RD QUARTILE | 20.850 | 18.900 | 22.050 | 17.950 |
| MAXIMUM | 22.100 | 19.900 | 23.000 | 19.000 |
| MAD | 0.5000 | 0.5000 | 0.3500 | 0.5500 |
| BIASED VAR | 0.7944 | 0.6644 | 0.7941 | 0.7985 |
| SKEW | 0.1641 | 0.1426 | -0.4853 | -0.0774 |
| KURTOSIS | -0.4912 | -0.4141 | -0.4211 | -0.5424 |

### 9.2 Quantile-plots

Let's construct a quantile plot for die types 2 and 3. First, reconsider the table of values. A quantile plot is

Table 2: Tensile Strengths from 4 Precision Die Sets

| Observation | $\mathrm{p}=\frac{i-0.5}{n}$ | Die 1 | Die 2 | Die 3 | Die 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.05 | 18.9 | 16.9 | 19.9 | 15.9 |
| 2 | 0.15 | 19.3 | 17.5 | 20.2 | 16.0 |
| 3 | 0.25 | 19.5 | 17.8 | 21.3 | 16.8 |
| 4 | 0.35 | 20.0 | 18.0 | 21.5 | 17.2 |
| 5 | 0.45 | 20.5 | 18.3 | 21.7 | 17.4 |
| 6 | 0.55 | 20.6 | 18.4 | 21.8 | 17.5 |
| 7 | 0.65 | 20.7 | 18.6 | 21.9 | 17.7 |
| 8 | 0.75 | 20.8 | 18.8 | 21.9 | 17.9 |
| 9 | 0.85 | 21.0 | 19.2 | 22.5 | 18.1 |
| 10 | 0.95 | 22.1 | 19.9 | 23.0 | 19.0 |

simply a scatterplot of the observation versus it's quantile. So the quantile plot for the third die type is given in figure 1.

### 9.3 Quantile-Quantile Plots

Quantile-Quantile plots are useful for comparing distributions. They are generally used to determine if data in a sample follow a particular distribution. In statistics in order to make inferences, it is often assumed that data follow the normal distribution. In which case the quantiles of the sample are compared to the quantiles of the normal distribution. These are generally referred to as normal probability plots.

Let's construct a Q-Q plot for die types 2 and 3. This is given in figure 2 . The fact that a significant amount of points do not fall on the line superimposed signifies that the two sets of observation are different in terms of there distribution.


Figure 1: Quantile plot for Die Set


Figure 2: Comparative Quantile-Quantile plot for Die Sets 2 and 3

### 9.4 Comparable Normal probability plots



Figure 3: Ideal normal plot - signifying data is normally distributed


Figure 4: Figure on left - heavy tailed distribution, figure on right light - tailed


Figure 5: Figure on left - positive skew (skewed right), figure on right negative skew (skewed left)

## 10 Statistical Inference Tests and Confidence Intervals (Chapt. 3 LSM)

### 10.1 Confidence Intervals

The general form of a confidence interval for some unknown parameter is given by:

$$
\hat{\theta} \pm S D_{\hat{\theta} \frac{\alpha}{2}} S E_{\widehat{\theta}}
$$

where

- $\hat{\theta}$ is an estimator of the parameter,
- $\mathrm{SD}_{\widehat{\theta}}$ is the sampling distribution of the estimator, and
- $\mathrm{SE}_{\hat{\theta}}$ is the standard error of the estimator.

That is, if we were to sample the population say, a large but finite number of times, $(1-\alpha) 100 \%$ of the intervals generated from the samples will contain the true population parameter.

There is a duality between confidence intervals and hypotheses tests. Consider the following example. Let $X_{1}, \ldots, X_{n}$ be a random sample from a normal distribution having unknown mean $\mu$ and known variance $\sigma^{2}$. We consider testing the following hypothesis:

$$
\begin{aligned}
H_{0}: \mu & =\mu_{0} \\
H_{0}: \mu & \neq \mu_{0}
\end{aligned}
$$

Consider a test at a specific level $\alpha$ that rejects for $\left|\bar{x}-\mu_{0}\right|>C$, where $C$ is determined so that $\operatorname{Pr}\left\{\left|\bar{x}-\mu_{0}\right|>C\right\}$ if $H_{0}$ is true: $C=\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}$. The test thus does not reject when:

$$
\left|\bar{x}-\mu_{0}\right|<\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}
$$

or

$$
-\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}<\bar{x}-\mu_{0}<\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}
$$

or

$$
\bar{x}-\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}<\mu_{0}<\bar{x}+\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}
$$

A $(1-\alpha) 100 \%$ confidence interval for $\mu_{0}$ is

$$
\left[\bar{x}-\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}, \bar{x}+\sigma_{\bar{x}} \mathcal{Z}_{\frac{\alpha}{2}}\right]
$$

Comparing the acceptance region of the test to the confidence interval, we see that $\mu_{0}$ lies in the confidence interval if and only if the hypothesis tests does not reject. In other words, the confidence interval consists precisely of all those values of $\mu_{0}$ for which the null hypothesis $H_{0}: \mu=\mu_{0}$ is not rejected.

### 10.2 Tables of Confidence Intervals-Single Sample(Chapt. 3 LSM)

| Parameter | Assumptions | $100(1-\alpha) \%$ Confidence interval |
| :---: | :---: | :---: |
| $\mu$ | n large, $\sigma$ known, <br> or normality, <br> $\sigma^{2}$ known | $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ |
| $\mu$ | n large, $\sigma$ unknown | $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$ |
| $\mu$ | normality, $\sigma^{2}$ unknown | $\bar{x} \pm t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}$ |
| $p$ | binomial experiment, <br> large n | $\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} q}{n}}$ |
| $\sigma^{2}$ | normality | $\left(\frac{(n-1) S^{2}}{\chi_{\frac{\alpha}{2}, d f=n-1}}, \frac{(n-1) S^{2}}{\chi_{1-\frac{\alpha}{2}, d f=n-1}^{2}}\right)$ |

## 11 Normal Models - Single Sample Tests of Hypothesis (Chapt. 3 LSM)

Table 3: Single Sample Tests of Hypothesis-Normal Models

| Null <br> Hypothesis | Assumptions | Test Statistic | Alternative Hypothesis | Rejection Region |
| :---: | :---: | :---: | :---: | :---: |
| $\mu=\mu_{0}$ | n large, $\sigma$ known, or normality, $\sigma^{2}$ known | $\mathrm{Z}=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}$ | $\begin{aligned} & \mu>\mu_{0} \\ & \mu<\mu_{0} \\ & \mu \neq \mu_{0} \end{aligned}$ | $\begin{gathered} Z \geq z_{\alpha} \\ Z \leq-z_{\alpha} \\ \|Z\| \geq z_{\alpha / 2} \end{gathered}$ |
| $\mu=\mu_{0}$ | n large, $\sigma$ unknown | $\mathrm{Z}=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}$ | $\begin{aligned} & \mu>\mu_{0} \\ & \mu<\mu_{0} \\ & \mu \neq \mu_{0} \end{aligned}$ | $\begin{gathered} Z \geq z_{\alpha} \\ Z \leq-z_{\alpha} \\ \|Z\| \geq z_{\alpha / 2} \end{gathered}$ |
| $\mu=\mu_{0}$ | normality, n small, <br> $\sigma$ unknown | $\mathrm{T}=\frac{\bar{x}-\mu_{0}}{S / \sqrt{n}}$ | $\begin{aligned} & \mu>\mu_{0} \\ & \mu<\mu_{0} \\ & \mu \neq \mu_{0} \end{aligned}$ | $\begin{gathered} T \geq t_{n-1, \alpha} \\ T \leq-t_{n-1, \alpha} \\ \|T\| \geq t_{n-1, \alpha / 2} \end{gathered}$ |
| $\sigma^{2}=\sigma_{0}^{2}$ | normality | $\mathrm{X}^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}$ | $\begin{aligned} & \sigma^{2}>\sigma_{0}^{2} \\ & \sigma^{2}<\sigma_{0}^{2} \\ & \sigma^{2} \neq \sigma_{0}^{2} \end{aligned}$ | $\begin{gathered} \mathrm{X}^{2} \geq \chi_{n-1, \alpha}^{2} \\ \mathrm{X}^{2} \leq \chi_{n-1,(1-\alpha)}^{2} \\ \mathrm{X}^{2} \geq \chi_{n-1, \alpha / 2}^{2} \\ \mathrm{X}^{2} \leq \chi_{n-1,(1-\alpha / 2)}^{2} \end{gathered}$ |
| $p=p_{0}$ | binomial experiment, n large | $\mathbf{Z}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}$ | $\begin{aligned} & p>p_{0} \\ & p<p_{0} \\ & p \neq p_{0} \end{aligned}$ | $\begin{gathered} Z \geq z_{\alpha} \\ Z \leq-z_{\alpha} \\ \|Z\| \geq z_{\alpha / 2} \end{gathered}$ |

## Case Study: Education

## Mathematical Sciences 405/605 Case Study: Education

Intelligence tests are routinely administered by school guidance counselors and psychcologists as screening devices for their students. However, are all of these tests really accurate indicators of a student's IQ? In a study ${ }^{\dagger}$ to compare two such tests, the Slosson Intelligence Test (SIT) the Wechsler Intelligence Scale for ChildrenRevised (WISC-R), the tests were administered to a sample of 72 children in a large urban school district in central Ohio. The mean age of the children was 8.5 years with a standard deviation of 16.6 months. Scores on the two tests for the 72 children were as follows:

| Test | Mean | Standard Deviation |
| :--- | :---: | :---: |
| WISC-R Full Scale | 86.11 | 15.65 |
| SIT IQ | 90.47 | 14.77 |

i) Assume that the scores of the 72 students represent a random sample from the population of scores for all students who might take the test. Find a point estimate for the average grade on the WISC-R for the population. What is the margin of error for this estimate?
ii) Find a $98 \%$ confidence interval for the mean grade on the SIT test.
iii) In fact, the sample taken by the experimenters was limited to students who were not making adequate academic progress in the regular classroom. What impact does this have on the inferences you can make in parts (b) and (c)?

[^0]
## Case Study: General

## Mathematical Sciences 405/605 Case Study: General Will Your Bill for College Textbooks Continue to Rise?

The number of new U.S. book titles increased from almost 47,000 in 1990 to over 48,000 in 1991. However, this was still below the historic high of about 56,000 titles attained in 1987 (Grannis, 1992). Can we expect an increase or decrease in the price of books, especially hardbacks, if there are more competitors on the market? The following table gives the number of titles and the average price of hardback books classified according to 23 standard subject groups representing one or more specific Dewey Decimal Classification numbers. Consider

|  | $\mathbf{1 9 9 0}$ |  | $\mathbf{1 9 9 1}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Category | Volumes | Average Price | Volumes | Average Price |
| Agriculture | 359 | $\$ 54.24$ | 371 | $\$ 57.73$ |
| Art | 759 | 42.18 | 717 | 44.99 |
| Biography | 1,337 | 28.58 | 1,416 | 27.52 |
| Business | 748 | 45.48 | 790 | 43.38 |
| Education | 562 | 38.72 | 556 | 41.26 |
| Fiction | 1,962 | 19.83 | 2,062 | 21.30 |
| General works | 1,035 | 54.77 | 1,071 | 51.74 |
| History | 1,450 | 36.43 | 1,442 | 39.87 |
| Home economics | 357 | 23.80 | 341 | 24.23 |
| Juveniles | 3,675 | 13.01 | 3,705 | 16.64 |
| Language | 312 | 42.98 | 240 | 51.71 |
| Law | 596 | 60.78 | 240 | 63.89 |
| Literature | 1,312 | 35.80 | 1,265 | 35.76 |
| Medicine | 2,215 | 72.24 | 2,078 | 71.44 |
| Music | 184 | 41.86 | 173 | 41.04 |
| Philosophy/Psychology | 963 | 40.58 | 945 | 42.74 |
| Poetry/drama | 486 | 32.19 | 511 | 33.29 |
| Religion | 977 | 31.31 | 958 | 32.33 |
| Science | 2,028 | 74.39 | 958 | 80.14 |
| Sociology/Economics | 4,504 | 42.10 | 4,306 | 48.83 |
| Sports/recreation | 403 | 30.52 | 440 | 30.68 |
| Technology | 1,521 | 76.48 | 1,620 | 76.40 |
| Travel | 181 | 30.41 | 156 | 33.50 |
| Total | 27,926 | $\$ 42.12$ | 26,361 | $\$ 43.93$ |

the number of volumes and average price per volume in 1990 and 1991 as paired samples for two randomly chosen years for each of the 23 categories of books. Although there was an increase in the total number of books in 1991, the number of hardbacks seems relatively unchanged and the average price per volume seems to have increased over the average 1990 price.
i) Determine whether the difference in the average number of volumes per category for 1991 differs significantly from the 1990 average, using a significance level of 5\%.
ii) Determine whether the change in the average price of a hardback book per category in 1991 differs significantly from that in 1990 at the $5 \%$ level of significance.
iii) Summarize your results concerning the difference in the number and price of books per category in 1991 compared with 1990.

### 11.1 Two Sample Confidence intervals(Chapt. 3 LSM)

| Parameter | Assumptions | 100(1- $\alpha$ )\% Confidence interval |
| :---: | :---: | :---: |
| $p_{1}-p_{2}$ | binomial experiment, $\mathrm{n}_{1}, \mathrm{n}_{2}$ large | $\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}$ |
| $\mu_{1}-\mu_{2}$ | independence, $\mathrm{n}_{1}, \mathrm{n}_{2}$ large, $\sigma_{1}^{2}, \sigma_{2}^{2}$ known, or normality, independence, $\sigma_{1}^{2}, \sigma_{2}^{2}$ (un)known | $\begin{aligned} & \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \\ & \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \end{aligned}$ |
| $\mu_{1}-\mu_{2}$ | independence, $\mathrm{n}_{1}, \mathrm{n}_{2}$ small, normality, $\sigma_{1}^{2}, \sigma_{2}^{2}$ unknown, but equal | $\begin{gathered} \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\frac{\alpha}{2}, n_{1}+n_{2}-2} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\ \text { where } S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{\left(n_{1}+n_{2}-2\right)} \end{gathered}$ |
| $\mu_{1}-\mu_{2}$ | independence, $\mathrm{n}_{1}, \mathrm{n}_{2}$ small, normality, $\sigma_{1}^{2}, \sigma_{2}^{2}$ unknown, but unequal | $\begin{aligned} & \quad\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\ & \text { where } \nu=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}} \end{aligned}$ |
| $\mu_{1}-\mu_{2}=\mu_{D}$ | dependence, normality, n pairs, | $\bar{d} \pm t_{\frac{\alpha}{2}, n-1} \frac{s_{D}}{\sqrt{n}}$ |
| $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$ | independence normality, | $\left(\frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{F_{n_{1}-1, n_{2}-1, \frac{\alpha}{2}}} \frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{F_{n_{1}-1, n_{2}-1,1-\frac{\alpha}{2}}}\right)$ |

## 12 Two Sample Hypothesis Tests of Hypothesis(Chapt. 3 LSM)

### 12.1 Binomial Models

Table 4: Two Sample Hypothesis Tests- Binomial Models

| Null <br> Hypothesis | Assumptions | Test Statistic | Alternative Hypothesis | Rejection Region |
| :---: | :---: | :---: | :---: | :---: |
| $p_{1}-p_{2}=0$ | binomial experiment $\mathrm{n}_{1}, \mathrm{n}_{2} \text { large }$ | $\begin{gathered} \mathrm{Z}=\frac{\left(\hat{p_{1}}-\hat{p_{2}}\right)}{\sqrt{\hat{p} q\left(1 / n_{1}+1 / n_{2}\right)}} \\ \hat{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}} \end{gathered}$ | $\begin{aligned} & p_{1}-p_{2}>0 \\ & p_{1}-p_{2}<0 \\ & p_{1}-p_{2} \neq 0 \end{aligned}$ | $\begin{gathered} Z \geq z_{\alpha} \\ Z \leq-z_{\alpha} \\ \|Z\| \geq z_{\alpha / 2} \end{gathered}$ |
| $p_{1}-p_{2}=\triangle_{0}$ | binomial experiment $\mathrm{n}_{1}, \mathrm{n}_{2} \text { large }$ | $\mathrm{Z}=\frac{\left(\widehat{p}_{1}-\widehat{p}_{2}\right)-\Delta_{0}}{\sqrt{\left(\hat{p}_{1} \hat{q}_{1} / n_{1}+\hat{p}_{2} \hat{q}_{2} / n_{2}\right)}}$ | $\begin{aligned} & p_{1}-p_{2}>\triangle_{0} \\ & p_{1}-p_{2}<\triangle_{0} \\ & p_{1}-p_{2} \neq \triangle_{0} \end{aligned}$ | $\begin{gathered} Z \geq z_{\alpha} \\ Z \leq-z_{\alpha} \\ \|Z\| \geq z_{\alpha / 2} \end{gathered}$ |

### 12.2 Normal Models

Table 5: Two Sample Hypothesis Tests- Normal Models

| Null Hypothesis | Assumptions | $\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$ | Alternative Hypothesis | Rejection <br> Region |
| :---: | :---: | :---: | :---: | :---: |
| $\mu_{1}-\mu_{2}=\triangle_{0}$ | independence $\mathrm{n}_{1}, \mathrm{n}_{2}$ large, $\sigma_{1}^{2}, \sigma_{2}^{2}$ known, <br> or <br> independence normality, $\sigma_{1}^{2}, \sigma_{2}^{2}$ known | $\mathrm{Z}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\Delta_{0}}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}$ | $\begin{aligned} & \mu_{1}-\mu_{2}>\triangle_{0} \\ & \mu_{1}-\mu_{2}<\triangle_{0} \\ & \mu_{1}-\mu_{2} \neq \triangle_{0} \end{aligned}$ | $\begin{gathered} Z \geq z_{\alpha} \\ Z \leq-z_{\alpha} \\ \|Z\| \geq z_{\alpha / 2} \end{gathered}$ |
| $\mu_{1}-\mu_{2}=\triangle_{0}$ | independence, $\mathrm{n}_{1}, \mathrm{n}_{2}$ large, $\sigma_{1}^{2}, \sigma_{2}^{2}$ unknown | $\mathrm{Z}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\Delta_{0}}{\sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}}$ | $\begin{aligned} & \mu_{1}-\mu_{2}>\triangle_{0} \\ & \mu_{1}-\mu_{2}<\triangle_{0} \\ & \mu_{1}-\mu_{2} \neq \triangle_{0} \end{aligned}$ | $\begin{gathered} Z \geq z_{\alpha} \\ Z \leq-z_{\alpha} \\ \|Z\| \geq z_{\alpha / 2} \end{gathered}$ |
| $\mu_{1}-\mu_{2}=\triangle_{0}$ | independence $\mathrm{n}_{1}, \mathrm{n}_{2}$ small, normality, <br> $\sigma_{1}^{2}, \sigma_{2}^{2}$ unknown, $\sigma_{1}^{2}=\sigma_{2}^{2}$ | $\begin{gathered} \mathrm{T}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\Delta_{0}}{S_{p} \sqrt{1 / n_{1}+1 / n_{2}}} \\ \mathrm{~S}_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{\left(n_{1}+n_{2}-2\right)} \end{gathered}$ | $\begin{aligned} & \mu_{1}-\mu_{2}>\triangle_{0} \\ & \mu_{1}-\mu_{2}<\triangle_{0} \\ & \mu_{1}-\mu_{2} \neq \triangle_{0} \end{aligned}$ | $\begin{gathered} T \geq t_{n_{1}+n_{2}-2, \alpha} \\ T \leq-t_{n_{1}+n_{2}-2, \alpha} \\ \|T\| \geq t_{n_{1}+n_{2}-2, \alpha / 2} \end{gathered}$ |
| $\mu_{1}-\mu_{2}=\triangle_{0}$ | independence $\mathrm{n}_{1}, \mathrm{n}_{2}$ small, normality, $\sigma_{1}^{2}, \sigma_{2}^{2}$ unknown, $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ | $\begin{gathered} \mathrm{T}=\frac{\left(\overline{X_{1}}-\overline{X_{2}}\right)-\Delta_{0}}{\sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}} \\ \nu=\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(S_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}} \end{gathered}$ | $\begin{aligned} & \mu_{1}-\mu_{2}>\triangle_{0} \\ & \mu_{1}-\mu_{2}<\triangle_{0} \\ & \mu_{1}-\mu_{2} \neq \triangle_{0} \end{aligned}$ | $\begin{gathered} T \geq t_{\nu, \alpha} \\ T \leq-t_{\nu, \alpha} \\ \|T\| \geq t_{\nu, \alpha / 2} \end{gathered}$ |
| $\mu_{D}=\triangle_{0}$ | normality, n pairs <br> n small dependence | $\mathrm{T}=\frac{\bar{D}-\Delta_{0}}{S_{D} / \sqrt{n}}$ | $\begin{aligned} & \mu_{D}>\triangle_{0} \\ & \mu_{D}<\triangle_{0} \\ & \mu_{D} \neq \triangle_{0} \end{aligned}$ | $\begin{gathered} T \geq t_{n-1, \alpha} \\ T \leq-t_{n-1, \alpha} \\ \|T\| \geq t_{n-1, \alpha / 2} \end{gathered}$ |
| $\sigma_{1}^{2}=\sigma_{2}^{2}$ | normality, independence | $F^{*}=S_{1}^{2} / S_{2}^{2}$ | $\begin{aligned} & \sigma_{1}^{2}>\sigma_{2}^{2} \\ & \sigma_{1}^{2}<\sigma_{2}^{2} \\ & \sigma_{1}^{2} \neq \sigma_{2}^{2} \end{aligned}$ | $\begin{gathered} F^{*} \geq F_{n_{1}, n_{2}, \alpha} \\ F^{*} \leq 1 / F_{n_{2}, n_{1}, \alpha} \\ F^{*} \geq F_{n_{1}, n_{2}, \alpha / 2} \\ \quad \text { or } \\ F^{*} \leq 1 / F_{n_{2}, n_{1}, \alpha / 2} \end{gathered}$ |

## Case Study: Medicine

## Mathematical Sciences 405/605 Case Study: Medicine

We consider data from Rikkers ${ }^{\dagger}$ et al. (1978), who report results of a prospective randomized surgical trial allocating cirrhotic patients who had bled from varices to either a nonselective shunt (standard operation) or to a selective shunt (new operation). The dependent variable is the maximal rate of urea synthesis (MRUS), which is a quantitative test of liver function. Poor liver function is associated with a low MRUS value. MRUS was measured preoperatively and early postoperatively in eight selective shunt patients and thirteen nonselective shunt patients. The purposes of the study were to assess preoperatively the comparability of the selective and the nonselective groups and to longitudinally evaluate the change in liver function of the two groups. Table 1 reports MRUS values for each patient for the preoperative and postoperative periods.

Table 6: Pre and Post Maximal Rate of Urea Synthesis Level (mg urea N/hr/kg BW ${ }^{3 / 4}$ ) and Sample Cell Means, by Group

| Group | Subject | Pre | Post |
| :---: | :---: | :---: | :---: |
| Selective Shunt | 1 | 51 | 48 |
| (new operation) | 2 | 35 | 55 |
|  | 3 | 66 | 60 |
|  | 4 | 40 | 35 |
|  | 5 | 39 | 36 |
|  | 6 | 46 | 43 |
|  | 7 | 52 | 46 |
|  | 8 | 42 | 54 |
| Mean |  | $\bar{x}_{11}=46.375$ | $\bar{x}_{12}=47.125$ |
| Nonselective Shunt | 1 | 34 | 16 |
| (standard operation) | 2 | 40 | 36 |
|  | 3 | 34 | 16 |
|  | 4 | 36 | 18 |
|  | 5 | 38 | 32 |
|  | 6 | 32 | 14 |
|  | 7 | 44 | 20 |
|  | 8 | 50 | 43 |
|  | 9 | 60 | 45 |
|  | 10 | 63 | 67 |
|  | 11 | 50 | 36 |
|  | 12 | 42 | 34 |
|  | 13 | 43 | 32 |
| Mean |  | $\bar{x}_{21}=43.538$ | $\bar{x}_{22}=31.462$ |

[^1]
## Case Study: Medicine Review Questions

i) Based on the pre-operative results, can we say that there is a significant difference in the MRUS for the two groups of individuals selected to compare these two procedures? In other words are the groups comparable? Give a $p$-value to support your conclusions.
ii) Determine a $95 \%$ confidence interval for the difference in the MRUS for the two procedures' preoperative results ?
iii) What if we consider the post-operative results, are they significantly different? Give a $p$-value to support your conclusions.
iv) Determine a $99 \%$ confidence interval for the difference in the MRUS for the two procedures' postoperative results ?
v) Can you suggest a reason for considering a larger confidence level for the post-operative results ?
vi) If there is a significant difference in the post-operative results, what procedure would you suggest is the more beneficial to the patients? Explain.

## 13 Goodness of Fit Tests

### 13.1 First a binomial experiment

The following general description has wide applications. Suppose we can describe a situation as a sequence of trials, each of which has two possible outcomes commonly referred to as 'success' or 'failure'. If the probability of a success at each trial is constant then the number of successes has a binomial distribution. We can summarize this formally as follows:

1. There is a fixed number of trials (n).
2. There are two possible outcomes for each trial ('success' or 'failure').
3. There is a constant probability of success (p). This implies that the outcomes of trials are independent.

Binomial Distribution Example: Over a long period of time it has been observed that a given rifleman can hit a target on a single trial with probability equal to 0.8 . Suppose he fires four shots at the target.

1. What is the probability that he will hit the target exactly two times?
2. What is the probability that he will hit the target at least two times?
3. What is the probability that he will hit the target exactly four times ?

Assume that the trials are independent and that the probability $p$ of hitting the target remains constant from trial to trial, $n=4$ and $p=.8$. Let $x$ denote the number of shots that hit the target. Then, for $x=0,1$, $2,3,4$, we have

$$
\begin{aligned}
p(x) & =\binom{4}{x}(0.8)^{x}(0.2)^{4-x} \\
p(2) & =\binom{4}{2}(0.8)^{2}(0.2)^{4-2} \\
& =\frac{4!}{2!2!}(0.64)(0.04) \\
& =\frac{(4)(3)(2)(1)}{(2)(2)}(0.64)(0.04) \\
& =0.1536 .
\end{aligned}
$$

The probability is .1536 that he will hit the target exactly two times.

$$
\begin{aligned}
P(\text { at least two }) & =p(2)+p(3)+p(4) \\
& =1-p(0)-p(1) \\
& =1\binom{4}{0}(0.8)^{0}(0.2)^{4}\binom{4}{1}(0.8)^{1}(0.2)^{3} \\
& =1-0.0016-0.0256 \\
& =.9728
\end{aligned}
$$

The probability is 0.9728 that he will hit the target at least two times.

$$
\begin{aligned}
p(4) & =\binom{4}{4}(0.8)^{4}(0.2)^{4-4} \\
& =\frac{4!}{4!0!}(0.4096)(1) \\
& =0.4096 .
\end{aligned}
$$

The probability is .4096 that he will hit the target exactly four times.
Note that these probabilities would be incorrect if the rifleman could observe the location of each hit on the target and thereby adjust his aim. In that case, the trials would be dependent and $p$ would likely increase from trial to trial.

Binomial Distribution Example 2: A student has no knowledge whatsoever of the material to be tested on a true-false examination, and so the student flips a fair coin in order to determine the response to each question. What is the probability that the student scores at least $60 \%$ on a ten-item examination?
Here the binomial variable, $X$, the number of correct responses, has $n=10$, and $p=q=\frac{1}{2}$. We need

$$
P(X \geq 6)=\sum_{x=6}^{10}\binom{10}{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{10-x}
$$

Now we find that $\mathrm{P}(X \geq 6)=\frac{193}{512}=0.376953$.
These calculations can easily be done with a pocket computer. If we want to investigate the probability that at least $60 \%$ of the questions are answered correctly as the number of items on the examination increases, then use of a computer algebra system is recommended for aiding in the calculation. Many computer algebra systems contain the binomial probability distribution as a defined probability distribution; for other systems. the probability distribution function may be entered directly. The following results can be found where $n$ is the number of trials and $p$ is the probability of at least $60 \%$ correct:

$$
\begin{array}{ccccc}
n & 10 & 40 & 80 & 100 \\
p & 0.376953 & 0.134094 & 0.0464559 & 0.028444
\end{array}
$$

Clearly, guessing is not a sensible strategy on a test with a large number of items.

### 13.2 A Multinomial Experiment

We can extend the binomial model to the case where instead of there being only 2 possible outcomes there are $k$ possible outcomes, each with it's own probability of occurring.

1. The experiment consists of $n$ identical trials.
2. The outcome of each trial falls into one of $k$ classes or cells.
3. The probability that the outcome of a single trial will fall in a particular cell, say, cell $i$, is $\pi_{i}(i=1,2, \ldots, k)$ and remains the same from trial to trial. Note that $0<\pi_{i}<1$ for all $i$, and $\pi_{1}+\pi_{2}+\pi_{3}+\ldots+\pi_{k}=1$.
4. The trials are independent.
5. The experimenter is interested in $n_{1}, n_{2}, \ldots, n_{k}$, where $n_{i}(i=1,2, \ldots, k)$ is equal to the number of trials in which the outcome falls in cell $i$. Note that $n_{1}+n_{2}+\cdots+n_{k}=\mathrm{n}$.

Definition: (Multinomial random variable). Let an experiment consist of $n$ independent and identical multinomial trials with parameters $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$. Let $n_{i}$ denote the number of trials that result in outcome $i$ for $i=1,2, \ldots, k$. The $k$-tuple $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is called a multinomial random variable with parameters $n, \pi_{1}$, $\pi_{2}, \ldots, \pi_{k}$. The purpose of the chi-squared goodness of fit test is to test the null hypothesis that a given set of observations is drawn from, or "fits", a specified probability distribution. We consider two distinct situations:

1. The hypothesized distribution is completely specified before the sampling is done.
2. The hypothesized distribution is completely specified only after the sampling is done.

Case 1 is useful, but case 2 is particularly interesting because it provides an alternative to the usual procedures for testing normality, ie, normal probability plots, Shapiro-Wilks, and Lilliefors tests.

### 13.3 Goodness of fit

Generally a researcher would be interested in testing the following hypothesis:

$$
\begin{aligned}
& H_{0}: \text { data follows a specified model } \\
& H_{A}: \text { data does not follow the specified model }
\end{aligned}
$$

or

$$
\begin{array}{ll}
H_{0}: \quad \pi_{1}=\pi_{10}, \pi_{2}=\pi_{20}, \cdots \pi_{k}=\pi_{k 0}, & i=1 \ldots k \\
H_{A}: \quad \pi_{i} \neq \pi_{i 0} & \forall i=1 \ldots k
\end{array}
$$

Let $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ be a multinomial random variable with parameters $n, \pi_{1}, \pi_{2}, \ldots, \pi_{k}$. Since a function of random variables is also a random variable, for large $n$ the random variable, under the null hypothesis, that is if the null hypothesis is true,

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(n_{i}-n \pi_{i}\right)^{2}}{n \pi_{i}}
$$

follows an approximate chi-squared distribution with $k-1$ degrees of freedom, given that $n \pi_{i}>5$ for all $i$. In practice, we would reject the null hypothesis in favor of the alternate hypothesis if $X^{2}>\chi_{\nu, \alpha}^{2}$ as shown in the figure below, where $\nu=(\mathrm{k}-1)$.


### 13.4 Exercises

I. Suppose that a response can fall in one of $k=5$ categories with probabilities $\pi_{1}, \pi_{1}, \ldots, \pi_{5}$, respectively, and that $n=300$ responses produced the following category counts: Conduct a test to

| Category | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Observed count | 47 | 63 | 74 | 51 | 65 |

determine if there is a difference the proportion of counts that fall in each of the categories. Use both an hypothesis testing approach ( with $\alpha=0.01$ ) and a significance testing approach ie, determine a $p$-value to make your decision.
II. Gregor Mendel was the first to describe a theory of genetics used is determining genotypes of offspring. The Mendelian theory states that the number of peas of a certain type falling into the classifications i) round and yellow, ii) wrinkled and yellow, iii) round and green, and iv) wrinkled and green should be in the ratio 9:3:3:1. Suppose that 100 such peas revealed $56,19,17$, and 8 in the respective classes. Do these data disagree with the Mendelian theory ? Use both an hypothesis testing approach ( with $\alpha=0.05$ ) and a significance testing approach ie, determine a $p$-value to make your decision.
III. Medical statistics show that deaths due to four major diseases - call them disease A, disease B, disease C, and disease D, account for $15,21,18$, and 14 percent, respectively, of all non-accidental deaths. A study of the cases of 308 non-accidental deaths at a hospital gave the following counts of patients dying of disease A , disease B , disease C , and disease D :

| Disease | Number <br> of Deaths |
| :---: | :---: |
| A | 43 |
| B | 76 |
| C | 85 |
| D | 21 |
| Others | 83 |

Do these data provide sufficient evidence to indicate that the proportion of people dying of diseases $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D at this hospital differ from the proportions accumulated for the population at large ? Use both an hypothesis testing approach ( with $\alpha=0.025$ ) and a significance testing approach ie, determine a $p$-value to make your decision.
IV. Computer systems crash for a number of different reasons, among them are software failures, hardware failures, operator errors, and system overloads. It is believed that $10 \%$ of all crashes are due to software failure, $5 \%$ to hardware failure, $25 \%$ to operator error, and $40 \%$ to system overloading. Over an extended period of time 150 computer crashes were monitored with the following results: 13 crashes due to software failures, 10 to hardware failures, 42 to operator errors, 65 to system overloading, and the rest to other causes. Do these data lead us to suspect the accuracy of the stated percentages ? Use both an hypothesis testing approach ( with $\alpha=0.05$ ) and a significance testing approach ie, determine a $p$-value to make your decision.
V. Although white has long been the most popular car color, recent trends in fashion and home design have signaled the emergence of green as the new color of the 1990s. The growth in the popularity of green hues stems partially from an increased interest in the environment and increased feelings of uncertainty. According to an article in the Press-Enterprise ("White Cars Still Favored," 1993),"green symbolizes harmony and counteracts emotional stress." The article cites the top five colors and the percentage of the market share for four different classes of cars. These data are given below for the truck-van category:

| Color | White | Medium/Dark <br> Red | Green | Red | Black |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage | 29.72 | 11.00 | 9.24 | 9.08 | 9.01 |

In an attempt to verify the accuracy of these figures, we take a random sample of 250 trucks and vans and record their color. Suppose that the number of vehicles falling in each of the five categories above were $82,22,27,21$, and 20 , respectively.
(a) Is there any category that is missing in the above classification? How many cars and trucks fell in that category?
(b) Is there sufficient evidence to indicate that the percentages of trucks and vans differ from those given above? Find the approximate $p$-value for the test.

## 13.5 $\mathbf{r} \times \mathbf{c}$ Tests for homogeneity - or "likeness"

The goodness of fit tests can be extended to those cases where there are two variables under study, and the main interest being that of determining if there is an homogeneity or "likeness" between two variables. In this case, one of the marginal totals is fixed. Assumptions:

1. Two variables - one of which is studied at $r$ levels and the other at $c$ levels.
2. One of the marginal totals is fixed by the researcher or resources

| Variable B |  |  |  |  |  | Row Totals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n_{11}$ | $n_{12}$ | $n_{13}$ | $\cdots$ | $n_{1(c-1)}$ | $n_{1 c}$ | $n_{1 .}$ |
|  | $n_{21}$ | $n_{21}$ | $n_{23}$ | $\cdots$ | $n_{2(c-1)}$ | $n_{2 c}$ | $n_{2 .}$ |
|  | $\vdots$ | $\vdots$ | $\vdots$ | $\cdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| Column Totals | $n_{(r-1) 1}$ | $n_{(r-1) 2}$ | $n_{(r-1) 3}$ | $\cdots$ | $n_{(r-1)(c-1)}$ | $n_{(r-1) c}$ | $n_{(r-1) .}$ |
|  | $n_{r 1}$ | $n_{r 2}$ | $n_{r 3}$ | $\cdots$ | $n_{r(c-1)}$ | $n_{r c}$ | $n_{r .}$ |
|  | $n_{.1}$ | $n_{.2}$ | $n_{.3}$ | $\cdots$ | $n_{.(c-1)}$ | $n_{. c}$ | $n_{. .}$ |


|  | Variable B |  |  |  |  |  |  | Row Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\pi_{11}$ | $\pi_{12}$ | $\pi_{13}$ | $\cdots$ | $\pi_{1(c-1)}$ | $\pi_{1 c}$ |  |  |
|  | $\pi_{21}$ | $\pi_{21}$ | $\pi_{23}$ | $\cdots$ | $\pi_{2(c-1)}$ | $\pi_{2 c}$ |  |  |
|  | $\vdots$ | $\vdots$ | $\vdots$ | $\cdots$ | $\vdots$ | $\vdots$ |  |  |
|  | $\vdots$ | $\pi_{r 3}$ | $\vdots$ |  |  |  |  |  |
|  | $\pi_{(r-1) 1}$ | $\pi_{(r-1) 2}$ | $\pi_{(r-1) 3}$ | $\cdots$ | $\pi_{(r-1)(c-1)}$ | $\pi_{(r-1) c}$ |  |  |
|  | $\pi_{r 1}$ | $\pi_{r 2}$ | $\pi_{r(c-1)}$ | $\pi_{r c}$ | 1 |  |  |  |

Generally a researcher would be interested in testing the following hypothesis:
$H_{0}$ : The proportions are equal
$H_{A}$ : At least one pair of proportions are unequal
or

$$
\begin{array}{ll}
H_{0}: \quad \pi_{1 j}=\pi_{2 j}=\cdots=\pi_{(r-1) c}=\pi_{r c}, & j=1 \ldots c \\
H_{A}: & \pi_{i j} \neq \pi_{i^{\prime} j}
\end{array} \quad \text { for any } i^{\prime}=1 \ldots r \text { and } j=1 \ldots c .
$$

Under the null hypothesis the proportion are the same, the expected values for each of these cells are given by:

$$
e_{i j}=\frac{n_{i .} n_{. j}}{n}
$$

Assumption: $\epsilon_{i j}>5$. Under the null hypothesis, that is if the null hypothesis is true,

$$
X^{2}=\frac{\sum_{i=1}^{r} \sum_{j=1}^{c}\left(n_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

follows an approximate chi-squared distribution with $k-1$ degrees of freedom, given that $\epsilon_{i j}>5$ for all $i$ and $j$.
In practice, we would reject the null hypothesis in favor of the alternate hypothesis if $X^{2}>\chi_{\nu, \alpha}^{2}$ as shown in the figure below, where $\nu=(\mathrm{r}-1) \times(\mathrm{c}-1)$.


### 13.6 Exercises

I. A commercial nuclear power plant contains one or more nuclear power units, the term nuclear power plant usually refers to a single nuclear unit. The Oconee nuclear cluster would have three units and hence be considered three plants. In a study of the amount of failures in plants similar to the Oconee plant over the failure history of the plant (time since first failure), the number of failures reported for 7 plants were considered with the following results:

| Plant | Failure History Period | Number of Failures in <br> Failure History Period |
| :---: | :---: | :---: |
| A | $12 / 82-12 / 88$ | 35 |
| B | $1 / 78-2 / 86$ | 16 |
| C | $5 / 76-7 / 86$ | 18 |
| D | $2 / 83-1 / 87$ | 9 |
| E | $8 / 83-10 / 86$ | 13 |
| G | $11 / 78-6 / 84$ | 8 |
| H | $4 / 84-2 / 91$ | 11 |

Ignoring the failure history period, does there appear to be sufficient evidence that the number of failures is different across all plants? Use both an hypothesis testing approach ( with $\alpha=0.10$ ) and a significance testing approach ie, determine a $p$-value to make your decision. Conduct the test again, after removing plant A.
II. A study of the purchase decisions for three stock portfolio managers A, B, and C was conducted to compare the rates of stock purchases that resulted in profits over a time period that was less than or equal to 1 year. One hundred randomly selected purchases obtained for each of the managers gave the following results:

|  | Manager |  |  |
| :---: | :---: | :---: | :---: |
|  | A | B | C |
| Purchases that <br> resulted in a profit | 63 | 71 | 55 |
| Purchases that <br> resulted in no profit | 37 | 29 | 45 |
| Total | 100 | 100 | 100 |

Do the data provide evidence of differences among the rates of successful purchases for the three managers? Use both an hypothesis testing approach ( with $\alpha=0.05$ ) and a significance testing approach ie, determine a $p$-value to make your decision.
III. A study is conducted to test for independence between air quality and air temperature. These data are obtained from records on 200 randomly selected days over the last few years. Do these data indicate an association between these variables? Use both an hypothesis testing approach ( with $\alpha=0.10$ ) and a significance testing approach ie, determine a $p$-value to make your decision.

|  | Air quality |  |  |
| :--- | ---: | ---: | ---: |
| Temperature | Poor | Fair | Good |
| Below average | 1 | 3 | 24 |
| Average | 12 | 28 | 76 |
| Above Average | 12 | 14 | 30 |

IV. A new method for etching semiconductors is being studied. The quality of the etch is to be compared to that obtained using two older techniques. The results of the study are given in the table below. State the null hypothesis of homogeneity mathematically. Use both an hypothesis testing approach ( with $\alpha=0.10$ ) and a significance testing approach ie, determine a $p$-value to make your decision.

|  | Quality |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Method | Excellent | Good | Fair | Poor |  |
| High Pressure (old) | 113 | 34 | 21 | 32 | 200 |
| Reactive ion(old) | 117 | 31 | 25 | 27 | 200 |
| Magnetron(new) | 130 | 40 | 20 | 10 | 200 |
|  |  |  |  |  | 600 |

V. Are baby-boomers more likely to increase their investing now that they are reaching middle age? A poll was conducted by Hal Riney \& Partners (Los Angeles Times, June 11, 1990). in which 400 investors were classified according to their age group and their likely investment pattern over the next 5 years versus the last 5 years. The data are shown below. Notice that there were 200 investors included from each age group, ie., a fixed marginal. Do these data provide sufficient evidence to

| Age Group | More | Less | Same |
| :---: | :---: | :---: | :---: |
| $\mathbf{3 5 - 5 4}$ | 90 | 18 | 92 |
| $\mathbf{5 5 +}$ | 40 | 60 | 100 |

conclude that the investing patterns of the baby-boomers age group differs from that of that of the older age group ? Use both an hypothesis testing approach (with $\alpha=0.01$ ) and a significance testing approach ie, determine a $p$-value to make your decision.

### 13.7 Tests for Independence

In the case of testing for independence

$$
\begin{aligned}
& H_{0}: \text { Independence } \\
& H_{A}: \text { Dependence }
\end{aligned}
$$

or

$$
\begin{aligned}
& H_{0}: \quad \pi_{i j}=\pi_{i .} \pi_{. j}, \quad \forall i \text { and } j \\
& H_{A}: \quad \pi_{i j} \neq \pi_{i . \pi_{. j}} \quad \text { for some } i \text { and } j
\end{aligned}
$$




Under the null hypothesis, the expected values for each of these cells are given by:

$$
e_{i j}=\frac{n_{i . n} . n_{j}}{n}
$$

Assumption: $\epsilon_{i j}>5$.

Under the null hypothesis, that is if the null hypothesis is true,

$$
X^{2}=\frac{\sum_{i=1}^{r} \sum_{j=1}^{c}\left(n_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

follows an approximate chi-squared distribution with $k-1$ degrees of freedom, given that $\epsilon_{i j}>5$ for all $i$ and $j$.
In practice, we would reject the null hypothesis in favor of the alternate hypothesis if $X^{2}>\chi_{\nu, \alpha}^{2}$ as shown in the figure below, where $\nu=(\mathrm{r}-1) \times(\mathrm{c}-1)$.


### 13.8 Exercises

I. A cancer researcher performs what is called a prospective be selecting a large group of individuals at random and following their progress for a long period of time. At the end of the study period each individual is classified according to whether or not lung cancer was present and according to whether the individual has been exposed to an identifiable source of airborne asbestos. The result of this classification yielded the following table:

|  | Exposure Status |  |  |  |
| :--- | :---: | :---: | :---: | ---: |
|  |  | Exposed | Totals |  |
| Cancer | Yes | 10 | 40 | 50 |
|  | No | 490 | 4460 | 4950 |
|  |  | 500 | 4500 | 5000 |

Do these data suggest an association of exposure to airborne asbestos and cancer development ? Use both an hypothesis testing approach ( with $\alpha=0.10$ ) and a significance testing approach ie, determine a $p$-value to make your decision.
II. A problem that sometimes occurs during surgical operations is the occurrence of infections during blood transfusions. An experiment was conducted to determine whether the injection of antibodies reduced the probability of infection. An examination of the records of 138 patients produced the data shown in the accompanying table. Do the data provide sufficient evidence to indicate that injections of antibodies affect the likelihood of transfusional infections? Use both an hypothesis testing approach ( with $\alpha=0.01$ ) and a significance testing approach ie, determine a $p$-value to make your decision.

|  | Infection | No Infection |
| :--- | :---: | :---: |
| Antibody | 4 | 78 |
| No antibody | 11 | 45 |

III. A recent study claims that an increasing proportion of engineering firms are purchasing liability insurance. This claim is based on a survey of 753 engineering firms. The status of each firm is recorded for the current and for the previous year. The data upon which the claim is based are shown in the table below. Do the data support the claim? Explain, based on the $p$-value of McNemar's test.

|  | This year |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| Last year | Insured | Uninsured |  |
| Insured | 650 | 5 | 655 |
| Uninsured | 28 | 70 | 98 |
|  | 678 | 75 | 753 |

IV. The following table shows the categorization of 204 men awaiting bypass heart surgery according to the relative degree of each man's coronary artery obstruction and according to his perceived level of discomfort due to angina pectoris (Jenkins et al., 1983). Do the data present sufficient evidence to indicate that the level of angina is dependent on the level of coroners artery obstruction? The authors report the $p$-value for a chi-square test to be $p=0.01$.
(a) Compute the value of $\chi^{2}$ for the data.
(b) Find the $p$-value for the test and compare with the authors' value $p=0.01$.
(c) What conclusions would you reach based on your analysis?

|  | Arteries Obstructed 75\% or More |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Level of Angina | 0 or $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ to $\mathbf{6}$ | Total |
| None | 3 | 21 | 20 | 44 |
| Mild | 2 | 12 | 9 | 23 |
| Moderate | 26 | 20 | 31 | 77 |
| Moderate/severe | 13 | 10 | 18 | 41 |
| Severe | 7 | 5 | 7 | 19 |

## Case Study: Marketing the Library

## Case Study: Marketing the Library Can a Marketing Approach Improve Library Services?

Carol Day and Del Loewenthal (1992) studied the responses of young adults in their evaluation of library services. Of the $\mathrm{n}=200$ young adults involved in the study, $\mathrm{n}_{1}=152$ were students, and $\mathrm{n}_{2}=48$ were nonstudents. The following table presents the number of favorable responses for each group to seven questions in which the atmosphere, staff, and the design of the library were examined. The entry in the last column labeled

Table 7: Favoroble Responses to Attitude Questions for Students and Nonstudents

| Question | Question | \% Student <br> Favorable | $n_{1}=152$ | \% Nonstudent <br> Favorable | $n_{2}=48$ | $P\left(\chi^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Libraries are friendly | 79.6 | 121 | 56.2 | 27 | $<.01$ |
| 4 | Libraries are dull | 77 | 117 | 58.3 | 28 | $<.05$ |
| 5 | Library staff are helpful | 91.4 | 139 | 87.5 | 42 | N. S. |
| 6 | Library staff are less <br> helpful to teenagers | 60.5 | 92 | 45.8 | 22 | $<.01$ |
| 7 | Libraries are so quiet <br> they feel uncomfortable | 75.6 | 115 | 52.05 | 25 | $<.01$ |
| 11 | Libraries should be |  |  |  |  |  |
|  | 29 | 44 | 18.8 | 9 | N.S. |  |
| more brightly decorated |  |  |  |  |  |  |
| Libraries are badly |  |  |  |  |  |  |
| signposted |  |  |  |  |  |  |

$\mathrm{P}\left(\chi^{2}\right)$ is the $p$-value for testing the hypothesis of no difference in the proportion of students and nonstudents answering each questionfavorably. Hence. each question gives rise to a $2 \times 2$ contingency table.

1. Perform a test of homogeneity for each question and verify the reported $p$-value of the rest.
2. Questions 3,4 , and 7 , are concerned with the atmosphere of the library; questions 5 and 6 are concerned with the library staff; and questions 11 and 13 are concerned with the library design. How would you summarize the results of your analyses regarding the seven questions concerning the image of the library ?
3. With the information given. is it possible to do any further testing concerning the proportion favorable versus unfavorable responses for two or more questions simultaneously?

## 14 Important Formulas and Concepts in Regression Analysis(Chapt. 4 LSM)

### 14.1 Strategy

Data investigation, model specification, parameter estimation, model assessment, variable selection.

### 14.2 Simple Linear regression and the principle of Least Squares

Linear model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

where $\left(x_{i}, y_{i}\right)$ is the $i^{t h}$ data point and

1. $x_{i}$ is a realization of the "independent" or predictor random variable X .
2. $y_{i}$ is a realization of the "dependent" or prediction random variable Y .
3. $\beta_{0}$ is the $y$-intercept parameter, generally unknown.
4. $\beta_{1}$ is the slope or rate of change, generally unknown.
5. $\epsilon_{i} i=1,2, \ldots, n$ are unobservable "noise" or "error" random variables with mean zero and constant variance $\sigma^{2}$.
6. $\beta_{0}+\beta_{1} \mathrm{x}$ is called the true unknown "regression function" of y on X . ie, $\mathrm{E}[\mathrm{Y}]=\beta_{0}+\beta_{1} \mathrm{x}$.

One can fit any number of models using least squares

1. linear models

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}
$$

2. polynomials

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{p} x_{i}^{p}
$$

3. Other functions that are linear in the parameters to be estimated

$$
\begin{aligned}
& y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{1 i}^{\frac{3}{2}}+\frac{\beta_{3}}{\ln \left|x_{1 i}\right|} \\
& y_{i}=\beta_{0}+\beta_{1} e^{-2 x_{1 i}}+\beta_{2} \sin \left(x_{1 i} x_{2 i}\right)+\beta_{3} x_{1 i} \ln \left(x_{2 i}^{2}\right) \tan \left(x_{3 i}\right)
\end{aligned}
$$

4. nonlinear models that have been "linearized".

Suppose we let

$$
\begin{aligned}
\epsilon_{i} & =y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right) \\
\text { then } & \\
\epsilon_{i}^{2} & =\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2} .
\end{aligned}
$$

Let Q be the sum of these squared differences:

$$
Q=\sum_{i=1}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2} .
$$

We wish to find estimates of $\beta_{0}$ and $\beta_{1}$, call them $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}$, that would minimize Q .

$$
\begin{aligned}
& \frac{\partial Q}{\partial \beta_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \\
& \text { and } \\
& \frac{\partial Q}{\partial \beta_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) .
\end{aligned}
$$

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve the following equations:

$$
\begin{aligned}
& \sum_{i=1}^{n} y_{i}=n \widehat{\beta_{0}}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{i} \\
& \text { and } \\
& \sum_{i=1}^{n} x_{i} y_{i}=\widehat{\beta_{0}} \sum_{i=1}^{n} x_{i}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{i}^{2} .
\end{aligned}
$$

Solving first for $\widehat{\beta_{1}}$ and them for $\widehat{\beta_{0}}$ we have the following estimates:

$$
\widehat{\beta_{1}}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}
$$

and

$$
\widehat{\beta_{0}}=\frac{\sum_{i=1}^{n} y_{i}-\widehat{\beta_{1}} \sum_{i=1}^{n} x_{i}}{n}=\bar{y}-\widehat{\beta_{1}} \bar{x} .
$$

We can simplify the expression for $\beta_{1}$ to:

$$
\widehat{\beta_{1}}=\frac{S_{x y}}{S_{x x}}
$$

where

$$
\begin{aligned}
& S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}=\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y} \\
& S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}
\end{aligned}
$$

and also

$$
S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} y_{i}^{2}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}=\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2} .
$$

### 14.3 The fitted regression line(Chapt. 4 LSM)

The fitted regression line is given by after finding estimates for $\beta_{0}$ and $\beta_{1}$

$$
\widehat{y_{i}}=\widehat{\beta_{0}}+\widehat{\beta_{1}} x_{i} .
$$

Define a residual as:

$$
e_{i}=\widehat{\epsilon_{i}}=y_{i}-\widehat{y_{i}}
$$

that is the actual (original) value of the response minus the fitted (predicted) value. After getting $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}$ we can substitute these values back into Q to find this minimum.

$$
\widehat{Q}=\sum_{i=1}^{n}\left[y_{i}-\left(\widehat{\beta_{0}}+\widehat{\beta_{1}} x_{i}\right)\right]^{2}=\sum_{i=1}^{n}\left[y_{i}-\widehat{y}_{i}\right]^{2}=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} .
$$

This sum which can be re-written as

$$
S_{y y}-\widehat{\beta}_{1} S_{x y}=S S_{E}
$$

is called the residual or error sum of squares $\left(\mathrm{SS}_{E}\right)$. An unbiased estimate of $\sigma^{2}$ is given by

$$
\begin{aligned}
\widehat{\sigma^{2}} & =\frac{S S_{E}}{n-2}=M S_{E} \\
& =S^{2}
\end{aligned}
$$

which is referred to as the mean square error ( or literally the mean of the squared errors).

## 15 Parsimony in Modeling(Chapt. 4 LSM)

The simplest useful model we can fit to data is a constant function. With this model, the dependent variable $y$ does not change as the independent variable $x$ changes. While different constants could be chosen (for example, any measure of center), the mean $\bar{y}$ is the most commonly chosen constant. If all the data actually has the same $y$ coordinate, then the data has no variation and a constant function explains the data completely. If, however, the $y$ values are not constant, then, clearly, there is some variation in the data about the mean. One way to measure this variation is called the total sum of squares, or $S S_{T o t}$, which is defined

$$
S S_{T o t}=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)
$$

Notice that $S S_{T o t} /(\mathrm{n}-1)$ can be called the sample variance, reinforcing the idea that $S S_{T o t}$ is a measure of the variance in the data.

If we are building a model to explain the variation seen in the data, we need to use a model more complicated than a constant function; we call it $y=f(x)$. If the data lie on this function exactly, then it explains all the variation. Usually, however, there is some noise to the data causing it to lie about a model function. Sometimes this noise is due to randomness. Sometimes there is curve which is a better model. Using a line, for instance, to model perfectly parabolic data, results in data points not lying on the model curve even in the absence of any random effects. In any case, there are two types of variations in the data: variation explained by the model and variation not explained by the model. The deviations between the predicted and actual $y$ values $\left(y_{i}-\hat{y}\right)$ are called residuals. The variation not explained by the model is called the residual sum of squares or $S S_{\text {Res }}$. This is formally defined as

$$
S S_{R e s}=\sum_{i=1}^{N}\left(y_{i}-\widehat{y}\right)
$$

One common form of data fitting is called regression. Because of this, the variation explained by the model (regression function) is called the regression sum of squares or $S S_{\text {Reg. }}$. This is defined by

$$
S S_{R e g}=\sum_{i=1}^{N}\left(\widehat{y}_{i}-\bar{y}\right)
$$

Again this is the deviation from the mean explained by the model.

### 15.1 Understanding Variation(Chapt. 5 LSM)



Figure 6: Total Variation: Explained and Unexplained
It is easy to show algebraically that

$$
S S_{T o t}=S S_{R e g}+S S_{R e s}
$$

Intuitively this means that the total variation in the data is the sum of the variation explained by the model as well as the variation not explained by the model. Thus the ratio

$$
\frac{S S_{R e g}}{S S_{T o t}}
$$

is the fraction (or percentage if multiplied by $100 \%$ ) of the variation in the data explained by the model. This ratio is called $R^{2}$. Thus

$$
R^{2}=\frac{S S_{R e g}}{S S_{T o t}}
$$

Some books call $R^{2}$ the coefficient of determination. If the data is almost completely random, then almost none of the variance in the data is explained by the model. In this case, $S S_{R e g} \approx 0$ and hence $R^{2} \approx 0$. On the other hand if the data has almost no noise and lies very nearly on the model or regression curve, then $S S_{\text {Res }} \approx 0$, so $S S_{T o t} \approx S S_{\text {Reg }}$ and hence $R^{2} \approx 1$.

The observant reader may notice that there are some similarities between this discussion and the discussion of correlation. Indeed the notation $R^{2}$ comes from the fact that if we fit a line to data which minimizes the unexplained variance, the statistic $R^{2}$ is exactly the correlation $r$ squared. For this reason, in simple linear regression, $R^{2}$ is denoted by $r^{2}$.

### 15.2 Correlation and Coefficient of Determination(Chapt. 5 LSM)

We can define the Pearson product moment correlation coefficient $(r)$ as an estimate of the true population coefficient $\rho$.

$$
\begin{aligned}
r & =\frac{\left[\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}\right]}{\sqrt{\left(\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}\right)\left(\sum_{i=1}^{n} y_{i}^{2}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}\right)}} \\
& =\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}} \\
& =\widehat{\beta_{1}} \sqrt{\frac{S_{x x}}{S_{y y}}} .
\end{aligned}
$$

The correlation is a measure of the strength and direction of the linear relationship between $x$ and $y$. Note that it does not imply that $x$ causes $y$ or influences $y$. It just measures the strength of the relationship. The coefficient of determination

$$
\begin{aligned}
R^{2} & =\frac{\left[\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}\right]^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}\right)\left(\sum_{i=1}^{n} y_{i}^{2}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}\right)} \\
& =\frac{S S_{R}}{S_{y y}} \\
& =1-\frac{S S_{E}}{S_{y y}}
\end{aligned}
$$

can be defined as the proportion of variability in the responses $y$ that can be explained by or accounted for by the predictor $X$.

### 15.3 Inferences on the population correlation coefficient $\rho$ (Chapt. 5 LSM)

| Null Hypothesis | Assumptions | Test Statistic | Alternative Hypothesis | Rejection Region |
| :---: | :---: | :---: | :---: | :---: |
| $\rho=0$ | Error assumptions <br> $(\mathrm{n}>2)$ |  | $\rho>0$ | $T \geq t_{n-2, \alpha}$ |
|  |  | $\mathrm{~T}=\frac{R \sqrt{n-2}}{\sqrt{1-R^{2}}}$ | $\rho \neq 0$ | $\|T\| \geq t_{n-2, \alpha / 2}$ |
|  |  | $=\frac{\widehat{\beta_{1}-0}}{\sqrt{\frac{M S_{E}}{S_{x x}}}}$ |  |  |
|  |  |  | $\rho<0$ |  |
|  |  |  |  |  |
|  |  |  |  |  |

When $X$ and $Y$ have a bivariate normal distribution:

| Null Hypothesis | Assumptions | Test Statistic | Alternative Hypothesis | Rejection Region |
| :---: | :---: | :---: | :---: | :---: |
| $\rho=\rho_{0}$ | Error assumpt. <br> $(\mathrm{n}>2)$ |  | $\rho>\rho_{0}$ | $Z \geq z_{\alpha}$ |
|  |  | $\mathrm{Z}=\frac{\sqrt{n-3}}{2} \ln \left[\frac{(1+R)\left(1-\rho_{0}\right)}{(1-R)\left(1+\rho_{0}\right)}\right]$ | $\rho \neq \rho_{0}$ | $\|Z\| \geq z_{\alpha / 2}$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

### 15.4 Is the regression significant ?(Chapt. 4 LSM)

One of the first question we need to answer is "Is the regression significant". In the linear case we are basically asking do we have a linear relationship. Is there statistical evidence to conclude that the slope of the true regression line is different from zero ?

| Null Hypothesis | Assumptions | Test Statistic | Alternative Hypothesis | Rejection Region |
| :---: | :---: | :---: | :---: | :---: |
| $\beta_{1}=0$ | Error assumptions <br> $(\mathrm{n}>2)$ | $\mathrm{T}=\frac{\widehat{\beta_{1}-0}}{S_{\widehat{\beta_{1}}}}$ | $\beta_{1}>0$ | $T \geq t_{n-2, \alpha}$ |
|  |  | $=\frac{\widehat{\beta_{1}-0}}{s \sqrt{\frac{1}{S_{x x}}}}$ | $\beta_{1} \neq 0$ | $\|T\| \geq t_{n-2, \alpha / 2}$ |
|  |  |  | $\beta_{1}<0$ | $T \leq-t_{n-2, \alpha}$ |

If the null hypothesis is rejected then the regression is generally considered "significant"

Table 8: Analysis of Variance for Regression

| Source | df | Sum of Squares | Mean Square | F-test |
| :--- | :--- | :--- | :--- | :--- |
| Regression | 1 | $S S_{R}=\hat{\beta}_{1} S_{x y}$ | $M S_{R}=\frac{\hat{\beta}_{1} S_{x y}}{1}$ | $\frac{M S_{R}}{M S_{E}}=F^{*} \sim F_{1, n-2}$ |
| Error | $n-2$ | $S S_{E}=S_{y y}-\hat{\beta}_{1} S_{x y}$ | $M S_{E}=\frac{S S_{E}}{n-2}$ |  |
| Total | $\mathrm{n}-1$ | $S_{y y}$ |  |  |

Of lesser significance is the test for the intercept term $\beta_{0}=0$. It should be noted that the linear model can
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Null Hypothesis } & \text { Assumptions } & \text { Test Statistic } & \text { Alternative Hypothesis } & \text { Rejection Region } \\ \hline \beta_{0}=0 & \begin{array}{c}\text { Error assumptions } \\ (\mathrm{n}>2)\end{array} & \mathrm{T}=\frac{\hat{\beta}_{0}-0}{S_{\widehat{\beta_{0}}}} & \beta_{0}>0 & T \geq t_{n-2, \alpha} \\ & & =\frac{\widehat{\beta_{0}}-0}{} & \beta_{0} \neq 0 & |T| \geq t_{n-2, \alpha / 2} \\ & & \beta_{0}<0 & T \leq-t_{n-2, \alpha} \\ & & \sum_{i=1}^{n S_{x x}} x_{i}^{2}\end{array}\right)$
be re-written so that the intercept term is zero.

### 15.5 Distributional properties of $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}$ (Chapt. 5 LSM)

The method of least squares along with the Gauss-Markov theorem that the estimates $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}$ are the "best linear unbiased estimators" for $\beta_{0}$ and $\beta_{1}$. But what is the distribution of these estimates? Without going into the derivation of the variances of these estimates and following the assumptions made on the error and response random variables, we have that

$$
\widehat{\beta_{0}} \sim N\left(\beta_{0}, \frac{\sigma^{2} \sum_{i=1}^{n} x_{i}^{2}}{n S_{x x}}\right) .
$$

Similarly, it can be shown for slope parameter estimate, $\widehat{\beta_{1}}$,

$$
\widehat{\beta_{1}} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{S_{x x}}\right) .
$$

15.6 Inferences on the parameters $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}($ Chapt. 5 LSM)

$$
\begin{aligned}
& \frac{\widehat{\beta_{0}}-\beta_{0}}{S_{\widehat{\beta_{0}}}} \sim t_{n-2} \\
& \quad \text { and } \\
& \frac{\widehat{\beta_{1}}-\beta_{1}}{S_{\widehat{\beta_{1}}}} \sim t_{n-2} .
\end{aligned}
$$

15.6.1 Confidence Interval for $\beta_{0}$ and $\beta_{1}$. (Chapt. 5 LSM)

Using the above a (1- $\alpha)(100 \%)$ confidence interval for $\beta_{0}$ is given by

$$
\begin{aligned}
\widehat{\beta_{0}} & \pm t_{n-2, \alpha / 2} S_{\widehat{\beta_{0}}} \\
& \pm t_{n-2, \alpha / 2} s \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n S_{x x}}} .
\end{aligned}
$$

Using the above a $(1-\alpha)(100 \%)$ confidence interval for $\beta_{1}$ is given by

$$
\begin{aligned}
\widehat{\beta_{1}} & \pm t_{n-2, \alpha / 2} S_{\widehat{\beta_{1}}} \\
& \pm t_{n-2, \alpha / 2} s \sqrt{\frac{1}{S_{x x}}}
\end{aligned}
$$

### 15.7 Prediction and Estimation(Chapt. 5 LSM)

### 15.7.1 Inferences about the estimated regression, $\mathbf{E}(\mathbf{y})\left(\mu_{0}\right)$

Suppose we wish to use our regression function to find the mean response, $\mathrm{E}(\mathrm{y})$, your text uses ( $\mu_{0}$ ), for a single measurement at a point $x_{0}$. Then we can use the fitted regression function as an estimate of the mean response,

$$
\widehat{E(y)}=\widehat{y}_{x_{0}}=\widehat{\beta_{0}}+\widehat{\beta_{1}} x_{0}
$$

to get this value. Note that it is important that this new point $x_{0}$ be within the range of the current $x$ values. If we wish to get a confidence interval for the mean reponse, $\mathrm{E}(\mathrm{y})$, at the "new" value $x_{0}$ we would have:

$$
\hat{y}_{x_{0}} \pm t_{\alpha / 2, n-2} \sqrt{M S_{E}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)} .
$$

## Predicting a response at a point $\mathrm{x}_{0}, y_{0}$

Suppose we wish to use our regression to "predict" a response for some future point, say $x_{0}$, of the current values then the best predictor is obviously,

$$
\widehat{y}_{x_{0}}=\widehat{\beta_{0}}+\widehat{\beta_{1}} x_{0}
$$

If we wish to get a confidence interval for the future value we would have:

$$
\widehat{y}_{x_{p}} \pm t_{\alpha / 2, n-2} \sqrt{M S_{E}\left(1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S_{x x}}\right)} .
$$

## Predicting a mean response of $\mathbf{m}$ future measurements at a point $\mathbf{x}_{p}$

Suppose we wish to use our regression to "predict" $m$ responses at some future point, say $x_{0}$. Then best estimate of the the mean of the responses $\bar{y}$ of the current values then the best predictor is obviously,

$$
\widehat{y}_{x_{0}}=\widehat{\beta_{0}}+\widehat{\beta_{1}} x_{0}
$$

If we wish to get a confidence interval for the future value we would have:

$$
\hat{y}_{x_{0}} \pm t_{\alpha / 2, n-2} \sqrt{M S_{E}\left(\frac{1}{m}+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)} .
$$

### 15.8 Introductory Residual Analysis(Chapt. 6 LSM)

## Residuals

$$
\begin{aligned}
e_{i} & =y_{i}-\widehat{y}_{i} \\
& =y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}
\end{aligned}
$$

## Residual Mean

$$
\begin{aligned}
\bar{e}_{i} & =\frac{\sum_{i=1}^{n} e_{i}}{n} \\
& =0
\end{aligned}
$$

## Residual Variance

$$
\begin{aligned}
M S_{E} & =\frac{\sum_{i=1}^{n}\left(e_{i}-\bar{e}_{i}\right)^{2}}{n-2} \\
& =\frac{S S_{E}}{n-2} \\
& =\widehat{\sigma}^{2}
\end{aligned}
$$

Standardized Residuals(semi-studentized)

$$
d_{i}=\frac{e_{i}}{\sqrt{M S_{E}}}
$$

Studentized Residuals

$$
d_{i}^{*}=\frac{e_{i}}{\sqrt{M S_{E}\left[1-\left(\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{S_{x x}}\right)\right]}}
$$

### 15.9 Departures from Model to Be Studied by Residuals(Chapt. 6 LSM)

We shall consider the use of residuals for examining six important types of departures from the simple linear regression model with normal errors:

1. The regression function is not linear.
2. The error terms do not have constant variance.
3. The error terms are not independent.
4. The model fits all but one or a few outlier observations.
5. The error terms are not normally distributed.
6. One or several important predictor variables have been omitted from the model.

### 15.10 Diagnostics for Residuals

We take up now some informal diagnostic plots of residuals to provide information on whether any of the six types of departures from the simple linear regression model just mentioned are present. The following plots of residuals (or semistudentized residuals) will be utilized here for this purpose:

1. Plot of residuals against predictor variable.
2. Plot of absolute or squared residuals against predictor variable.
3. Plot of residuals against fitted values.
4. Plot of residuals against time or other sequence.
5. Plots of residuals against omitted predictor variables.
6. Box plot of residuals.
7. Normal probability plot of residuals.

### 15.11 Comparable Normal probability plots(Chapt. 6 LSM)



Figure 7: Ideal normal plot - signifying data is normally distributed


Figure 8: Figure on left - heavy tailed distribution, figure on right light - tailed


Figure 9: Figure on left - positive skew (skewed right), figure on right negative skew (skewed left)

## 16 Transformations to Linearity(Chapt. 6 (13) LSM)

In certain situations, a transformation on X or Y (or both) might "straighten out" the plot so that a linear relationship would be appropriate for the transformed variables. Polynomial regression may also be employed.

But first consider the following transformations:

| Relationship of $\sigma^{2}$ to E(y) | Transformation |
| :--- | :--- |
| $\sigma^{2} \propto$ constant | $y^{\prime}=\mathrm{y}$ (no transformation) |
| $\sigma^{2} \propto E(y)$ | $y^{\prime}=\sqrt{y}$ (square root; Poisson data) |
| $\sigma^{2} \propto E(y)[1-E(y)]$ | $y^{\prime}=\sin ^{-1}(\sqrt{y})\left(\arcsin ;\right.$ binomial proportions $0 \leq y_{i} \leq 1$ |
| $\sigma^{2} \propto[E(y)]^{2}$ | $y^{\prime}=\ln (y)$ (log) |
| $\sigma^{2} \propto[E(y)]^{3}$ | $y^{\prime}=y^{1 / 2}$ (reciprocal square root) |
| $\sigma^{2} \propto[E(y)]^{4}$ | $y^{\prime}=y^{-1}$ (reciprocal) |

Table 9: Linearizable functions and corresponding linear form

## Linearizable Linear

| Figure | Function | Transformation | Form |
| :--- | :--- | :--- | :--- |
| $3.13 \mathrm{a}, \mathrm{b}$ | $y=\beta_{0} x^{\beta_{1}}$ | $y^{\prime}=\log y, x^{\prime}=\log x$ | $y^{\prime}=\log \beta_{0}+\beta_{1} x^{\prime}$ |

$3.13 \mathrm{c}, \mathrm{d} \quad y=\beta_{0} e^{\beta_{1} x} \quad y^{\prime}=\ln y \quad y^{\prime}=\ln \beta_{0}+\beta_{1} x$
3.13e,f $\quad y=\beta_{0}+\beta_{1} \log x \quad x^{\prime}=\log x \quad y^{\prime}=\beta_{0}+\beta_{1} x^{\prime}$

313g,h $y=\frac{x}{\beta_{0} x-\beta_{1}} \quad y^{\prime}=\frac{1}{y}, x \prime=\frac{1}{x} \quad y=\beta_{0}-\beta_{1} x^{\prime}$

### 16.1 Lack of Fit and Introduction to Polynomial Regression(Chapt. 8 LSM)

Assume $n_{i}$ observations at each $x_{i}, i=1,2, \ldots, k$ and $n_{i}>1$ at for at least one value of $i$. Let $\mathrm{n}=\sum_{i=1}^{k} n_{i}$ denote the total number of observations. Then

$$
S S_{y y}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}\right)^{2}
$$

and

$$
S S R=\sum_{i=1}^{k} n_{i}\left(\hat{Y}_{i}-\bar{Y}_{i}\right)^{2}
$$

where $\mathrm{SSE}=S S_{y y}-\mathrm{SSR}$ thus

$$
S S_{P E}=\sum_{i=1}^{k} S_{i}^{2}
$$

where

$$
S_{i}^{2}=\sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}
$$

$S S_{L F}=S S E-S S_{P E}$.
Table 10: Analysis of Variance for Regression Including Partition for Lack of Fit

| Source | $d f$ | Sum of Squares | Mean Square | $F$-test |
| :--- | :--- | :--- | :--- | :--- |
| Regression | 1 | $S S R=\hat{\beta}_{1} S_{x y}$ | $M S R=\frac{\hat{\beta}_{1} S_{x y}}{1}$ | $\frac{M S R}{M S E}-\cdots--F_{1, n-2}$ |
| Error | $n-2$ | $S S E=S_{y y}-\hat{\beta}_{1} S_{x y}$ | $M S E=\frac{S S E}{n-2}$ |  |
| lack of fit | $k-2$ | $S S_{L F}$ | $M S L F=\frac{S S_{L F}}{k-2}$ | $F^{*}=\frac{M S L F}{M S P E}-\cdots-F_{k-2, n-k}$ |
| pure error | $n-k$ | $S S_{P E}$ | $M S P E=\frac{S S_{P E}}{n-k}$ |  |
| Total | $n-1$ | $S S_{y y}$ |  |  |

Reject $H_{0}$ : Regression is linear, if $F^{*}>F_{\alpha, k-2, n-k}$. If the null hypothesis is rejected assumption of a linear fit is inappropriate. In this situation, a transformation on X or Y (or both) might "straighten out" the plot so that a linear relationship would be appropriate for the transformed variables. Polynomial regression may also be employed.

The following are the breaking strengths of six bolts at each of five different diameters. Also see exercise

Table 11: Example of Testing for Lack of Fit

| Diameter |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| .1 | .2 | .3 | .4 | .5 |
| 1.62 | 1.71 | 1.86 | 2.14 | 2.45 |
| 1.73 | 1.78 | 1.86 | 2.07 | 2.42 |
| 1.70 | 1.79 | 1.90 | 2.11 | 2.33 |
| 1.66 | 1.86 | 1.95 | 2.18 | 2.36 |
| 1.74 | 1.70 | 1.96 | 2.17 | 2.38 |
| 1.72 | 1.84 | 2.00 | 2.07 | 2.31 |

4.10 from text.

## 17 Polynomial models(Chapt. 8 LSM)

We begin with a simple quadratic model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\epsilon_{i} .
$$

Using the technique of least squares:

$$
Q=\sum_{i=1}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}\right)\right]^{2}
$$

We wish to find estimates of $\beta_{0}, \beta_{1}$, and $\beta_{2}$, call them $\widehat{\beta_{0}}, \widehat{\beta_{1}}$ and $\widehat{\beta_{2}}$, that would minimize Q .

$$
\begin{aligned}
& \frac{\partial Q}{\partial \beta_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}\right) \\
& \frac{\partial Q}{\partial \beta_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}\right) \\
& \text { and } \\
& \frac{\partial Q}{\partial \beta_{2}}=-2 \sum_{i=1}^{n} x_{i}^{2}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}\right) .
\end{aligned}
$$

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve the following equations:

$$
\begin{aligned}
\sum_{i=1}^{n} y_{i} & =n \widehat{\beta_{0}}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{i}+\widehat{\beta_{2}} \sum_{i=1}^{n} x_{i}^{2} \\
\sum_{i=1}^{n} x_{i} y_{i} & =\widehat{\beta_{0}} \sum_{i=1}^{n} x_{i}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{i}^{2}+\widehat{\beta_{2}} \sum_{i=1}^{n} x_{i}^{3} \\
\text { and } & \\
\sum_{i=1}^{n} x_{i}^{2} y_{i} & =\widehat{\beta_{0}} \sum_{i=1}^{n} x_{i}^{2}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{i}^{3}+\widehat{\beta_{2}} \sum_{i=1}^{n} x_{i}^{4} .
\end{aligned}
$$

## Case Study: Climatology

## Mathematical Sciences 405/605 Case Study: Climatology

Table 1 gives the values of normal average January minimum temperature (y) in degree fahrenheit, latitude ( $x_{1}$ ), and longitude $\left(x_{2}\right)$ for 56 cities in the United States. It may be of interest to investigate how January temperature relates to latitude and longitude. For this purpose, it is reasonable to assume an approximate linear relationship between January temperature and latitude. In addition, some studies have found that, after adjusting for latitude, a cubic polynomial in longitude accurately predicts normal average January temperatures in the contiguous United States.

Table 12: Normal Average January Minimum Temperature (y), Latitude ( $x_{1}$ ), and Longitude ( $x_{2}$ ) for 56 Locations in the Contiguous United States

| Location | y | $x_{1}$ | $x_{2}$ | Location | y | $x_{1}$ | $x_{2}$ |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| Mobile, AL | 44 | 31.2 | 88.5 | Omaha, NB | 13 | 41.9 | 96.1 |
| Montgomery, AL | 38 | 32.9 | 86.8 | Concord, NH | 11 | 43.5 | 71.9 |
| Phoenix, AZ | 35 | 33.6 | 112.5 | Atlantic City, NJ | 27 | 39.8 | 75.3 |
| Little Rock, AR | 31 | 35.4 | 92.8 | Albuquerque, NM | 24 | 35.1 | 106.7 |
| Los Angeles, CA | 47 | 34.3 | 118.7 | Albany, NY | 14 | 42.6 | 73.7 |
| San Francisco, CA | 42 | 38.4 | 123.0 | New York, NY | 27 | 40.8 | 74.6 |
| Denver, CO | 15 | 40.7 | 105.3 | Charlotte, NC | 34 | 35.9 | 81.5 |
| New Haven, CT | 22 | 41.7 | 73.4 | Raleigh, NC | 31 | 36.4 | 78.9 |
| Wilmington, DE | 26 | 40.5 | 76.3 | Bismarck, ND | 0 | 47.1 | 101.0 |
| Washington, DC | 30 | 39.7 | 77.5 | Cincinnati, OH | 26 | 39.2 | 85.0 |
| Jacksonville, FL | 45 | 31.0 | 82.3 | Cleveland, OH | 21 | 42.3 | 82.5 |
| Key West, FL | 65 | 25.0 | 82.0 | Oklahoma City, OK | 28 | 35.9 | 97.5 |
| Miami, FL | 58 | 26.3 | 80.7 | Portland, OR | 33 | 45.6 | 123.2 |
| Atlanta, GA | 37 | 33.9 | 85.0 | Harrisburg, PA | 24 | 40.9 | 77.8 |
| Boise, ID | 22 | 43.7 | 117.1 | Philadelphia, PA | 24 | 40.9 | 75.5 |
| Chicago, IL | 19 | 42.3 | 88.0 | Charleston, SC | 38 | 33.3 | 80.8 |
| Indianapolis, IN | 21 | 39.8 | 86.9 | Nashville, TN | 31 | 36.7 | 87.6 |
| Des Moines, IA | 11 | 41.8 | 93.6 | Amarillo, TX | 24 | 35.6 | 101.9 |
| Wichita KS | 22 | 38.1 | 97.6 | Galveston, TX | 49 | 29.4 | 95.5 |
| Louisvilie, KY | 27 | 39.0 | 86.5 | Houston, TX | 44 | 30.1 | 95.9 |
| New Orleans, LA | 45 | 30.8 | 90.2 | Salt Lake City, UT | 18 | 41.1 | 112.3 |
| Portland, ME | 12 | 44.2 | 70.5 | Burlington, VT | 7 | 45.0 | 73.9 |
| Baltimore, MD | 25 | 39.7 | 77.3 | Norfolk, VA | 32 | 37.0 | 76.6 |
| Boston, MA | 23 | 42.7 | 71.4 | Seattle, WA | 33 | 48.1 | 122.5 |
| Detroit, Ml | 21 | 43.1 | 83.9 | Spokane, WA | 19 | 48.1 | 117.9 |
| Minneapolis, MN | 2 | 45.9 | 93.9 | Madison, Wl | 9 | 43.4 | 90.2 |
| St. Louis, MO | 24 | 39.3 | 90.5 | Milwaukee, W1 | 13 | 43.3 | 88.1 |
| Helena, MT | 8 | 47.1 | 112.4 | Cheyenne, WY | 14 | 41.2 | 104.9 |

NOTE: The average minimum temperature for any month is obtained by adding the daily minimum temperatures during that month and dividing by the number of days in that month. The normal average January minimum temperature (y) was obtained by adding the average minimums for January 1931, January 1932, and so on, through January 1960 and dividing the total by 30 . The variables $x_{1}$ and $x_{2}$ are latitude and longitude in degrees. Source: Long (1972) ${ }^{\dagger}$.

[^2]
## 18 Multiple Linear Regression(Chapt. 8 LSM)

Generally when we wish to determine whether or not certain relationships exist between a response and certain "condition(s)", it is not unusual to have two or more variables that can influence a specific outcome. These variables or "conditions" act synergistically on predicting or estimating an outcome.

Here we will assume on a linear relationship between these variables, but others could also exist.
The multiple linear regression model expresses the response as a function of $k$ distinct independent predictor variables.

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i}+\epsilon_{i}
$$

Using the technique of least squares:

$$
Q=\sum_{i=1}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i}\right)\right]^{2} .
$$

We wish to find estimates of $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}$ call them $\widehat{\beta_{0}}, \widehat{\beta_{1}}, \widehat{\beta_{2}}, \ldots, \widehat{\beta_{k}}$ that would minimize Q .

$$
\begin{aligned}
& \frac{\partial Q}{\partial \beta_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}-\cdots-\beta_{k} x_{k i}\right) \\
& \frac{\partial Q}{\partial \beta_{1}}=-2 \sum_{i=1}^{n} x_{1 i}\left(y_{i}-\beta_{0}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}-\cdots-\beta_{k} x_{k i}\right) \\
& \frac{\partial Q}{\partial \beta_{2}}=-2 \sum_{i=1}^{n} x_{2 i}\left(y_{i}-\beta_{0}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}-\cdots-\beta_{k} x_{k i}\right) \\
& \vdots=\vdots \\
& \text { and } \\
& \frac{\partial Q}{\partial \beta_{k}}=-2 \sum_{i=1}^{n} x_{k i}\left(y_{i}-\beta_{0}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}-\cdots-\beta_{k} x_{k i}\right) .
\end{aligned}
$$

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve the following equations:

$$
\begin{aligned}
\sum_{i=1}^{n} y_{i} & =n \widehat{\beta_{0}}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{1 i}+\widehat{\beta_{2}} \sum_{i=1}^{n} x_{2 i}+\cdots+\widehat{\beta_{k}} \sum_{i=1}^{n} x_{k i} \\
\sum_{i=1}^{n} x_{1 i} y_{i} & =\widehat{\beta_{0}} \sum_{i=1}^{n} x_{1 i}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{1 i}^{2}+\widehat{\beta_{2}} \sum_{i=1}^{n} x_{1 i} x_{2 i}+\cdots+\widehat{\beta_{k}} \sum_{i=1}^{n} x_{1 i} x_{k i} \\
\vdots & =\vdots \\
\text { and } & \\
\sum_{i=1}^{n} x_{k i} y_{i} & =\widehat{\beta_{0}} \sum_{i=1}^{n} x_{k i}+\widehat{\beta_{1}} \sum_{i=1}^{n} x_{k i} x_{1 i}+\widehat{\beta_{2}} \sum_{i=1}^{n} x_{k i} x_{2 i}+\cdots+\widehat{\beta_{k}} \sum_{i=1}^{n} x_{k i}^{2} .
\end{aligned}
$$

18.1 The fitted regression line(Chapt. 8 LSM)
(See Chapter 8 of LSM)
18.2 Is the multiple regression significant ?(Chapt. 8 LSM)
(See Chapter 8 of LSM)
18.3 Inferences on the fitted partial regression coefficients, the $\widehat{\beta_{i}}$ 's.(Chapt. 8 LSM) (See Chapter 8 of LSM)

## Case Study: Computer Science

## Mathematical Sciences 405/605 <br> Case Study: Computer Science

The waiting time $y$ that elapses between the time a computing job is submitted to a large computer and the time at which the job is initiated (computing commences) is a function of many variables, including the priority assigned to the job, the number and sizes of the jobs already on the computer, the size of the job being submitted, and so on. A study was initiated to investigate the relationship between waiting time y (in hours) for a job and $x_{1}$, the estimated CPU time (in seconds) for the job, and $x_{2}$, the CPU utilization factor. The estimated CPU time $x_{1}$ is an estimate of the amount of time that a job will occupy a portion of the computer's central processing unit's memory. The CPU utilization factor $x_{2}$ is the percentage of the memory bank of the central processing unit that is occupied at the time the job is submitted. We would expect the waiting time $y$ to increase as the size of the job x , increases and as the CPU utilization factor $x_{2}$ increases. To conduct the study, 15 jobs of varying sizes were submitted to the computer at randomly assigned times throughout the day. The job waiting time $y$, estimated CPU time $x_{1}$ and CPU utilization factor $x_{2}$ were recorded for each job. The data ${ }^{\dagger}$ are shown below.

| Job | $x_{1}$ | $x_{2}$ | y |
| :---: | :---: | :---: | :---: |
| 1 | 2.0000 | 45.0000 | 0.0010 |
| 2 | 9.3000 | 80.0000 | 1.1400 |
| 3 | 5.6000 | 23.0000 | 0.0300 |
| 4 | 3.7000 | 25.0000 | 0.0010 |
| 5 | 12.4000 | 67.0000 | 0.7800 |
| 6 | 18.1000 | 30.0000 | 0.3000 |
| 7 | 13.5000 | 55.0000 | 0.6000 |
| 8 | 26.6000 | 21.0000 | 0.2000 |
| 9 | 34.2000 | 79.0000 | 2.2400 |
| 10 | 38.8000 | 40.0000 | 0.4400 |
| 11 | 56.1000 | 22.0000 | 0.0010 |
| 12 | 60.3000 | 37.0000 | 0.3200 |
| 13 | 4.4000 | 50.0000 | 0.1600 |
| 14 | 2.6000 | 66.0000 | 0.2900 |
| 15 | 20.9000 | 42.0000 | 0.4900 |

A second-order model, $\mathrm{E}(\mathrm{y})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\beta_{4} x_{1}^{2}+\beta_{5} x_{2}^{2}$ was selected to model mean waiting time $\mathrm{E}(\mathrm{y})$.
i) Find the values of SSE and $\widehat{\sigma^{2}}$.
ii) Find the prediction equation.
iii) Find $R^{2}$ and interpret its value.
iv) Do the data provide sufficient evidence to indicate that the model contributes information for the prediction of $y$ ? Test using $\alpha=0.10$.

[^3]
## MODELS WITH TWO INDEPENDENT VARIABLES

## No interaction model

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

## Comments on model parameters:

- $\beta_{0}: y$-intercept, the value of $E(y)$ when $x_{1}=x_{2}=0$
- $\beta_{1}$ : Change in $\mathrm{E}(\mathrm{y})$ for a 1 unit increase in $\mathrm{x}_{1}$, when $\mathrm{x}_{2}$ is held fixed.
- $\beta_{2}$ : Change in $\mathrm{E}(\mathrm{y})$ for a 1 unit increase in $\mathrm{x}_{2}$, when $\mathrm{x}_{1}$ is held fixed.

General comments: In particular, a first-order model relating $\mathrm{E}(\mathrm{y})$ to two independent quantitative variables, $x_{1}$ and $x_{2}$, graphs as a plane in three-dimensional space. The plane traces the value of $\mathrm{E}(\mathrm{y})$ for every combination of values ( $\mathrm{x}_{1}, \mathrm{x}_{2}$ ) that correspond to points in the $\mathrm{x}_{1}, \mathrm{x}_{2}$ plane. Most response surfaces in the real world are well behaved (smooth), and they have curvature. Consequently, a first-order model is appropriate only if the response surface is fairly flat over the $\mathrm{x}_{1}, \mathrm{x}_{2}$ region that is of interest to you.

## Interaction model

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
$$

The assumption that a first-order model will adequately characterize the relationship between $\mathrm{E}(\mathrm{y})$ and the variables $x_{1}$ and $x_{2}$ is equivalent to assuming that $x_{1}$ and $x_{2}$ do not interact; that is, you assume that the effect on $\mathrm{E}(\mathrm{y})$ of a change in $\mathrm{x}_{1}$ (for a fixed value of $\mathrm{x}_{2}$ ) is the same regardless of the value of $\mathrm{x}_{2}$ (and vice-versa). Thus, no interaction implies that the effect of changes in one variable (say $x_{1}$ ) on $E(y)$ is independent of the value of the second variable (say $\mathrm{x}_{2}$ ).


Two variables interact if the change in $\mathrm{E}(\mathrm{y})$ for 1-unit increase (decrease) in $\mathrm{x}_{1}$ (when $\mathrm{x}_{2}$ is held fixed) is dependent on the values of $\mathrm{x}_{2}$. In which case the lines in the previous plot would cross.

Interaction terms clearly allow more opportunity for individual predictor variables to exhibit joint effects with other predictor variables. Several interaction terms involving two or more predictor variables can be included in regression models but they should not be inserted routinely for several reasons. First the number of possible interaction terms can be large for regression models with several predictor variables. With only 5 predictor variables there are 10 possible two-variable interaction terms, 10 three-variable interaction terms, 5 four-variable interaction terms, and 1 five-variable interaction term. Use of all predictor variables and their interactions could result in a complicated model with 32 terms in it.
18.4 Indicator and Dummy Variables in Multiple regression(Chapt. 12 LSM)

## Case Study: Industrial

## Mathematical Sciences 405/605 Case Study: The Petroleum Industry

In the oil industry, water mixes with crude oil during production and transportation. The organic properties of oil prevent it from dissolving in an inorganic medium; rather, tiny oil particles are suspended within the water. This water and oil ( $\mathrm{w} / \mathrm{o}$ ) suspension is called an emulsion.

Chemists have found that the oil can be extracted from the w/o emulsion electrically. In a high electric field, the (lighter) emulsified droplets are enlarged while the (heavier) water settles out of the mix gravitationally. Researchers at the University of Bergen (Norway) conducted a series of experiments to study the factors that influence the voltage required to separate the water from the oil in w/o emulsions (Journal of Colloid and Interface Science. Aug. 1995). The seven independent variables investigated in the study are described below. Each variable was measured at two levels a "low" level and a "high" level.

- $x_{1}$ : Volume fraction of disperse phase (as a percentage of weight); Low $=40 \%$, High $=80 \%$
- $x_{2}$ : Salinity of emulsion (as a percentage of weight); Low $=1 \%, \operatorname{High}=4 \%$
- $x_{3}$ : Temperature of emulsion (in C); Low $=40^{\circ}$, $\mathrm{High}=23^{\circ}$
- $x_{4}$ : Time delay after emulsification (in hours); Low $=0.25$ hour( 15 minutes), High $=24$ hours
- $x_{5}$ : Concentration of surface-active agent, or "surfactant" (as a percentage of weight); Low $=2 \%$, High $=4 \%$
- $x_{6}$ : Ratio of two chemicals (Span and Triton) used as surfactants; Low $=.25$, High $=.75$
- $x_{7}$ : Amount of solid particles added (as a percentage of weight); Low $=.5 \%, \mathrm{High}=2 \%$

Sixteen w/o emulsions were prepared using different combinations of the independent variables listed above; then each emulsion was exposed to a high electric field. In addition, three w/o emulsions were tested when all independent variables were set to 0 . For all 19 emulsions, the amount of voltage (kilovolts per centimeter) where the first sign of macroscopic activity is observed was measured; this value represents the dependent variable, $y$. The data for the study are given in Table 1.

1. Propose a model for y as a function of all seven independent variables. Assume that a linear relationship exists between $y$ and $x_{i}, \mathrm{i}=1,2, \ldots, 7$.
2. Use a statistical software package to fit the model to the data in Table 1.
3. Fully interpret the results of the regression. Part of the analysis should include an interpretation of the $\beta$ estimates.
4. According to the researchers, the model predicts a negative value for the voltage $y$ for experiment \#14. Verify this result.
5. The researchers state that the result, part 4, "is physically not acceptable, and a model with interaction terms must be proposed." The model the researchers selected is
$\mathrm{E}(\mathrm{y})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{5}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{5}$. Note that the model includes interact); between disperse phase volume ( $x_{1}$ ) and salinity $\left(x_{2}\right)$ as well as interaction between disperse phase volume $\left(x_{5}\right)$ and surfactant concentration $\left(x_{5}\right)$. Discuss how these interaction terms affect the hypothetical relationship between $y$ and $x_{1}$. Draw a sketch to support your answer.
6. Fit the interaction model, part 5, to the data. Do the model appear to fit the data better than the model in part 1? Explain.
7. Interpret the $\beta$ estimates of the interaction model from part 5.
8. The researchers concluded that "in order to break; an emulsion with the lowest possible voltage, the volume fraction of the disperse phase $\left(x_{1}\right)$ should high, while the salinity $\left(x_{2}\right)$ and the amount of surfactant $\left(x_{5}\right)$ should be low." Use this information and the interaction model to find a $95 \%$ prediction interaction for this "low" voltage $y$. Interpret the interval.

| Experiment | Voltage <br> $(y)$ | Disperse Phase <br> Volume <br> $\left(x_{1}\right)$ | Salinity <br> $\left(x_{2}\right)$ | Temperature <br> $\left(x_{3}\right)$ | Time <br> Delay <br> $\left(x_{4}\right)$ | Surfactant <br> Concentration <br> $\left(x_{5}\right)$ | S:T <br> Ratio <br> $\left(x_{6}\right)$ | Solid <br> Particles <br> $\left(x_{7}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | .64 | 40 | 1 | 4 | .25 | 2 | .25 | .5 |
| 2 | .80 | 80 | 1 | 4 | .25 | 4 | .25 | 2 |
| 3 | 3.20 | 40 | 4 | 4 | .25 | 4 | .75 | .5 |
| 4 | .48 | 80 | 4 | 4 | .25 | 2 | .75 | 2 |
| 5 | 1.72 | 40 | 1 | 23 | .25 | 4 | .75 | 2 |
| 6 | .32 | 80 | 1 | 23 | .25 | 2 | .75 | .5 |
| 7 | .64 | 40 | 4 | 23 | .25 | 2 | .25 | 2 |
| 8 | .68 | 80 | 4 | 23 | .25 | 4 | .25 | .5 |
| 9 | .12 | 40 | 1 | 4 | 24 | 2 | .75 | 2 |
| 10 | .88 | 80 | 1 | 4 | 24 | 4 | .75 | .5 |
| 11 | 2.32 | 40 | 4 | 4 | 24 | 4 | .25 | 2 |
| 12 | .40 | 80 | 4 | 4 | 24 | 2 | .25 | .5 |
| 13 | 1.04 | 40 | 1 | 23 | 24 | 4 | .25 | .5 |
| 14 | .12 | 80 | 1 | 23 | 24 | 2 | .25 | 2 |
| 15 | 1.28 | 40 | 4 | 23 | 24 | 2 | .75 | .5 |
| 16 | .72 | 80 | 4 | 23 | 24 | 4 | .75 | 2 |
| 17 | 1.08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 18 | 1.08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 19 | 1.04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Collinearity Diagnostics (Chapt. 10 LSM)

When a regressor, $x_{i}$, is nearly a linear combination of other regressors in the model the affected estimates are unstable and have high standard errors. This problem is called collinearity or multicollinearity. It is a good idea to find out which variables are nearly collinear with which other variables. The approach in PROC REG follows that of Belsley, Kuh, and Welsch (1980). REG provides several methods for detecting collinearity with the COLLIN, COLLINOINT, TOL, and VIF options

The COLLIN option in the MODEL statement requests that a collinearity analysis be done. First, $\mathbf{X}^{\prime} \mathbf{X}$ is scaled to have 1 s on the diagonal. If COLLINOINT is specified, the intercept variable is adjusted out first. Then the eigenvalues and eigenvectors are extracted. The analysis in REG is reported with eigenvalues of $\mathbf{X}^{\prime} \mathbf{X}$ rather than values from the singular decomposition of $\mathbf{X}$. The singular values of $\mathbf{X}$ are the square roots of the eigenvalues of $\mathbf{X}^{\prime} \mathbf{X}$.

The condition indices are the square roots of the ratio of the largest eigenvalue to each individual eigenvalue. The largest condition index is the condition number of the scaled $\mathbf{X}$ matrix. When this number is large, the data are said to be ill-conditioned. When this number is extremely large, the estimates may have a fair amount of numerical error (although the statistical standard error almost always is much greater than the numerical error).

For each variable, REG prints the proportion of the accounted for by each principal component. A collinearity problem occurs when a component associated with a high condition index contributes strongly to the variance of two or more variables.

The VIF option in the MODEL statement provides the variance inflation factors. These factors measure the inflation in the variances of the parameter estimates due to collinearities that exist among the regressor (dependent) variables. There are no formal criteria for deciding if a VIF is large enough to affect the predicted values. But, there are informal criteria that work quite well in practice. A liberal criteria is any VIFs over 10 suggest multicollinearity. A more conservative criteria would suggest multicollinearity if there are any VIFs greater than the number of parameters in the model.

The TOL option requests the tolerance values for the parameter estimates.
For a complete discussion of the methods discussed above, see Belsley, Kuh, and Welsch (1980). For a more detailed explanation of using the methods with PROC REG, see Freund and Littell (1986).

Here is an example using the COLLIN option on the oxidation data given in a class handout and reproduced at the end of this handout.

## proc reg data=oxidata; model oxidant=windspd temp humid insolate / tol vif collin; run;

## Influence Diagnostics

The INFLUENCE option requests the statistics proposed by Belsley, Kuh, and Welsch (1980) to measure the influence of each observation on the estimates. Influential observations are those that, according to various criteria, appear to have a large influence on the parameter estimates. Let $\beta_{-(i)}$ be the parameter estimates after deleting the $i$ th observation; let $\mathrm{s}_{-(i)}^{2}$ be the variance estimate after deleting the $i$ th observation; let $\mathbf{X}_{-(i)}$ be the $\mathbf{X}$ matrix without the $i$ th observation(case); let $\hat{y}_{-(i)}$ be the $i$ th value predicted without using the $i$ th observation; let $\mathrm{r}_{i}=\mathrm{y}_{i}-\hat{y}$ be the $i$ th residual; and let $\mathrm{h}_{i}$ be the $i$ th diagonal of the projection matrix for the predictor space, also called the hat matrix:

$$
h_{i}=\mathbf{x}_{i}\left(\mathrm{X}^{\prime} \mathbf{X}\right)^{-1} \mathrm{x}_{i}^{\prime}
$$

Belsley, Kuh, and Welsch propose a cutoff of $2 * p / n$, where $n$ is the number of observations used to fit the model, and $p$ is the number of parameters in the model. Observations with $h_{i}$ values above this cutoff should be investigated.

For each observation, REG first prints the residual, the studentized residual, and the $h_{i}$. The studentized residual differs slightly from that in the previous section since the error variance is estimated by $\mathrm{s}_{-(i)}^{2}$ without
the $i$ th observation, not by ${ }^{2}$, for example,

$$
\text { RSTUDENT }=\frac{r_{i}}{\sqrt{s_{-(i)}^{2}\left(1-h_{i}\right)}}
$$

Observations with RSTUDENT larger than 2 in absolute value may need some attention.
The COVRATIO statistic measures the change in the determinant of the covariance matrix of the estimates by deleting the $i$ th observation:

$$
\mathbf{C O V R A T I O}=\frac{\left|s_{-(i)}^{2} \mathbf{X}_{-(i)}^{\prime} \mathbf{X}_{-(i)}\right|}{\left|s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|}
$$

Belsley, Kuh, and Welsch suggest observations with

$$
\mid \text { COVRATIO }-1 \left\lvert\, \geq \frac{3 p}{n}\right.
$$

where $p$ is the number of parameters in the model, and $n$ is the number of observations used to fit the model, are worth investigation.

The DFFITS statistic is a scaled measure of the change in the predicted value for the $i$ th observation and is calculated by deleting the $i$ th observation. A large value indicates that the observation is very influential in its neighborhood of the $\mathbf{X}$ space.

$$
\text { DFFITS }=\frac{\hat{y}_{i}-\widehat{y}_{-(i)}}{\sqrt{s_{-(i)}^{2} h_{i}}}
$$

Large values of DFFITS indicate influential observations. A general cutoff to consider is 2; a size-adjusted cutoff recommended by Belsley, Kuh, and Welsch is $2 \sqrt{\frac{p}{n}}$, where $n$ and $p$ are as defined above. DFFITS is very similar to Cook's Distance.

Cook's D, for short, is also a scaled measure. Cases for which $\mathrm{D}_{i}$ is large have substantial influence on $\widehat{\beta}$ and on the fitted values, and deletion of them may result in important changes in conclusions. Typically the case with the largest $\mathrm{D}_{i}$, or in large data setsthe cases with the largest few $\mathrm{D}_{i}$, will be of interest. A proposed cut-off, see Weisberg (1985), is if $\mathrm{D}_{i}$ is substantially less than 1, deletion of a case will not change the estimate $\beta$ by much. To investigate the influence of a case more closely, the analyst should delete the large $\mathrm{D}_{i}$ case and recompute the analysis to see exactly what aspects of it have changed.

The simplest form for $\mathrm{D}_{i}$ is

$$
D_{i}=\frac{1}{p} \operatorname{RSTUDENT}_{i}^{2}\left(\frac{h_{i}}{1-h_{i}}\right)
$$

If $p$ is fixed, the size of $\mathrm{D}_{i}$ will be determined by two different sources: the size of RSTUDENT ${ }_{i}$, a random variable reflecting lack of fit of the model at the $i$ th case, and the potential $h_{i}$, reflecting the location of $\mathbf{x}_{i}$ relative to $\bar{x}$. A large value of $\mathrm{D}_{i}$ may be due to large RSTUDENT ${ }_{i}$, large $\mathrm{h}_{i}$, or both.

DFBETAS are the scaled measures of the change in each parameter estimate and are calculated by deleting the $i$ th observation:

$$
\operatorname{DFBETAS}_{j}=\frac{\hat{\beta}_{j}-\hat{\beta}_{j_{-(i)}}}{\sqrt{s_{-(i)}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{j j}^{-1}}}
$$

where
$\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{j j}^{-1}$ is the $(j, j)$ th element of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
In general, large values of DFBETAS indicate observations that are influential in estimating a given parameter. Belsley, Kuh, and Welsch recommend 2 as a general cutoff value to indicate influential observations and $2 / \sqrt{n}$ as a size-adjusted cutoff.

The output below shows the portion of output produced by the INFLUENCE option for the oxidation example. See the subsequent output for the fitted regression equation.

## proc reg data=oxidata; <br> model oxidant=windspd temp humid insolate / influence; <br> run;

Table 13: Influence Diagnostics for Ozone Data

| Criteria | Criteria Cutoff | Size Adjusted | Suspect Cases |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| h (Hat) | 0.33 |  | 22,23,30 |  |  |  |  |
| RSTUDENT | 2 |  | 11 |  |  |  |  |
| COVRATIO | 0.5 |  | 8,11,24 |  |  |  |  |
|  |  |  | 25,29,30 |  |  |  |  |
| DFFITS | 2 | 0.82 | 4,22,23 |  |  |  |  |
| DFBETAS | 2 | 0.37 | Parameters |  |  |  |  |
|  |  |  | Intercept | WINDSPD | TEMP | HUMID | INSOLATE |
|  |  |  | 4,22 | 4,22,23 | 4,21 | 4,28 | 22,23 |

The PARTIAL option produces PARTIAL regression leverage plots. One plot is printed for each regressor in the full, current model. For example, plots are produced for regressors included by using ADD statements; plots are not produced for interim models in the various model-selection methods but only for the full model. If you use a model-selection method and the final model contains only a subset of the original regressors, the PARTIAL option still produces plots for all regressors in the full model.

For a given regressor, the PARTIAL regression leverage plot is the plot of the dependent variable and the regressor after they have been made orthogonal to the other regressors in the model. These can be obtained by plotting the residuals for the dependent variable against the residuals for the selected regressor, where the residuals for the dependent variable are calculated with the selected regressor omitted, and the residuals for the selected regressor are calculated from a model where the selected regressor is regressed on the remaining regressors. A line fit to the points has a slope equal to the parameter estimate in the full model.

On the plot, points are marked by the number of replicates appearing at one print position. The symbol ' $*$, is used if there are ten or more replicates. if an ID statement is specified, the left-most nonblank character in the value of the ID variable is used as the plotting symbol.

The following statements use the oxidation data.

```
proc reg data=oxidata;
model oxidant=windspd temp humid insolate / partial;
run;
```


## References

[1] Belsley, Kuh, and Welsch (1980). "Regression Diagnostics", John Wiley \& Sons
[2] Freund and Littell (1986). "SAS System for Regression", SAS Institute

# Case Study: Toxicity 

## Mathematical Sciences 405/605 <br> Case Study:Toxicity 100 points

I. The Data: It is known that in mammals the toxicity of various drugs, pesticides, and chemical carcinogens can be altered by inducing liver enzyme activity. A study to investigate this sort of phenomena in a vertabrate model similar to that of humans is reported in an article in the American Journal of Veterinary Research. Regression analysis was used to study the relationship between induced enzyme activity and detoxification on the insecticide malathion. Butylated hydroxytaluene(BHT) and 3-methylcholanthrene (MC) were used to induce enzyme activity. Each observation represents the percentage of activity relative to a control, an untreated lab animal. The response variable is the percentage of detoxification of malathion. Five enzyme activities were measured and serve as the predictor variables.

Table 14: Detoxification Data

| Inducer | Detoxification | Enzyme 1 | Enzyme 2 | Enzyme 3 | Enzyme 4 | Enzyme 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | $y$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{5}$ |
| BHT | 146.1040 | 348.4750 | 337.5000 | 108.1220 | 106.6670 | 107.6920 |
| BHT | 152.5970 | 233.2200 | 260.4170 | 82.2340 | 80.0000 | 88.8890 |
| BHT | 168.8310 | 287.4580 | 273.9580 | 74.6190 | 66.6670 | 87.1790 |
| BHT | 178.5710 | 152.5420 | 310.4170 | 86.8020 | 73.3330 | 96.5810 |
| BHT | 191.5580 | 276.2710 | 818.7500 | 122.8430 | 86.6670 | 97.4360 |
| BHT | 113.6360 | 78.6440 | 156.2500 | 112.6900 | 93.3330 | 94.8720 |
| BHT | 188.3120 | 196.9490 | 260.4170 | 79.1880 | 80.0000 | 106.8380 |
| BHT | 94.1560 | 101.6950 | 112.5000 | 127.9190 | 93.3330 | 80.3420 |
| BHT | 159.0910 | 194.5760 | 280.2080 | 239.5940 | 106.6670 | 91.4530 |
| BHT | 142.8570 | 325.4240 | 326.0420 | 173.0960 | 113.3330 | 100.0000 |
| MC | 56.2500 | 106.3290 | 90.7560 | 94.6500 | 162.7910 | 114.7370 |
| MC | 75.0000 | 144.7260 | 203.3610 | 131.6870 | 255.8140 | 112.6320 |
| MC | 115.6250 | 136.2870 | 672.2690 | 123.4570 | 191.8600 | 153.6840 |
| MC | 68.7500 | 154.4300 | 183.1930 | 113.1690 | 133.7210 | 116.8420 |
| MC | 96.8750 | 385.2320 | 140.3360 | 117.2840 | 174.4190 | 87.3680 |
| MC | 168.7500 | 583.5440 | 146.2180 | 152.2630 | 273.7560 | 94.7370 |
| MC | 84.3750 | 489.4510 | 184.8740 | 121.3990 | 255.8140 | 95.7890 |
| MC | 171.8750 | 445.9920 | 537.8150 | 150.2060 | 552.3260 | 113.6840 |
| MC | 109.3750 | 270.8860 | 309.2440 | 185.1850 | 534.8840 | 108.4210 |
| MC | 103.1250 | 163.2910 | 190.7560 | 139.9180 | 360.4650 | 106.3160 |

(i) Fit a multiple linear regression that models detoxification as a function of the five enzymes for each of the two types of inducers.
(ii) Using the methods described in your handout on collinearity and influence, determine if multicollinearity exists for each of the models and whether or not there are any influential cases.
(iii) Using the variable selection methods described in class determine the variables that are "best" in predicting the percentage of detoxification of malathion when looking at BHT as the inducer and the variables that are "best" in predicting the percentage of detoxification of malathion when considering MC as the inducer.

## 19 Model-Selection Methods(Chapt. 11 LSM)

## Introduction

The nine methods of model selection implemented in PROC REG are specified with the SELECTION= option in the MODEL statement. Each method is discussed below.

## Full Model Fitted (NONE)

This method is the default and provides no model selection capability. The complete model specified in the MODEL statement is used to fit the model. For many regression analyses, this may be the only method you need.

## Forward Selection (FORWARD)

The forward-selection technique begins with no variables in the model. For each of the independent variables, FORWARD calculates $\boldsymbol{F}$ statistics that reflect the variable's contribution to the model if it is included. The $p$-values for these $\boldsymbol{F}$ statistics are compared to the SLENTRY= value that is specified in the MODEL statement (or to 0.50 if the SLENTRY= option is omitted). If no $\boldsymbol{F}$ statistic has a significance level greater than the SLENTRY= value, FORWARD stops. Otherwise, FORWARD adds the variable that has the largest $\boldsymbol{F}$ statistic to the model. FORWARD then calculates $\boldsymbol{F}$ statistics again for the variables still remaining out side the model, and the evaluation process is repeated. Thus, variables are added one by one to the model until no remaining variable produces a significant $\boldsymbol{F}$ statistic. Once a variable is in the model, it stays.

## Backward Elimination (BACKWARD)

The backward-elimination technique begins by calculating statistics for a model, including all of the independent variables. Then the variables are deleted from the model one by one until all the variables remaining in the model produce $\boldsymbol{F}$ statistics significant at the SLSTAY= level specified in the MODEL statement (or at the 0.10 level if the SLSTAY= option is omitted). At each step, the variable showing the smallest contribution to the model is deleted.

## Stepwise (STEPWISE)

The stepwise method is a modification of the forward-selection technique and differs in that variables already in the model do not necessarily stay there. As in the forward-selection method, variables are added one by one to the model, and the $\boldsymbol{F}$ statistic for a variable to be added must be significant at the SLENTRY= level. After a variable is added, however, the stepwise method looks at all the variables already included in the model and deletes any variable that does not produce an $\boldsymbol{F}$ statistic significant at the SLSTAY= level. Only after this check is made and the necessary deletions accomplished can another variable be added to the model. The stepwise process ends when none of the variables outside the model has an $\boldsymbol{F}$ statistic significant at the SLENTRY $=$ level and every variable in the model is significant at the SLSTAY= level, or when the variable to be added to the model is the one just deleted from it.

## Maximum $\boldsymbol{R}^{2}$ Improvement (MAXR)

The maximum $\boldsymbol{R}^{2}$ improvement technique does not settle on a single model Instead, it tries to find the "best" one-variable model, the "best" two-variable model, and so forth, although it is not guaranteed to find the model with the largest $\boldsymbol{R}^{2}$ for each size. The MAXR method begins by finding the one-variable model producing the highest $\boldsymbol{R}^{2}$. Then another variable, the one that yields the greatest increase in $\boldsymbol{R}^{2}$, is added. Once the twovariable model is obtained, each of the variables in the model is compared to each variable not in the model. For each comparison, MAXR deter mines if removing one variable and replacing it with the other variable increases $\boldsymbol{R}^{2}$. After comparing all possible switches, MAXR makes the switch that produces the largest increase in $\boldsymbol{R}^{2}$. Comparisons begin again, and the process continues until MAXR finds that no switch could increase $\boldsymbol{R}^{2}$. Thus, the two-variable model achieved is considered the "best" two-variable model the technique can find. Another variable is then added to the model, and the comparing-and-switching process is repeated to find the "best" threevariable model, and so forth. The difference between the STEPWISE method and the MAXR method is that all switches are evaluated before any switch is made in MAXR. In the STEPWISE method, the "worst" variable can be removed without considering what adding the best" remaining variable might accomplish. MAXR may require much more computer time than STEPWISE.

## Minimum $\boldsymbol{R}^{2}$ Improvement (MINR)

The MINR method closely resembles MAXR, but the switch chosen is the one that produces the smallest increase in $\boldsymbol{R}^{2}$. For a given number of variables in the model, MAXR and MINR usually produce the same "best" model, but MINR considers more models of each size.

## $\boldsymbol{R}^{2}$ Selection (RSQUARE)

The RSQUARE method finds subsets of independent variables that best predict a dependent variable by linear regression in the given sample. You can specify the largest and smallest number of independent variables to appear in a subset and the number of subsets of each size to be selected. The RSQUARE method can efficiently perform all possible subset regressions and print the models in decreasing order of $\boldsymbol{R}^{2}$ magnitude within each subset size. Other statistics are available for comparing subsets of different sizes. These statistics, as well as estimated regression coefficients, can be printed or output to a SAS data set. The subset models selected by RSQUARE are optimal in terms of $\boldsymbol{R}^{2}$ for the given sample, but they are not necessarily optimal for the population from which the sample was drawn or for any other sample for which you may want to make predictions. If a subset model is selected on the basis of a large $\boldsymbol{R}^{2}$ value or any other criterion commonly used for model selection, then all regression statistics computed for that model under the assumption that the model is given a priori, including all statistics computed by REG, are biased. While the RSQUARE method is a useful tool for exploratory model building, no statistical method can be relied on to identify the "true" model. Effective model building requires substantive theory to suggest relevant predictors and plausible functional forms for the model. The RSQUARE method differs from the other selection methods in that RSQUARE always identifies the model with the largest $\boldsymbol{R}^{2}$ for each number of variables considered. The other selection methods are not guaranteed to find the model with the largest $\boldsymbol{R}^{2}$. RSQUARE requires much more computer time than the other selection methods, so a different selection method such as STEPWISE is a good choice when there are many independent variables to consider.

## Adjusted $\boldsymbol{R}^{2}$ Selection (ADJRSQ)

This method is similar to RSQUARE, except that the adjusted $\boldsymbol{R}^{2}$ statistic is used as the criterion for selecting models, and the method finds the models with the highest adjusted $\boldsymbol{R}^{2}$ within the range of sizes.

## Mallows' $\mathbf{C}_{p}$ Selection ( $\mathbf{C}_{p}$ )

This method is similar to ADJRSQ, except that Mallow's $\mathrm{C}_{p}$ statistic is used as the criterion for model selection.

## Additional Information on Model-Selection Methods

If the RSQUARE or STEPWISE procedure (as documented in SAS User's Guide: Statistics, Version 5 Edition) is requested, PROC REG with the appropriate model-selection method is actually used. Reviews of model-selection methods by Hocking (1976) and Judge et al. (1980) describe these and other variable-selection methods.

## 20 The Analysis of Variance(Chapt. 14 LSM)

### 20.1 The Completely Randomized Design

Given the common hypothesis:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots \mu_{r} \\
& \mathrm{H}_{a}: \mu_{i} \neq \mu_{j} \quad\{i \neq j\} \leq r,
\end{aligned}
$$

there are a number of techniques for comparing means from several populations or processes. One particularly interesting method is called the Analysis of Variance. Although it seems a misnomer, we will see how the analysis of variance is used for testing the inequality of means from several populations. For experiments involving $r$ means a model of the form:

$$
y_{i j}=\mu_{i}+\epsilon_{i j} \quad i=1,2, \ldots, r \quad j=1,2, \ldots, n,
$$

can be used. This model is equivalent to the one-factor model used to analyze data resulting from designed experiments. The simplest of these is the completely randomized design. The analysis of variance (ANOVA) is especially suited for comparing means of populations when it can be assumed that the population variances are equal.

Let's assume that the observations from the $r$ different processes are independent. The sample sizes $n_{i}$ need not be the same but we will keep things simple by making that assumption here. Assume further that the errors are normally distributed with mean 0 and common variance $\sigma^{2}$, (recall we must make this assumption as stated above).

The purpose of the ANOVA is to assess whether the means in the model given above are significantly different from each other. Note that this is different from the analysis of means(ANOM), which compares the means to an overall mean. Given that $\mathrm{H}_{0}$ is true, the $r$ sample means, $\bar{y}_{i}$ provide an unbiased estimate of the population mean $\mu$ and each of the sample variances, $s_{i}^{2}$ provides an unbiased estimate of the population variance $\sigma_{y}^{2}$. Thus, we are taking, in effect, $r$ repeated random samples, each of size $n$, from the same population. Recall from Chapter 3, that the variance of the sample mean, denoted by $\sigma_{\bar{y}}^{2}$ is equal to the population variance $\sigma_{y}^{2}$ divided by the sample size $n$ :

$$
\sigma_{\bar{y}}^{2}=\frac{\sigma_{y}^{2}}{n} .
$$

Thus, if the null hypothesis is true, the population variance $\sigma_{y}^{2}$ should be equal to $n$ times the variance of the sample means, $\sigma_{\bar{y}}^{2}$, ie., $\sigma_{y}^{2}=n \sigma_{\bar{y}}^{2}$. If the null hypothesis is not true, then the equation $\sigma_{y}^{2}=n \sigma_{\bar{y}}^{2}$ will not hold; indeed, $n \sigma_{\bar{y}}^{2}$ will be greater than $\sigma_{y}^{2}$ due to the fact that the population means corresponding to the $r$ populations are different. This relationship may be seen in the figure below.


If the $r$ treatment effects are equal, we are drawing the random samples from one distribution with variance $\sigma_{y}^{2}$. If the $r$ treatments effects are not equal, then the total amount of variability in the $Y$ population must be greater than $\sigma_{y}^{2}$ as illustrated on the right side of the figure above. The repeated samples of size $n$ would then be drawn from a "composite" population, indicated in the figure by the shaded area. Then, $n$ times the variability of the sample average statistic $\bar{Y}$ in repeated samples must be larger than $\sigma_{y}^{2}$, because these samples are being drawn from a population in which the variability is greater than the one in which the population means are equal. Therefore, the hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots \mu_{r} \\
& \mathrm{H}_{a}: \mu_{i} \neq \mu_{j} \quad\{i \neq j\} \leq r
\end{aligned}
$$

are equivalent to the hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: n \sigma_{\bar{y}}^{2}=\sigma_{y}^{2} \\
& \mathrm{H}_{a}: n \sigma_{\bar{y}}^{2}>\sigma_{y}^{2} .
\end{aligned}
$$

That is, we can test the equality of population mean effects by comparing estimates of $\sigma_{y}^{2}$, the population variance, and $\sigma_{\bar{y}}^{2}$, the variance of the sample mean statistic. The analysis of variance procedure does, in fact, analyze variances to compare means.

The analysis of variance procedure compares an estimate of $\sigma_{y}^{2}$, denoted by $\hat{\sigma}_{y}^{2}$, with an estimate of $\sigma_{\bar{y}}$ denoted by $\widehat{\sigma}_{\bar{y}}$. If $\hat{\sigma}_{y}^{2}$ is "much less" than $n \sigma_{\bar{y}}^{2}$ then there is reason to suspect that the null hypothesis is not true. To determine whether $\widehat{\sigma}_{y}^{2}$ is significantly less than $n \widehat{\sigma}_{\bar{y}}^{2}$, we compute, the probability that the difference $n \widehat{\sigma}_{\bar{y}}^{2}-\widehat{\sigma}_{y}^{2}$ could arise by chance, (sampling error) if $\hat{\sigma}_{y}^{2}=\hat{\sigma}_{\bar{y}}^{2}$. To illustrate the testing process, consider data from a polish cannons exercise:
[Example:]. Bauer. Dirks, Palkovic and Wittmer fired tennis balls out of "Polish cannons" inclined at an angle of $45^{\circ}$ using three different Propellants and two different Charge Sizes of propellant. They observed the distances traveled in the air by the tennis balls. Their data are given in the accompanying table. (Five trials were made for each Propellant/Charge Size combination and
the values given are in feet.)

|  |  | Propellant |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Lighter |  | Carburetor Fluid |
|  |  | Fluid | Gasoline |  |
|  |  | 58 | 76 | 90 |
|  |  | 50 | 79 | 86 |
|  | 2.5 ml | 53 | 84 | 79 |
|  |  | 49 | 73 | 82 |
|  |  | 59 | 71 | 86 |
| Charge Size |  |  |  |  |
|  |  | 65 | 96 | 107 |
|  |  | 59 | 101 | 102 |
|  | 5.0 ml | 61 | 94 | 91 |
|  |  | 68 | 91 | 95 |
|  |  | 67 | 87 | 97 |

For the moment let's just consider the three types of propellant. And we want to determine if the population means for the three types of propellant differ. The means model:

$$
y_{i j}=\mu_{i}+\epsilon_{i j} \quad i=1,2, \ldots, 3 \quad j=1,2, \ldots, 10
$$

Propellant

|  | Lighter <br> Fluid | Gasoline | Carburetor <br> Fluid | Overall Mean |
| :--- | :--- | :---: | :---: | :---: |
| Propellant means | $\bar{y}_{1 .}=58.9$ | $\bar{y}_{2 .}=85.2$ | $\bar{y}_{3 .}=91.5$ | $\bar{y}_{\text {.. }}=78.53$ |

Since the three sample means are quite dissimilar $\left(\bar{y}_{1 .}=58.9, \bar{y}_{2}=85.2\right.$, and $\left.\bar{y}_{3 .}=91.5\right)$ we might expect the analysis of variance procedure to suggest that the null hypothesis should be rejected.

### 20.2 Estimate of the population variance $\sigma_{y}^{2}$

To calculate a sample estimate of $\sigma_{y}^{2}$, we will use the sample variances $s_{1}^{2}, s_{2}^{2}$, and $s_{3}^{2}$. The variance for the $i$ th sample is given by:

$$
\begin{aligned}
s_{i}^{2} & =\frac{\sum_{i=1}^{n=10}\left(y_{i j}-\bar{y}_{i}\right)^{2}}{n-1} \\
& =\frac{\sum_{i=1}^{n=10} y_{i j}^{2}-\frac{\left(\sum_{i=1}^{n=10} y_{i j}\right)^{2}}{n}}{n-1} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
s_{i}^{2} & =\frac{(58)^{2}+(50)^{2}+(53)^{2}+\cdots(67)^{2}-\frac{(58+50+53+\cdots+67)^{2}}{10}}{9} \\
& =\frac{35095-\frac{(589)^{2}}{10}}{9}=44.7667 .
\end{aligned}
$$

Similarly, $s_{2}^{2}=106.1778$ and $s_{3}^{2}=78.0556$. A critical assumption of analysis of variance is that the population variances corresponding to the $r=3$ treatments are equal, regardless of whether or not the null-hypothesis is true (that is, whether or not the $r$ population means are equal). Thus, any differences in the sample variances must always be attributable to sampling error. The three sample variances appear to be reasonably similar in this example. But let's apply the $\mathrm{F}_{\max }$ test.

$$
\begin{aligned}
F & =\frac{\max \left\{s_{i}^{2}\right\}}{\min \left\{s_{i}^{2}\right\}} \\
& =\frac{106.1778}{44.667} \\
& =2.3718
\end{aligned}
$$

which is less than $5.34, \alpha=0.05$ and obviously less than 8.5 , with $\alpha=0.01$. So the assumption is appropriate.
Since $s_{1}^{2}, s_{2}^{2}$, and $s_{3}^{2}$ each estimate the polulation variance $\sigma_{y}^{2}$, we can produce an improved estimate of $\sigma_{y}^{2}$ over each sample variance taken individually by pooling the three estimates (recall the pooled estimate of the population variance in the denominator of the $t$-statistic used to compare two population means).

The pooled estimate of $\sigma_{y}^{2}$ is given by:

$$
\begin{aligned}
s_{p}^{2} & =\sum_{i=1}^{r} \frac{s_{i}^{2}}{r} \\
& =\frac{44.7667+106.1778+78.0556}{3} \\
& =76.3333 .
\end{aligned}
$$

### 20.3 Estimate of the variance the sample mean $\sigma_{\bar{y}}^{2}$

The three sample means are $\left(\bar{y}_{1 .}=58.9, \bar{y}_{2 .}=85.2\right.$, and $\left.\bar{y}_{3 .}=91.5\right)$. To compute the estimate $\hat{\sigma}_{\bar{y}}^{2}$ of the three sample means we used the variance formula:

$$
s_{\bar{y}}^{2}=\frac{\sum_{i=1}^{r=3}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}}{r-1}
$$

In our example, $\bar{y}_{. .}=78.53$. Then

$$
\begin{aligned}
s_{\bar{y}}^{2} & =\frac{\sum_{i=1}^{r=3}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}}{r-1} \\
& =\frac{(58.9-78.53)^{2}+(85.2-78.53)^{2}+(91.5-78.53)^{2}}{2} \\
& =299.0234 .
\end{aligned}
$$

If the null hypothesis is true, $n \hat{\sigma}_{\bar{y}}^{2}$ should be an unbiased estimate of the population variance, $\sigma_{y}^{2}$. Its value is:

$$
n \widehat{\sigma}_{\bar{y}}^{2}=(10)(299.0234)=2990.234
$$

Since $n \widehat{\sigma}_{\bar{y}}^{2}>\widehat{\sigma}_{y}^{2}(2990.234>76.333)$, the sample means appear to be much too variable to have been drawn from the same common population with mean $\mu$. But is the difference between $n \hat{\sigma}_{\bar{y}}^{2}$ and $\hat{\sigma}_{y}^{2}$ statistically significant? We have developed two procedures for testing the equivalence of two population variances. The common F-test and Hartley's $\mathrm{F}_{\text {max }}$ which we recently used. For the usual F-test,

$$
\begin{aligned}
f & =\frac{2990.234}{76.3333} \\
& =39.1734 .
\end{aligned}
$$

To determine whether the calculated value of $f$ is significantly different from 1 , we look for the critical value of $f$ based on the numerator degrees of freedom $\nu_{1}=\mathrm{r}-1=2$, the denominator degrees of freedom $\nu_{2}=r(n-1)=3(9)$ $=27$, and a selected value of $\alpha$, say $\alpha=0.05$. From the table in the appendix, we get $F_{2,24,0.05}=3.40$ and $F_{2,30,0.05}=$ 3.32. Since the calculated value of the statistic $\mathbf{F}(f=39.1734)$ is greater that the critical value(s) ( $39.1734>$ 3.40), we reject the null hypothesis $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ at the $\alpha=0.05$ significance level. Thus we conclude that there appears to be strong evidence that the three propellants do produce different mean distances. It is possible to calculate the observed level of significance, but the closest tabled value yields a $p$-value $<0.0005$. Thus it is very likely that the three propellants produce different distances.

### 20.4 The Analysis of Variance table

A convenient computational format for calculating the statistics necessary to determine whether the null hypothesis should be rejected is provided by the analysis of variance table. Its form is presented in the table below.

|  | Degrees of | Sum of |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Source of Variation | freedom | squares | Mean Square | $F$-ratio |
| Among treatments | $\mathrm{r}-1$ | $\mathrm{SS}_{t r}$ | $\mathrm{MS}_{t r}$ | $\frac{M S_{t r}}{M S_{E}}$ |
| Experimental error | $\mathrm{r}(\mathrm{n}-1)$ | $\mathrm{SS}_{E}$ | $\mathrm{MS}_{E}$ |  |
| Total | $\mathrm{rn}-1$ | $\mathrm{SS}_{T}$ |  |  |

The first row of the table, "among treatments," produces the estimate of the variancen $\sigma_{\bar{y}}$ it is denoted by $\mathrm{MS}_{t r}$ (mean square for factor levels) in the table. The second row of the table, "experimental error" produces the pooled estimate of the population variance $\sigma_{y}^{2}$ it is denoted by $\mathrm{MS}_{E}$ (mean square for error) in the table. The $F$-statistic is the ratio of the mean square for treatments, $\mathrm{MS}_{t r}$, and the mean square for error, $\mathrm{MS}_{E}$.

The formula for $\mathrm{MS}_{t r}$ is:

$$
M S T r=n \hat{\sigma}_{\bar{y}}^{2}=\frac{n \sum_{i=1}^{r}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}}{r-1}
$$

The numerator of $\mathrm{MS}_{t r}$ is called the sum of squares among treatments and is denoted by $\mathrm{SS}_{t r}$ in the table. The formula for $\mathrm{MS}_{E}$ is:

$$
\begin{aligned}
M S_{t r} & =\hat{\sigma}_{y}^{2}=\frac{(n-1) \sum_{i=1}^{r} s_{i}^{2}}{r(n-1)} \\
& =\frac{(n-1) \sum_{i=1}^{r} \sum_{j=1}^{n}\left(\bar{y}_{i j}-\bar{y}_{i .}\right)^{2}}{r(n-1)}
\end{aligned}
$$

The numerator of $\mathrm{MS}_{E}$ is called the error sum of squares and is denoted by $\mathrm{SS}_{E}$ in the table. The "Degree of freedom" column in the table gives the appropriate divisors of the sums of squares to produce the mean squares.

The last row in the table gives the "Total degrees of freedom" $(t n-1)=(t-1)+t(n-1)-$ and the total sum of squares given by:

$$
S S_{T}=\sum_{i=1}^{r} \sum_{j=1}^{n}\left(\bar{y}_{i j}-\bar{y}_{. .}\right)^{2}
$$

Hence, the analysis of variance table can also be given as:

|  | Degrees of <br> Source of Variation <br> freedom | Sum of <br> squares | Mean Square | F-ratio |
| :--- | :--- | :--- | :--- | :--- |
| Among treatments | $\mathrm{r}-1$ | $n \sum_{i=1}^{r}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}$ | $\mathrm{MS}_{t r}=\frac{(n-1) \sum_{i=1}^{r} s_{i}^{2}}{r(n-1)}$ | $\frac{M S_{t r}}{M S_{E}}$ |
| Experimental error | $\mathrm{r}(\mathrm{n}-1)$ | $\mathrm{SS}_{E}$ | $\mathrm{MS}_{E}$ |  |
| Total | $\mathrm{rn}-1$ | $\mathrm{SS}_{T}$ |  |  |

Notice that $\mathrm{SS}_{T}$ gives the sum of the squared deviations of each observation $y_{i j}$ about the grand mean of the data $y$.. Thus, this quantity is a measure of the total variability in the dependent variable.

An important relationship given in the analysis of variance table is:

$$
S S T=S S T_{r}+S S_{E}
$$

That is, the total sum of squares can be partitioned into the sum of squares due to treatments plus the error sum of squares. So, for the polish cannon data we have the following analysis of variance table:

|  | Degrees of <br> Source of Variation <br> freedom | Sum of <br> squares | Mean Square | F-ratio |
| :--- | :--- | :--- | :--- | :--- |
| Among propellants | $3-1[2]$ | 5980.467 | 2990.233 | 39.173 |
| Experimental error | $3(10-1)[27]$ | 2061.000 | 76.333 |  |
| Total | $3(10)-1[29]$ | 8041.467 |  |  |

Or in Statistix we would get the following:

```
STUDENT EDITION OF STATISTIX
ONE-WAY AOV FOR DISTANCE BY PROP
```

| SOURCE | DF | SS | MS | F | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| between | 2 | 5980.47 | 2990.23 | 39.17 | 0.0000 |
| WITHIN | 27 | 2061.00 | 76.3333 |  |  |
| TOTAL | 29 | 8041.47 |  |  |  |


COCHRAN'S Q 0.4637
LARGEST VAR / SMALLEST VAR 2.3718
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 291.390
EFFECTIVE CELL SIZE 10.0


Suppose we wanted to do the same thing for the Charge size in our example. Then we can let a similar model as that posed before for the propellant, represent the mean charge.

$$
y_{i j}=\mu_{i}+\epsilon_{i j} \quad i=1,2 . j=1,2, \ldots, 15
$$

Similarly for Charge type alone we would get:

```
STUDENT EDITION OF STATISTIX
ONE-WAY AOV FOR DISTANCE BY CHARGE
```

| SOURCE | DF | SS | MS | F | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BETWEEN | 1 | 1414.53 | 1414.53 | 5.98 | 0.0210 |
| WITHIN | 28 | 6626.93 | 236.676 |  |  |
| TOTAL | 29 | 8041.47 |  |  |  |


|  |  | CHI-SQ | DF | P |
| ---: | :---: | :---: | :---: | :---: |
| BARTLETT'S TEST OF | ------ | ------ | ------ |  |
| EQUAL VARIANCES | 0.31 | 1 | 0.5767 |  |


| COCHRAN'S Q | 0.5755 |
| :--- | :--- | :--- |
| LARGEST VAR / SMALLEST VAR | 1.3555 |

COMPONENT OF VARIANCE FOR BETWEEN GROUPS 78.5238
EFFECTIVE CELL SIZE 15.0


Here's a third example of comparing several means and the completely randomized design. The production manager of a company which manufactures filters for liquids, for use in the pharmaceutical and food industries, wishes to compare the burst strength of four types of membrane. The first (A) is the company's own standard membrane material, the second $(\mathrm{B})$ is a new material the company has developed, and C and D are membrane

Table 15: Burst strength of filter membranes ( kPa )

| Type A | 95.5 | 103.2 | 93.1 | 89.3 | 90.4 | 92.1 | 93.1 | 91.9 | 95.3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type B | 905 | 98.1 | 97.8 | 97.0 | 98.0 | 95.2 | 95.3 | 97.1 | 90.5 |
| Type C | 86.3 | 84.0 | 86.2 | 80.2 | 83.7 | 93.4 | 77.1 | 86.8 | 83.7 |
| Type D | 89.5 | 93.4 | 87.5 | 89.4 | 87.9 | 86.2 | 89.9 | 89.5 | 90.0 |

materials from other manufacturers. The manager has tested five filter cartridges from ten different batches of each material. The mean burst strengths for each set of five cartridges are given in above. The data can be analysed by setting up a multiple regression model. We let $Y$ be the average burst strength for each set of five cartridges and $x_{1}, x_{2}, x_{3}$ be indicator variables coded as: The coefficients then represent the differences between the company's standard membrane and the others. This sets up four of the six possible comparisons. If we fit the model

$$
y=\beta_{0}+\beta_{1} x_{1}=+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ |
| :--- | :---: | :---: | :---: |
| Type A | 0 | 0 | 0 |
| Type B | 1 | 0 | 0 |
| Type C | 0 | 1 | 0 |
| Type D | 0 | 0 | 1 |

we obtain the following results

$$
y=92.84+3.24 x_{1}-8.21 x_{2}-2.95 x_{3}
$$

with $s=3.901$ and the table of coefficients below:

| Predictor | Coef | Stdev | t-ratio | p-value |
| :---: | :---: | :---: | :---: | :---: |
| Constant | 92.84 | 1.234 | 75.27 | 0.000 |
| Type B | 3.24 | 1.744 | 1.86 | 0.071 |
| Type C | 8.21 | 1.744 | -4.71 | 0.000 |
| Type D | 2.95 | 1.744 | -1.69 | 0.099 |

### 20.5 Paired Comparisons for Analysis of Variance

I. Bonferroni's Procedure:
i) Equal Sample Sizes: Let $n=n_{i}, i=1, \ldots, k$, the set of confidence intervals with endpoints:

$$
\left(\bar{y}_{i .}-\bar{y}_{j .}\right) \pm t_{(N-k), \alpha^{\prime}} \sqrt{\frac{2 M S E}{n}}
$$

Each confidence interval that does not include zero suggests $\mu_{i} \neq \mu_{j}$ at $\alpha$.
ii) Unequal Sample Sizes:

$$
\left(\bar{y}_{i .}-\bar{y}_{j .}\right) \pm t_{(N-k), \alpha^{\prime}} \sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}
$$

Each confidence interval that does not include zero suggests $\mu_{i} \neq \mu_{j}$ at $\alpha$. Notice here that $\alpha^{\prime}=\frac{\alpha}{k(k-1)}$.
II. Tukey's Procedure:
i) Equal Sample Sizes: Let $n_{i}=\mathrm{n}, \mathrm{i}=1, \ldots, \mathrm{k}$ and let $Q_{\alpha, \nu_{1}, \nu_{2}}$ be a critical value of the Studentized Range Distribution. The set of cofidence intervals with end points

$$
\left(\bar{y}_{i .}-\bar{y}_{j} .\right) \pm Q_{\alpha, k, N-k} \sqrt{\frac{M S E}{n}} \text { for all } \mathrm{i} \text { and } \mathrm{j}, \mathrm{i} \neq \mathrm{j}
$$

is a collection of simultaneous $100(1-\alpha) \%$ confidence intervals for the differences between the true treatment means, $\mu_{i}-\mu_{j}$. Each confidence interval that does not include zero suggests $\mu_{i} \neq \mu_{j}$ at $\alpha$.
ii) Unequal Sample sizes: The set of confidence intervals with endpoints

$$
\left(\bar{y}_{i .}-\bar{y}_{j}\right) \pm \frac{1}{\sqrt{2}} Q_{\alpha, k, N-k} \sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)} \text { for all } \mathrm{i} \text { and } \mathrm{j}, \mathrm{i} \neq \mathrm{j}
$$

is a collection of simultaneous $100(1-\alpha) \%$ confidence intervals for the differences between the true treatment means, $\mu_{i}-\mu_{j}$. Similarly, each confidence interval that does not include zero suggests $\mu_{i} \neq \mu_{j}$ at $\alpha$.
III. Duncan's Multiple Range Procedure:

Let $n=n_{i}$, i
i) Linearly order the k sample means (smallest to largest).
ii) Find the value of the least significant studentized range $r_{p}$, for $\mathrm{p}=2,3, \ldots, \mathrm{k}$. Table XI, $\gamma$ denotes the number of degrees of freedom associated with the MSE.
iii) For each $p=2,3, \ldots, k$ find the shortest significant range, $S S R_{p}$. This value is given by
(a) Equal sample sizes:

$$
S S R_{p}=r_{p} \sqrt{\frac{M S E}{n}}
$$

(b) Unequal sample sizes:

$$
S S R_{p}==r_{p} \sqrt{M S E}
$$

iv) Consider any subset of $p$ adjacent sample means. Let $\left|\bar{y}_{i .}-\bar{y}_{j}.\right|$ denote the range of the means in this subgroup. Hence $\mu_{i} \neq \mu_{j}$ if
(a) Equal sample sizes:

$$
\left|\bar{y}_{i .}-\bar{y}_{j .}\right|>S S R_{p}
$$

(b) Unequal sample sizes:

$$
\left|\bar{y}_{i .}-\bar{y}_{j} .\right| \sqrt{\frac{2 n_{i} n_{j}}{n_{i}+n_{j}}}>S S R_{p}
$$

v) Summaring your results by underlining any subset of adjacent samples means that are not considered significantly different.
IV. Dunnett's Procedure:

Let $n=n_{i}, i=1, \ldots, k$ and let $d_{\alpha, \nu_{1}, \nu_{2}}$ be a critical value for Dunnett's procedure and let treatment O be the control group. Dunnett's procedure for determining significant differences between each treatment and control at the joint significance level $\alpha$ is given by:
$H_{0}: \mu_{0}=\mu_{i} i=1, \ldots, k$

$$
\begin{aligned}
H_{a}: & \mu_{0}>\mu_{i} \\
& \mu_{0}<\mu_{i} i=1, \ldots, k \\
& \mu_{0} \neq \mu_{i}
\end{aligned}
$$

Test statistic: $D_{i}=\frac{\bar{Y}_{i .}-\bar{Y}_{0}}{\sqrt{2 \hat{\sigma}^{2} / n}} i=1, \ldots, k$
Rejection Region:
$D_{i} \geq d_{\alpha, k, k(n-1)}$
$D_{i} \leq-d_{\alpha, k, k(n-1)} i=1, \ldots, k$
$\left|D_{i}\right| \geq d_{\alpha, k, k(n-1)}$

### 20.6 The Randomized Complete Block Design

### 20.7 Factorial Designs

And finally, we can combine the two factors and create a two-factor model

$$
y_{i j k}=\mu_{i}+\mu_{j}+\epsilon_{i j k} \quad i=1,2, \ldots, r_{1}, \quad j=1,2, \ldots, r_{2}, \quad k=1,2, \ldots, n
$$

More specifically, for our example this would be:

$$
y_{i j k}=\mu_{i}+\mu_{j}+\epsilon_{i j k} \quad i=1,2, \ldots, 3, \quad j=1,2, \quad k=1,2, \ldots, 5
$$

Notice that $2 \times 3 \times 5$ represents the 30 observations. Finally, we can form the interaction model:

$$
y_{i j k}=\mu_{i}+\mu_{j}+\mu_{i j}+\epsilon_{i j k} \quad i=1,2, \ldots, 3, \quad j=1,2, \quad k=1,2, \ldots, 5
$$

For our example recall interactions were of interest. The usual form of the interaction model is:

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\epsilon_{i j k} \quad i=1,2, \ldots, a, \quad j=1,2, \ldots, b, \quad k=1,2, \ldots, n
$$

where the $\mu$ corresponds to an overall mean, $\alpha$ corresponds to the "effect" of the first factor, call it Factor A, measured at $a$ levels, $\beta$ is the "effect" of the second factor, factor B , measured at $b$ levels, and $\alpha \beta$ corresponds to the interaction term. The general form the analysis of variance table in this two-factor interaction model is given below.

| Source of Variation | Degrees of freedom | Sum of squares |  |  | Mean Square | F-ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Factor A | a-1 | $\mathrm{SS}_{A}=b n$ | $-\bar{y} . .)^{2}$ |  | $\mathrm{MS}_{A}=\frac{S S_{A}}{a-1}$ | $f=\frac{M S_{A}}{M S_{E}}$ |
| Factor B | b-1 | $\mathrm{SS}_{B}=a n$ | $\left.\bar{y}_{. j .}-\bar{y}_{\ldots . .}\right)^{2}$ |  | $\mathrm{MS}_{B}=\frac{S S_{B}}{b-1}$ | $f=\frac{M S_{B}}{M S_{E}}$ |
| AB interaction | (a-1)(b-1) | $\mathrm{SS}_{A B}=n$ | $C_{=1}^{C}\left(\bar{y}_{i j .}-\bar{y}_{i . .}\right.$ | $\bar{y}_{. j .}+\bar{y}_{\ldots} .$ | $\mathrm{MS}_{A B}=\frac{S S_{A B}}{(a-1)(b-1)}$ | $f=\frac{M S_{A E}}{M S_{E}}$ |
| Experimental Error | $a b(n-1)$ | $\mathrm{SS}_{E}=\sum_{i=1}^{a}$ | $\sum_{=1}^{n}\left(\bar{y}_{i j k}-\bar{y}_{i}\right.$ |  | $\mathrm{MS}_{E}=\frac{S S_{E}}{a b(n-1)}$ |  |
| Total | rn-1 | $\mathrm{SS}_{T}=\sum_{i=1}^{a}$ | $\sum_{=1}^{n}\left(\bar{y}_{i j k}-\bar{y} .\right.$ |  |  |  |
| STUDENT EDITION | Of StAtistix |  |  |  |  |  |
| ANALYSIS OF VARI | IANCE TA | BLE FOR | ANCE |  |  |  |
| SOURCE | DF | SS | MS | F | P |  |
| PROP (A) | 2 | 5980.47 | 2990.23 | 122.63 | 0.0000 |  |
| CHARGE (B) | 1 | 1414.53 | 1414.53 | 58.01 | 0.0000 |  |
| A*B | 2 | 61.2667 | 30.6333 | 1.26 | 0.3028 |  |
| RESIDUAL | 24 | 585.200 | 24.3833 |  |  |  |
| TOTAL | 29 | 8041.47 |  |  |  |  |

## 21 Tables

### 21.1 Cumulative Standard Normal Distribution tables


$\boldsymbol{P r}\{\mathbf{Z} \leq \mathbf{z}\}$
Table entry for z is the probability $\gamma$ lying below z (ie. cumulative probabilities)

Table 16: Cumulative Standard Normal distribution probabilities

| $z$ | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -3.4 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0002 |
| -3.3 | 0.0005 | 0.0005 | 0.0005 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0003 |
| -3.2 | 0.0007 | 0.0007 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0005 | 0.0005 | 0.0005 |
| -3.1 | 0.0010 | 0.0009 | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0007 |
| -3.0 | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
| -2.9 | 0.0019 | 0.0018 | 0.0018 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
| -2.8 | 0.0026 | 0.0025 | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
| -2.7 | 0.0035 | 0.0034 | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
| -2.6 | 0.0047 | 0.0045 | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
| -2.5 | 0.0062 | 0.0060 | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
| -2.4 | 0.0082 | 0.0080 | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
| -2.3 | 0.0107 | 0.0104 | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
| -2.2 | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
| -2.1 | 0.0179 | 0.0174 | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
| -2.0 | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
| -1.9 | 0.0287 | 0.0281 | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
| -1.8 | 0.0359 | 0.0351 | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
| -1.7 | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
| -1.6 | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
| -1.5 | 0.0668 | 0.0655 | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
| -1.4 | 0.0808 | 0.0793 | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0721 | 0.0708 | 0.0694 | 0.0681 |
| -1.3 | 0.0968 | 0.0951 | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
| -1.2 | 0.1151 | 0.1131 | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
| -1.1 | 0.1357 | 0.1335 | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
| -1.0 | 0.1587 | 0.1562 | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
| -0.9 | 0.1841 | 0.1814 | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
| -0.8 | 0.2119 | 0.2090 | 0.2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
| -0.7 | 0.2420 | 0.2389 | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
| -0.6 | 0.2743 | 0.2709 | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
| -0.5 | 0.3085 | 0.3050 | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
| -0.4 | 0.3446 | 0.3409 | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
| -0.3 | 0.3821 | 0.3783 | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
| -0.2 | 0.4207 | 0.4168 | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
| -0.1 | 0.4602 | 0.4562 | 0.4522 | 0.4483 | 0.4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
| -0.0 | 0.5000 | 0.4960 | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |


$\boldsymbol{\operatorname { P r }}\{\mathbf{Z} \leq \mathbf{z}\}$
Table entry for z is the probability $\gamma$ lying below $z$ (ie. cumulative probabilities)

Table 16: Standard Normal distribution probabilities continued

| $z$ | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |

$\operatorname{Pr}\{\mathbf{Z} \leq \mathbf{z}\}$ - Table entry is the critical value $z$ below which probability p lies under the curve ${ }^{\dagger}$

Table 17: Standard Normal Distribution Quantiles

| p | 0.000 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.50 | 0.000 | 0.003 | 0.005 | 0.008 | 0.010 | 0.013 | 0.015 | 0.018 | 0.020 | 0.023 |
| 0.51 | 0.025 | 0.028 | 0.030 | 0.033 | 0.035 | 0.038 | 0.040 | 0.043 | 0.045 | 0.048 |
| 0.52 | 0.050 | 0.053 | 0.055 | 0.058 | 0.060 | 0.063 | 0.065 | 0.068 | 0.070 | 0.073 |
| 0.53 | 0.075 | 0.078 | 0.080 | 0.083 | 0.085 | 0.088 | 0.090 | 0.093 | 0.095 | 0.098 |
| 0.54 | 0.100 | 0.103 | 0.105 | 0.108 | 0.111 | 0.113 | 0.116 | 0.118 | 0.121 | 0.123 |
| 0.55 | 0.126 | 0.128 | 0.131 | 0.133 | 0.136 | 0.138 | 0.141 | 0.143 | 0.146 | 0.148 |
| 0.56 | 0.151 | 0.154 | 0.156 | 0.159 | 0.161 | 0.164 | 0.166 | 0.169 | 0.171 | 0.174 |
| 0.57 | 0.176 | 0.179 | 0.181 | 0.184 | 0.187 | 0.189 | 0.192 | 0.194 | 0.197 | 0.199 |
| 0.58 | 0.202 | 0.204 | 0.207 | 0.210 | 0.212 | 0.215 | 0.217 | 0.220 | 0.222 | 0.225 |
| 0.59 | 0.228 | 0.230 | 0.233 | 0.235 | 0.238 | 0.240 | 0.243 | 0.246 | 0.248 | 0.251 |
| 0.60 | 0.253 | 0.256 | 0.259 | 0.261 | 0.264 | 0.266 | 0.269 | 0.272 | 0.274 | 0.277 |
| 0.61 | 0.279 | 0.282 | 0.285 | 0.287 | 0.290 | 0.292 | 0.295 | 0.298 | 0.300 | 0.303 |
| 0.62 | 0.305 | 0.308 | 0.311 | 0.313 | 0.316 | 0.319 | 0.321 | 0.324 | 0.327 | 0.329 |
| 0.63 | 0.332 | 0.335 | 0.337 | 0.340 | 0.342 | 0.345 | 0.348 | 0.350 | 0.353 | 0.356 |
| 0.64 | 0.358 | 0.361 | 0.364 | 0.366 | 0.369 | 0.372 | 0.375 | 0.377 | 0.380 | 0.383 |
| 0.65 | 0.385 | 0.388 | 0.391 | 0.393 | 0.396 | 0.399 | 0.402 | 0.404 | 0.407 | 0.410 |
| 0.66 | 0.412 | 0.415 | 0.418 | 0.421 | 0.423 | 0.426 | 0.429 | 0.432 | 0.434 | 0.437 |
| 0.67 | 0.440 | 0.443 | 0.445 | 0.448 | 0.451 | 0.454 | 0.457 | 0.459 | 0.462 | 0.465 |
| 0.68 | 0.468 | 0.470 | 0.473 | 0.476 | 0.479 | 0.482 | 0.485 | 0.487 | 0.490 | 0.493 |
| 0.69 | 0.496 | 0.499 | 0.502 | 0.504 | 0.507 | 0.510 | 0.513 | 0.516 | 0.519 | 0.522 |
| 0.70 | 0.524 | 0.527 | 0.530 | 0.533 | 0.536 | 0.539 | 0.542 | 0.545 | 0.548 | 0.550 |
| 0.71 | 0.553 | 0.556 | 0.559 | 0.562 | 0.565 | 0.568 | 0.571 | 0.574 | 0.577 | 0.580 |
| 0.72 | 0.583 | 0.586 | 0.589 | 0.592 | 0.595 | 0.598 | 0.601 | 0.604 | 0.607 | 0.610 |
| 0.73 | 0.613 | 0.616 | 0.619 | 0.622 | 0.625 | 0.628 | 0.631 | 0.634 | 0.637 | 0.640 |
| 0.74 | 0.643 | 0.646 | 0.650 | 0.653 | 0.656 | 0.659 | 0.662 | 0.665 | 0.668 | 0.671 |
| 0.75 | 0.674 | 0.678 | 0.681 | 0.684 | 0.687 | 0.690 | 0.693 | 0.697 | 0.700 | 0.703 |
| 0.76 | 0.706 | 0.710 | 0.713 | 0.716 | 0.719 | 0.722 | 0.726 | 0.729 | 0.732 | 0.736 |
| 0.77 | 0.739 | 0.742 | 0.745 | 0.749 | 0.752 | 0.755 | 0.759 | 0.762 | 0.765 | 0.769 |
| 0.78 | 0.772 | 0.776 | 0.779 | 0.782 | 0.786 | 0.789 | 0.793 | 0.796 | 0.800 | 0.803 |
| 0.79 | 0.806 | 0.810 | 0.813 | 0.817 | 0.820 | 0.824 | 0.827 | 0.831 | 0.834 | 0.838 |
| 0.80 | 0.842 | 0.845 | 0.849 | 0.852 | 0.856 | 0.860 | 0.863 | 0.867 | 0.871 | 0.874 |
| 0.81 | 0.878 | 0.882 | 0.885 | 0.889 | 0.893 | 0.896 | 0.900 | 0.904 | 0.908 | 0.912 |
| 0.82 | 0.915 | 0.919 | 0.923 | 0.927 | 0.931 | 0.935 | 0.938 | 0.942 | 0.946 | 0.950 |
| 0.83 | 0.954 | 0.958 | 0.962 | 0.966 | 0.970 | 0.974 | 0.978 | 0.982 | 0.986 | 0.990 |
| 0.84 | 0.994 | 0.999 | 1.003 | 1.007 | 1.011 | 1.015 | 1.019 | 1.024 | 1.028 | 1.032 |
| 0.85 | 1.036 | 1.041 | 1.045 | 1.049 | 1.054 | 1.058 | 1.063 | 1.067 | 1.071 | 1.076 |
| 0.86 | 1.080 | 1.085 | 1.089 | 1.094 | 1.098 | 1.103 | 1.108 | 1.112 | 1.117 | 1.122 |
| 0.87 | 1.126 | 1.131 | 1.136 | 1.141 | 1.146 | 1.150 | 1.155 | 1.160 | 1.165 | 1.170 |
| 0.88 | 1.175 | 1.180 | 1.185 | 1.190 | 1.195 | 1.200 | 1.206 | 1.211 | 1.216 | 1.221 |
| 0.89 | 1.227 | 1.232 | 1.237 | 1.243 | 1.248 | 1.254 | 1.259 | 1.265 | 1.270 | 1.276 |
| 0.90 | 1.282 | 1.287 | 1.293 | 1.299 | 1.305 | 1.311 | 1.317 | 1.323 | 1.329 | 1.335 |
| 0.91 | 1.341 | 1.347 | 1.353 | 1.359 | 1.366 | 1.372 | 1.379 | 1.385 | 1.392 | 1.398 |
| 0.92 | 1.405 | 1.412 | 1.419 | 1.426 | 1.433 | 1.440 | 1.447 | 1.454 | 1.461 | 1.468 |
| 0.93 | 1.476 | 1.483 | 1.491 | 1.499 | 1.506 | 1.514 | 1.522 | 1.530 | 1.538 | 1.546 |
| 0.94 | 1.555 | 1.563 | 1.572 | 1.580 | 1.589 | 1.598 | 1.607 | 1.616 | 1.626 | 1.635 |
| 0.95 | 1.645 | 1.655 | 1.665 | 1.675 | 1.685 | 1.695 | 1.706 | 1.717 | 1.728 | 1.739 |
| 0.96 | 1.751 | 1.762 | 1.774 | 1.787 | 1.799 | 1.812 | 1.825 | 1.838 | 1.852 | 1.866 |
| 0.97 | 1.881 | 1.896 | 1.911 | 1.927 | 1.943 | 1.960 | 1.977 | 1.995 | 2.014 | 2.034 |
| 0.98 | 2.054 | 2.075 | 2.097 | 2.120 | 2.144 | 2.170 | 2.197 | 2.226 | 2.257 | 2.290 |
| 0.99 | 2.326 | 2.366 | 2.409 | 2.457 | 2.512 | 2.576 | 2.652 | 2.748 | 2.878 | 3.090 |

Table 18: Standard Normal Critical Values

| $\alpha$ | $\mathrm{Z}_{\alpha}$ |
| ---: | :--- |
| 0.1 | 1.2816 |
| 0.05 | 1.6449 |
| 0.025 | 1.96 |
| 0.01 | 2.3263 |
| 0.005 | 2.5758 |
| 0.001 | 3.0902 |
| 0.0005 | 3.2905 |
| 0.0001 | 3.719 |
| 0.00009 | 3.7455 |
| 0.00008 | 3.775 |
| 0.00007 | 3.8082 |
| 0.00006 | 3.8461 |
| 0.00005 | 3.8906 |
| 0.00004 | 3.9444 |
| 0.00003 | 4.0128 |
| 0.00002 | 4.1075 |
| 0.00001 | 4.2649 |

## 21.2 t-distribution tables



$$
\operatorname{Pr}\left\{\mathbf{T} \geq t^{*}\right\}
$$

Table entry is the critical value $t^{*}$
above which probability $\alpha$
lies under the curve

Table 19: t -distribution critical values

| $d f$ | $\alpha$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.4 | 0.3 | 0.25 | 0.2 | 0.15 | 0.1 | 0.05 | 0.025 |
| 1 | 0.325 | 0.727 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.706 |
| 2 | 0.289 | 0.617 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 |
| 3 | 0.277 | 0.584 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 |
| 4 | 0.271 | 0.569 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 |
| 5 | 0.267 | 0.559 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 |
| 6 | 0.265 | 0.553 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 |
| 7 | 0.263 | 0.549 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 |
| 8 | 0.262 | 0.546 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 |
| 9 | 0.261 | 0.543 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 |
| 10 | 0.260 | 0.542 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 |
| 11 | 0.260 | 0.540 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 |
| 12 | 0.259 | 0.539 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 |
| 13 | 0.259 | 0.538 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 |
| 14 | 0.258 | 0.537 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 |
| 15 | 0.258 | 0.536 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 |
| 16 | 0.258 | 0.535 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 |
| 17 | 0.257 | 0.534 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 |
| 18 | 0.257 | 0.534 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 |
| 19 | 0.257 | 0.533 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 |
| 20 | 0.257 | 0.533 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 |
| 21 | 0.257 | 0.532 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 |
| 22 | 0.256 | 0.532 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 |
| 23 | 0.256 | 0.532 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 |
| 24 | 0.256 | 0.531 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 |
| 25 | 0.256 | 0.531 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 |
| 26 | 0.256 | 0.531 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 |
| 27 | 0.256 | 0.531 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 |
| 28 | 0.256 | 0.530 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 |
| 29 | 0.256 | 0.530 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 |
| 30 | 0.256 | 0.530 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 |
| 35 | 0.255 | 0.529 | 0.682 | 0.852 | 1.052 | 1.306 | 1.690 | 2.030 |
| 40 | 0.255 | 0.529 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 |
| 45 | 0.255 | 0.528 | 0.680 | 0.850 | 1.049 | 1.301 | 1.679 | 2.014 |
| 50 | 0.255 | 0.528 | 0.679 | 0.849 | 1.047 | 1.299 | 1.676 | 2.009 |
| 55 | 0.255 | 0.527 | 0.679 | 0.848 | 1.046 | 1.297 | 1.673 | 2.004 |
| 60 | 0.254 | 0.527 | 0.679 | 0.848 | 1.046 | 1.296 | 1.671 | 2.000 |
| 65 | 0.254 | 0.527 | 0.678 | 0.847 | 1.045 | 1.295 | 1.669 | 1.997 |
| 70 | 0.254 | 0.527 | 0.678 | 0.847 | 1.044 | 1.294 | 1.667 | 1.994 |
| 75 | 0.254 | 0.527 | 0.678 | 0.846 | 1.044 | 1.293 | 1.665 | 1.992 |
| 80 | 0.254 | 0.526 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 |
| 85 | 0.254 | 0.526 | 0.677 | 0.846 | 1.043 | 1.292 | 1.663 | 1.988 |
| 90 | 0.254 | 0.526 | 0.677 | 0.846 | 1.042 | 1.291 | 1.662 | 1.987 |
| 95 | 0.254 | 0.526 | 0.677 | 0.845 | 1.042 | 1.291 | 1.661 | 1.985 |
| 100 | 0.254 | 0.526 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 |
| 105 | 0.254 | 0.526 | 0.677 | 0.845 | 1.042 | 1.290 | 1.659 | 1.983 |
| 110 | 0.254 | 0.526 | 0.677 | 0.845 | 1.041 | 1.289 | 1.659 | 1.982 |
| 115 | 0.254 | 0.526 | 0.677 | 0.845 | 1.041 | 1.289 | 1.658 | 1.981 |
| 120 | 0.254 | 0.526 | 0.677 | 0.845 | 1.041 | 1.289 | 1.658 | 1.980 |
| 1000 | 0.253 | 0.525 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.960 |


$\boldsymbol{\operatorname { P r }}\left\{\mathbf{T} \geq t^{*}\right\}$
Table entry is the critical value $t^{*}$ above which probability $a$
lies under the curve

Table 19: t-distribution critical values continued

| $d f$ | $\alpha$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.02 | 0.01 | 0.005 | 0.0025 | 0.001 | 0.0005 | 0.0001 |
| 1 | 15.890 | 31.821 | 63.657 | 127.300 | 318.309 | 636.600 | 3183.099 |
| 2 | 4.849 | 6.965 | 9.925 | 14.090 | 22.327 | 31.600 | 70.700 |
| 3 | 3.482 | 4.541 | 5.841 | 7.453 | 10.215 | 12.920 | 22.204 |
| 4 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 | 13.034 |
| 5 | 2.757 | 3.365 | 4.032 | 4.773 | 5.893 | 6.869 | 9.678 |
| 6 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.959 | 8.025 |
| 7 | 2.517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.408 | 7.063 |
| 8 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501 | 5.041 | 6.442 |
| 9 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297 | 4.781 | 6.010 |
| 10 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144 | 4.587 | 5.694 |
| 11 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025 | 4.437 | 5.453 |
| 12 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930 | 4.318 | 5.263 |
| 13 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852 | 4.221 | 5.111 |
| 14 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787 | 4.140 | 4.985 |
| 15 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733 | 4.073 | 4.880 |
| 16 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686 | 4.015 | 4.791 |
| 17 | 2.224 | 2.567 | 2.898 | 3.222 | 3.646 | 3.965 | 4.714 |
| 18 | 2.214 | 2.552 | 2.878 | 3.197 | 3.610 | 3.922 | 4.648 |
| 19 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.883 | 4.590 |
| 20 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3.850 | 4.539 |
| 21 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.819 | 4.493 |
| 22 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.792 | 4.452 |
| 23 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.768 | 4.415 |
| 24 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467 | 3.745 | 4.382 |
| 25 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.725 | 4.352 |
| 26 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707 | 4.324 |
| 27 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3.690 | 4.299 |
| 28 | 2.154 | 2.467 | 2.763 | 3.047 | 3.408 | 3.674 | 4.275 |
| 29 | 2.150 | 2.462 | 2.756 | 3.038 | 3.396 | 3.659 | 4.254 |
| 30 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.646 | 4.234 |
| 35 | 2.133 | 2.438 | 2.724 | 2.996 | 3.340 | 3.591 | 4.153 |
| 40 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.551 | 4.094 |
| 45 | 2.115 | 2.412 | 2.690 | 2.952 | 3.281 | 3.520 | 4.049 |
| 50 | 2.109 | 2.403 | 2.678 | 2.937 | 3.261 | 3.496 | 4.014 |
| 55 | 2.104 | 2.396 | 2.668 | 2.925 | 3.245 | 3.476 | 3.986 |
| 60 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3.460 | 3.962 |
| 65 | 2.096 | 2.385 | 2.654 | 2.906 | 3.220 | 3.447 | 3.942 |
| 70 | 2.093 | 2.381 | 2.648 | 2.899 | 3.211 | 3.435 | 3.926 |
| 75 | 2.090 | 2.377 | 2.643 | 2.892 | 3.202 | 3.425 | 3.911 |
| 80 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.416 | 3.899 |
| 85 | 2.086 | 2.371 | 2.635 | 2.882 | 3.189 | 3.409 | 3.888 |
| 90 | 2.084 | 2.368 | 2.632 | 2.878 | 3.183 | 3.402 | 3.878 |
| 95 | 2.082 | 2.366 | 2.629 | 2.874 | 3.178 | 3.396 | 3.869 |
| 100 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.391 | 3.862 |
| 105 | 2.080 | 2.362 | 2.623 | 2.868 | 3.170 | 3.386 | 3.855 |
| 110 | 2.078 | 2.361 | 2.621 | 2.865 | 3.166 | 3.381 | 3.848 |
| 115 | 2.077 | 2.359 | 2.619 | 2.862 | 3.163 | 3.377 | 3.843 |
| 120 | 2.076 | 2.358 | 2.617 | 2.860 | 3.160 | 3.374 | 3.837 |
| 1000 | 2.056 | 2.330 | 2.581 | 2.813 | 3.098 | 3.300 | 3.733 |

### 21.3 Tables of the $\chi^{2}$-distribution

$\operatorname{Pr}\left\{\chi^{2} \geq x^{2}\right\}$ - Table entry is the critical value $x^{2}$ above which probability $\alpha$ lies under the curve (upper tail probabilities)
Table 20: Quantiles of the $\chi_{\nu}^{2}$ - distribution

|  | $\alpha$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu$ | . 9999 | . 9995 | . 999 | . 995 | . 99 | . 975 | . 95 | . 90 |
| 1 | $1.57 \mathrm{E}-08$ | $3.93 \mathrm{E}-07$ | $1.57 \mathrm{E}-06$ | $3.93 \mathrm{E}-05$ | 0.0002 | 0.0010 | 0.0039 | 0.0158 |
| 2 | 0.0002 | 0.0010 | 0.0020 | 0.0100 | 0.0201 | 0.0506 | 0.1026 | 0.2107 |
| 3 | 0.0052 | 0.0153 | 0.0243 | 0.0717 | 0.1148 | 0.2158 | 0.3518 | 0.5844 |
| 4 | 0.0284 | 0.0639 | 0.0908 | 0.2070 | 0.2971 | 0.4844 | 0.7107 | 1.0636 |
| 5 | 0.0822 | 0.1581 | 0.2102 | 0.4117 | 0.5543 | 0.8312 | 1.1455 | 1.6103 |
| 6 | 0.1724 | 0.2994 | 0.3811 | 0.6757 | 0.8721 | 1.2373 | 1.6354 | 2.2041 |
| 7 | 0.3000 | 0.4849 | 0.5985 | 0.9893 | 1.2390 | 1.6899 | 2.1673 | 2.8331 |
| 8 | 0.4636 | 0.7104 | 0.8571 | 1.3444 | 1.6465 | 2.1797 | 2.7326 | 3.4895 |
| 9 | 0.6608 | 0.9717 | 1.1519 | 1.7349 | 2.0879 | 2.7004 | 3.3251 | 4.1682 |
| 10 | 0.8889 | 1.2650 | 1.4787 | 2.1559 | 2.5582 | 3.2470 | 3.9403 | 4.8652 |
| 11 | 1.1453 | 1.5868 | 1.8339 | 2.6032 | 3.0535 | 3.8157 | 4.5748 | 5.5778 |
| 12 | 1.4275 | 1.9344 | 2.2142 | 3.0738 | 3.5706 | 4.4038 | 5.2260 | 6.3038 |
| 13 | 1.7333 | 2.3051 | 2.6172 | 3.5650 | 4.1069 | 5.0088 | 5.8919 | 7.0415 |
| 14 | 2.0608 | 2.6967 | 3.0407 | 4.0747 | 4.6604 | 5.6287 | 6.5706 | 7.7895 |
| 15 | 2.4082 | 3.1075 | 3.4827 | 4.6009 | 5.2293 | 6.2621 | 7.2609 | 8.5468 |
| 16 | 2.7739 | 3.5358 | 3.9416 | 5.1422 | 5.8122 | 6.9077 | 7.9616 | 9.3122 |
| 17 | 3.1567 | 3.9802 | 4.4161 | 5.6972 | 6.4078 | 7.5642 | 8.6718 | 10.0852 |
| 18 | 3.5552 | 4.4394 | 4.9048 | 6.2648 | 7.0149 | 8.2307 | 9.3905 | 10.8649 |
| 19 | 3.9683 | 4.9123 | 5.4068 | 6.8440 | 7.6327 | 8.9065 | 10.1170 | 11.6509 |
| 20 | 4.3952 | 5.3981 | 5.9210 | 7.4338 | 8.2604 | 9.5908 | 10.8508 | 12.4426 |
| 21 | 4.8348 | 5.8957 | 6.4467 | 8.0337 | 8.8972 | 10.2829 | 11.5913 | 13.2396 |
| 22 | 5.2865 | 6.4045 | 6.9830 | 8.6427 | 9.5425 | 10.9823 | 12.3380 | 14.0415 |
| 23 | 5.7494 | 6.9237 | 7.5292 | 9.2604 | 10.1957 | 11.6886 | 13.0905 | 14.8480 |
| 24 | 6.2230 | 7.4527 | 8.0849 | 9.8862 | 10.8564 | 12.4012 | 13.8484 | 15.6587 |
| 25 | 6.7066 | 7.9910 | 8.6493 | 10.5197 | 11.5240 | 13.1197 | 14.6114 | 16.4734 |
| 26 | 7.1998 | 8.5379 | 9.2221 | 11.1602 | 12.1981 | 13.8439 | 15.3792 | 17.2919 |
| 27 | 7.7019 | 9.0932 | 9.8028 | 11.8076 | 12.8785 | 14.5734 | 16.1514 | 18.1139 |
| 28 | 8.2126 | 9.6563 | 10.3909 | 12.4613 | 13.5647 | 15.3079 | 16.9279 | 18.9392 |
| 29 | 8.7315 | 10.2268 | 10.9861 | 13.1211 | 14.2565 | 16.0471 | 17.7084 | 19.7677 |
| 30 | 9.2581 | 10.8044 | 11.5880 | 13.7867 | 14.9535 | 16.7908 | 18.4927 | 20.5992 |
| 35 | 11.9957 | 13.7875 | 14.6878 | 17.1918 | 18.5089 | 20.5694 | 22.4650 | 24.7967 |
| 40 | 14.8831 | 16.9062 | 17.9164 | 20.7065 | 22.1643 | 24.4330 | 26.5093 | 29.0505 |
| 45 | 17.8940 | 20.1366 | 21.2507 | 24.3110 | 25.9013 | 28.3662 | 30.6123 | 33.3504 |
| 50 | 21.0093 | 23.4610 | 24.6739 | 27.9907 | 29.7067 | 32.3574 | 34.7643 | 37.6886 |
| 55 | 24.2141 | 26.8658 | 28.1731 | 31.7348 | 33.5705 | 36.3981 | 38.9580 | 42.0596 |
| 60 | 27.4969 | 30.3405 | 31.7383 | 35.5345 | 37.4849 | 40.4817 | 43.1880 | 46.4589 |
| 65 | 30.8483 | 33.8767 | 35.3616 | 39.3831 | 41.4436 | 44.6030 | 47.4496 | 50.8829 |
| 70 | 34.2607 | 37.4674 | 39.0364 | 43.2752 | 45.4417 | 48.7576 | 51.7393 | 55.3289 |
| 75 | 37.7279 | 41.1072 | 42.7573 | 47.2060 | 49.4750 | 52.9419 | 56.0541 | 59.7946 |
| 80 | 41.2445 | 44.7910 | 46.5199 | 51.1719 | 53.5401 | 57.1532 | 60.3915 | 64.2778 |
| 85 | 44.8060 | 48.5151 | 50.3203 | 55.1696 | 57.6339 | 61.3888 | 64.7494 | 68.7772 |
| 90 | 48.4087 | 52.2758 | 54.1552 | 59.1963 | 61.7541 | 65.6466 | 69.1260 | 73.2911 |
| 95 | 52.0492 | 56.0702 | 58.0220 | 63.2496 | 65.8984 | 69.9249 | 73.5198 | 77.8184 |
| 100 | 55.7246 | 59.8957 | 61.9179 | 67.3276 | 70.0649 | 74.2219 | 77.9295 | 82.3581 |
| 105 | 59.4323 | 63.7499 | 65.8411 | 71.4282 | 74.2520 | 78.5364 | 82.3537 | 86.9093 |
| 110 | 63.1701 | 67.6310 | 69.7894 | 75.5500 | 78.4583 | 82.8671 | 86.7916 | 91.4710 |
| 115 | 66.9360 | 71.5371 | 73.7613 | 79.6916 | 82.6824 | 87.2128 | 91.2422 | 96.0427 |
| 120 | 70.7281 | 75.4665 | 77.7551 | 83.8516 | 86.9233 | 91.5726 | 95.7046 | 100.6236 |

$\operatorname{Pr}\left\{\chi^{2} \geq x^{2}\right\}$ - Table entry is the critical value $x^{2}$ above which probability $\alpha$ lies under the curve (upper tail probabilities)
Table 20: Quantiles of the $\chi_{\nu}^{2}$ - distribution continued

|  | $\alpha$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu$ | . 10 | . 05 | . 025 | . 01 | . 005 | . 001 | . 0005 | . 0001 |
| 1 | 2.7055 | 3.8415 | 5.0239 | 6.6349 | 7.8794 | 10.8276 | 12.1157 | 15.1367 |
| 2 | 4.6052 | 5.9915 | 7.3778 | 9.2103 | 10.5966 | 13.8155 | 15.2018 | 18.4207 |
| 3 | 6.2514 | 7.8147 | 9.3484 | 11.3449 | 12.8382 | 16.2662 | 17.7300 | 21.1075 |
| 4 | 7.7794 | 9.4877 | 11.1433 | 13.2767 | 14.8603 | 18.4668 | 19.9974 | 23.5127 |
| 5 | 9.2364 | 11.0705 | 12.8325 | 15.0863 | 16.7496 | 20.5150 | 22.1053 | 25.7448 |
| 6 | 10.6446 | 12.5916 | 14.4494 | 16.8119 | 18.5476 | 22.4577 | 24.1028 | 27.8563 |
| 7 | 12.0170 | 14.0671 | 16.0128 | 18.4753 | 20.2777 | 24.3219 | 26.0178 | 29.8775 |
| 8 | 13.3616 | 15.5073 | 17.5345 | 20.0902 | 21.9550 | 26.1245 | 27.8680 | 31.8276 |
| 9 | 14.6837 | 16.9190 | 19.0228 | 21.6660 | 23.5894 | 27.8772 | 29.6658 | 33.7199 |
| 10 | 15.9872 | 18.3070 | 20.4832 | 23.2093 | 25.1882 | 29.5883 | 31.4198 | 35.5640 |
| 11 | 17.2750 | 19.6751 | 21.9200 | 24.7250 | 26.7568 | 31.2641 | 33.1366 | 37.3670 |
| 12 | 18.5493 | 21.0261 | 23.3367 | 26.2170 | 28.2995 | 32.9095 | 34.8213 | 39.1344 |
| 13 | 19.8119 | 22.3620 | 24.7356 | 27.6882 | 29.8195 | 34.5282 | 36.4778 | 40.8707 |
| 14 | 21.0641 | 23.6848 | 26.1189 | 29.1412 | 31.3193 | 36.1233 | 38.1094 | 42.5793 |
| 15 | 22.3071 | 24.9958 | 27.4884 | 30.5779 | 32.8013 | 37.6973 | 39.7188 | 44.2632 |
| 16 | 23.5418 | 26.2962 | 28.8454 | 31.9999 | 34.2672 | 39.2524 | 41.3081 | 45.9249 |
| 17 | 24.7690 | 27.5871 | 30.1910 | 33.4087 | 35.7185 | 40.7902 | 42.8792 | 47.5664 |
| 18 | 25.9894 | 28.8693 | 31.5264 | 34.8053 | 37.1565 | 42.3124 | 44.4338 | 49.1894 |
| 19 | 27.2036 | 30.1435 | 32.8523 | 36.1909 | 38.5823 | 43.8202 | 45.9731 | 50.7955 |
| 20 | 28.4120 | 31.4104 | 34.1696 | 37.5662 | 39.9968 | 45.3147 | 47.4985 | 52.3860 |
| 21 | 29.6151 | 32.6706 | 35.4789 | 38.9322 | 41.4011 | 46.7970 | 49.0108 | 53.9620 |
| 22 | 30.8133 | 33.9244 | 36.7807 | 40.2894 | 42.7957 | 48.2679 | 50.5111 | 55.5246 |
| 23 | 32.0069 | 35.1725 | 38.0756 | 41.6384 | 44.1813 | 49.7282 | 52.0002 | 57.0746 |
| 24 | 33.1962 | 36.4150 | 39.3641 | 42.9798 | 45.5585 | 51.1786 | 53.4788 | 58.6130 |
| 25 | 34.3816 | 37.6525 | 40.6465 | 44.3141 | 46.9279 | 52.6197 | 54.9475 | 60.1403 |
| 26 | 35.5632 | 38.8851 | 41.9232 | 45.6417 | 48.2899 | 54.0520 | 56.4069 | 61.6573 |
| 27 | 36.7412 | 40.1133 | 43.1945 | 46.9629 | 49.6449 | 55.4760 | 57.8576 | 63.1645 |
| 28 | 37.9159 | 41.3371 | 44.4608 | 48.2782 | 50.9934 | 56.8923 | 59.3000 | 64.6624 |
| 29 | 39.0875 | 42.5570 | 45.7223 | 49.5879 | 52.3356 | 58.3012 | 60.7346 | 66.1517 |
| 30 | 40.2560 | 43.7730 | 46.9792 | 50.8922 | 53.6720 | 59.7031 | 62.1619 | 67.6326 |
| 35 | 46.0588 | 49.8018 | 53.2033 | 57.3421 | 60.2748 | 66.6188 | 69.1986 | 74.9262 |
| 40 | 51.8051 | 55.7585 | 59.3417 | 63.6907 | 66.7660 | 73.4020 | 76.0946 | 82.0623 |
| 45 | 57.5053 | 61.6562 | 65.4102 | 69.9568 | 73.1661 | 80.0767 | 82.8757 | 89.0695 |
| 50 | 63.1671 | 67.5048 | 71.4202 | 76.1539 | 79.4900 | 86.6608 | 89.5605 | 95.9687 |
| 55 | 68.7962 | 73.3115 | 77.3805 | 82.2921 | 85.7490 | 93.1675 | 96.1632 | 102.7758 |
| 60 | 74.3970 | 79.0819 | 83.2977 | 88.3794 | 91.9517 | 99.6072 | 102.6948 | 109.5029 |
| 65 | 79.9730 | 84.8206 | 89.1771 | 94.4221 | 98.1051 | 105.9881 | 109.1639 | 116.1599 |
| 70 | 85.5270 | 90.5312 | 95.0232 | 100.4252 | 104.2149 | 112.3169 | 115.5776 | 122.7547 |
| 75 | 91.0615 | 96.2167 | 100.8393 | 106.3929 | 110.2856 | 118.5991 | 121.9418 | 129.2937 |
| 80 | 96.5782 | 101.8795 | 106.6286 | 112.3288 | 116.3211 | 124.8392 | 128.2613 | 135.7825 |
| 85 | 102.0789 | 107.5217 | 112.3934 | 118.2357 | 122.3246 | 131.0412 | 134.5403 | 142.2257 |
| 90 | 107.5650 | 113.1453 | 118.1359 | 124.1163 | 128.2989 | 137.2084 | 140.7823 | 148.6273 |
| 95 | 113.0377 | 118.7516 | 123.8580 | 129.9727 | 134.2465 | 143.3435 | 146.9903 | 154.9906 |
| 100 | 118.4980 | 124.3421 | 129.5612 | 135.8067 | 140.1695 | 149.4493 | 153.1670 | 161.3187 |
| 105 | 123.9469 | 129.9180 | 135.2470 | 141.6201 | 146.0696 | 155.5277 | 159.3146 | 167.6140 |
| 110 | 129.3851 | 135.4802 | 140.9166 | 147.4143 | 151.9485 | 161.5807 | 165.4353 | 173.8791 |
| 115 | 134.8135 | 141.0297 | 146.5711 | 153.1906 | 157.8076 | 167.6102 | 171.5309 | 180.1158 |
| 120 | 140.2326 | 146.5674 | 152.2114 | 158.9502 | 163.6482 | 173.6174 | 177.6029 | 186.3260 |

### 21.4 F-distribution tables

Table E: F-critical values


Table E: F-critical values


Table E: F-critical values

|  |  | Degrees of freedom in the numerator |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFD | p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0.1 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.3 2.27 |  |  |  |  |  |  |  |  |  |  |
| 11 | 0.05 | 4.84 | 3.98 | 3.59 | 3.36 | 3.2 | 3.09 | 3.01 | 2.95 | 2.90 |
|  | 0.025 | 6.72 | 5.26 | 4.63 | 4.28 | 4.04 | 3.88 | 3.76 | 3.66 | 3.59 |
|  | 0.01 | 9.65 | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 | 4.89 | 4.74 | 4.63 |
|  | 0.001 | 19.69 | 13.81 | 11.56 | 10.35 | 9.58 | 9.05 | 8.66 | 8.35 | 8.12 |
| 12 | 0.1 | 3.18 | 2.81 | 2.61 | 2.48 | 2.39 | 2.33 | 2.28 | 2.24 | 2.21 |
|  | 0.05 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3 | 2.91 | 2.85 | 2.80 |
|  | 0.025 | 6.55 | 5.1 | 4.47 | 4.12 | 3.89 | 3.73 | 3.61 | 3.51 | 3.44 |
|  | 0.01 | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.5 | 4.39 |
|  | 0.001 | 18.64 | 12.97 | 10.8 | 9.63 | 8.89 | 8.38 | 8 | 7.71 | 7.48 |
| 13 | 0.1 | 3.14 | 2.76 | 2.56 | 2.43 | 2.35 | 2.28 | 2.23 | 2.2 | 2.16 |
|  | 0.05 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 |
|  | 0.025 | 6.41 | 4.97 | 4.35 | 4 | 3.77 | 3.6 | 3.48 | 3.39 | 3.31 |
|  | 0.01 | 9.07 | 6.7 | 5.74 | 5.21 | 4.86 | 4.62 | 4.44 | 4.3 | 4.19 |
|  | 0.001 | 17.82 | 12.31 | 10.21 | 9.07 | 8.35 | 7.86 | 7.49 | 7.21 | 6.98 |
| 14 | 0.1 | 3.1 | 2.73 | 2.52 | 2.39 | 2.31 | 2.24 | 2.19 | 2.15 | 2.12 |
|  | 0.05 | 4.6 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.7 | 2.65 |
|  | 0.025 | 6.3 | 4.86 | 4.24 | 3.89 | 3.66 | 3.5 | 3.38 | 3.29 | 3.21 |
|  | 0.01 | 8.86 | 6.51 | 5.56 | 5.04 | 4.69 | 4.46 | 4.28 | 4.14 | 4.03 |
|  | 0.001 | 17.14 | 11.78 | 9.73 | 8.62 | 7.92 | 7.44 | 7.08 | 6.8 | 6.58 |
| 15 | 0.1 | 3.07 | 2.7 | 2.49 | 2.36 | 2.27 | 2.21 | 2.16 | 2.12 | 2.09 |
|  | 0.05 | 4.54 | 3.68 | 3.29 | 3.06 | 2.9 | 2.79 | 2.71 | 2.64 | 2.59 |
|  | 0.025 | 6.2 | 4.77 | 4.15 | 3.8 | 3.58 | 3.41 | 3.29 | 3.2 | 3.12 |
|  | 0.01 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4 | 3.89 |
|  | 0.001 | 16.59 | 11.34 | 9.34 | 8.25 | 7.57 | 7.09 | 6.74 | 6.47 | 6.26 |
| 16 | 0.1 | 3.05 | 2.67 | 2.46 | 2.33 | 2.24 | 2.18 | 2.13 | 2.09 | 2.06 |
|  | 0.05 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 |
|  | 0.025 | 6.12 | 4.69 | 4.08 | 3.73 | 3.5 | 3.34 | 3.22 | 3.12 | 3.05 |
|  | 0.01 | 8.53 | 6.23 | 5.29 | 4.77 | 4.44 | 4.2 | 4.03 | 3.89 | 3.78 |
|  | 0.001 | 16.12 | 10.97 | 9.01 | 7.94 | 7.27 | 6.8 | 6.46 | 6.19 | 5.98 |
| 17 | 0.1 | 3.03 | 2.64 | 2.44 | 2.31 | 2.22 | 2.15 | 2.1 | 2.06 | 2.03 |
|  | 0.05 | 4.45 | 3.59 | 3.2 | 2.96 | 2.81 | 2.7 | 2.61 | 2.55 | 2.49 |
|  | 0.025 | 6.04 | 4.62 | 4.01 | 3.66 | 3.44 | 3.28 | 3.16 | 3.06 | 2.98 |
|  | 0.01 | 8.4 | 6.11 | 5.19 | 4.67 | 4.34 | 4.1 | 3.93 | 3.79 | 3.68 |
|  | 0.001 | 15.72 | 10.66 | 8.73 | 7.68 | 7.02 | 6.56 | 6.22 | 5.96 | 5.75 |
| 18 | 0.1 | 3.01 | 2.62 | 2.42 | 2.29 | 2.2 | 2.13 | 2.08 | 2.04 | 2.00 |
|  | 0.05 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 |
|  | 0.025 | 5.98 | 4.56 | 3.95 | 3.61 | 3.38 | 3.22 | 3.1 | 3.01 | 2.93 |
|  | 0.01 | 8.29 | 6.01 | 5.09 | 4.58 | 4.25 | 4.01 | 3.84 | 3.71 | 3.60 |
|  | 0.001 | 15.38 | 10.39 | 8.49 | 7.46 | 6.81 | 6.35 | 6.02 | 5.76 | 5.56 |
| 19 | 0.1 | 2.99 | 2.61 | 2.4 | 2.27 | 2.18 | 2.11 | 2.06 | 2.02 | 1.98 |
|  | 0.05 | 4.38 | 3.52 | 3.13 | 2.9 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 |
|  | 0.025 | 5.92 | 4.51 | 3.9 | 3.56 | 3.33 | 3.17 | 3.05 | 2.96 | 2.88 |
|  | 0.01 | 8.18 | 5.93 | 5.01 | 4.5 | 4.17 | 3.94 | 3.77 | 3.63 | 3.52 |
|  | 0.001 | 15.08 | 10.16 | 8.28 | 7.27 | 6.62 | 6.18 | 5.85 | 5.59 | 5.39 |
| 20 | 0.1 | 2.97 | 2.59 | 2.38 | 2.25 | 2.16 | 2.09 | 2.04 | 2 | 1.96 |
|  | 0.05 | 4.35 | 3.49 | 3.1 | 2.87 | 2.71 | 2.6 | 2.51 | 2.45 | 2.39 |
|  | 0.025 | 5.87 | 4.46 | 3.86 | 3.51 | 3.29 | 3.13 | 3.01 | 2.91 | 2.84 |
|  | 0.01 | 8.1 | 5.85 | 4.94 | 4.43 | 4.1 | 3.87 | 3.7 | 3.56 | 3.46 |
|  | 0.001 | 14.82 | 9.95 | 8.1 | 7.1 | 6.46 | 6.02 | 5.69 | 5.44 | 5.24 |

Table E: F-critical values


Table E: F-critical values

| DFD |  | Degrees of freedom in the numerator |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 0.1 | 2.96 | 2.57 | 2.36 | 2.23 | 2.14 | 2.08 | 2.02 | 1.98 | 1.95 |
| 21 | 0.05 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 |
|  | 0.025 | 5.83 | 4.42 | 3.82 | 3.48 | 3.25 | 3.09 | 2.97 | 2.87 | 2.80 |
|  | 0.01 | 8.02 | 5.78 | 4.87 | 4.37 | 4.04 | 3.81 | 3.64 | 3.51 | 3.40 |
|  | 0.001 | 14.59 | 9.77 | 7.94 | 6.95 | 6.32 | 5.88 | 5.56 | 5.31 | 5.11 |
| 22 | 0.1 | 2.95 | 2.56 | 2.35 | 2.22 | 2.13 | 2.06 | 2.01 | 1.97 | 1.93 |
|  | 0.05 | 4.3 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.4 | 2.34 |
|  | 0.025 | 5.79 | 4.38 | 3.78 | 3.44 | 3.22 | 3.05 | 2.93 | 2.84 | 2.76 |
|  | 0.01 | 7.95 | 5.72 | 4.82 | 4.31 | 3.99 | 3.76 | 3.59 | 3.45 | 3.35 |
|  | 0.001 | 14.38 | 9.61 | 7.8 | 6.81 | 6.19 | 5.76 | 5.44 | 5.19 | 4.99 |
| 23 | 0.1 | 2.94 | 2.55 | 2.34 | 2.21 | 2.11 | 2.05 | 1.99 | 1.95 | 1.92 |
|  | 0.05 | 4.28 | 3.42 | 3.03 | 2.8 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 |
|  | 0.025 | 5.75 | 4.35 | 3.75 | 3.41 | 3.18 | 3.02 | 2.9 | 2.81 | 2.73 |
|  | 0.01 | 7.88 | 5.66 | 4.76 | 4.26 | 3.94 | 3.71 | 3.54 | 3.41 | 3.30 |
|  | 0.001 | 14.2 | 9.47 | 7.67 | 6.7 | 6.08 | 5.65 | 5.33 | 5.09 | 4.89 |
| 24 | 0.1 | 2.93 | 2.54 | 2.33 | 2.19 | 2.1 | 2.04 | 1.98 | 1.94 | 1.91 |
|  | 0.05 | 4.26 | 3.4 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 |
|  | 0.025 | 5.72 | 4.32 | 3.72 | 3.38 | 3.15 | 2.99 | 2.87 | 2.78 | 2.70 |
|  | 0.01 | 7.82 | 5.61 | 4.72 | 4.22 | 3.9 | 3.67 | 3.5 | 3.36 | 3.26 |
|  | 0.001 | 14.03 | 9.34 | 7.55 | 6.59 | 5.98 | 5.55 | 5.23 | 4.99 | 4.80 |
| 25 | 0.1 | 2.92 | 2.53 | 2.32 | 2.18 | 2.09 | 2.02 | 1.97 | 1.93 | 1.89 |
|  | 0.05 | 4.24 | 3.39 | 2.99 | 2.76 | 2.6 | 2.49 | 2.4 | 2.34 | 2.28 |
|  | 0.025 | 5.69 | 4.29 | 3.69 | 3.35 | 3.13 | 2.97 | 2.85 | 2.75 | 2.68 |
|  | 0.01 | 7.77 | 5.57 | 4.68 | 4.18 | 3.85 | 3.63 | 3.46 | 3.32 | 3.22 |
|  | 0.001 | 13.88 | 9.22 | 7.45 | 6.49 | 5.89 | 5.46 | 5.15 | 4.91 | 4.71 |
| 26 | 0.1 | 2.91 | 2.52 | 2.31 | 2.17 | 2.08 | 2.01 | 1.96 | 1.92 | 1.88 |
|  | 0.05 | 4.23 | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 | 2.27 |
|  | 0.025 | 5.66 | 4.27 | 3.67 | 3.33 | 3.1 | 2.94 | 2.82 | 2.73 | 2.65 |
|  | 0.01 | 7.72 | 5.53 | 4.64 | 4.14 | 3.82 | 3.59 | 3.42 | 3.29 | 3.18 |
|  | 0.001 | 13.74 | 9.12 | 7.36 | 6.41 | 5.8 | 5.38 | 5.07 | 4.83 | 4.64 |
| 27 | 0.1 | 2.9 | 2.51 | 2.3 | 2.17 | 2.07 | 2 | 1.95 | 1.91 | 1.87 |
|  | 0.05 | 4.21 | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 | 2.25 |
|  | 0.025 | 5.63 | 4.24 | 3.65 | 3.31 | 3.08 | 2.92 | 2.8 | 2.71 | 2.63 |
|  | 0.01 | 7.68 | 5.49 | 4.6 | 4.11 | 3.78 | 3.56 | 3.39 | 3.26 | 3.15 |
|  | 0.001 | 13.61 | 9.02 | 7.27 | 6.33 | 5.73 | 5.31 | 5 | 4.76 | 4.57 |
| 28 | 0.1 | 2.89 | 2.5 | 2.29 | 2.16 | 2.06 | 2 | 1.94 | . 9 | 1.87 |
|  | 0.05 | 4.2 | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 | 2.24 |
|  | 0.025 | 5.61 | 4.22 | 3.63 | 3.29 | 3.06 | 2.9 | 2.78 | 2.69 | 2.61 |
|  | 0.01 | 7.64 | 5.45 | 4.57 | 4.07 | 3.75 | 3.53 | 3.36 | 3.23 | 3.12 |
|  | 0.001 | 13.5 | 8.93 | 7.19 | 6.25 | 5.66 | 5.24 | 4.93 | 4.69 | 4.50 |
| 29 | 0.1 | 2.89 | 2.5 | 2.28 | 2.15 | 2.06 | 1.99 | 1.93 | 1.89 | 1.86 |
|  | 0.05 | 4.18 | 3.33 | 2.93 | 2.7 | 2.55 | 2.43 | 2.35 | 2.28 | 2.22 |
|  | 0.025 | 5.59 | 4.2 | 3.61 | 3.27 | 3.04 | 2.88 | 2.76 | 2.67 | 2.59 |
|  | 0.01 | 7.6 | 5.42 | 4.54 | 4.04 | 3.73 | 3.5 | 3.33 | 3.2 | 3.09 |
|  | 0.001 | 13.39 | 8.85 | 7.12 | 6.19 | 5.59 | 5.18 | 4.87 | 4.64 | 4.45 |
| 30 | 0.1 | 2.88 | 2.49 | 2.28 | 2.14 | 2.05 | 1.98 | 1.93 | 1.88 | 1.85 |
|  | 0.05 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 |
|  | 0.025 | 5.57 | 4.18 | 3.59 | 3.25 | 3.03 | 2.87 | 2.75 | 2.65 | 2.57 |
|  | 0.01 | 7.56 | 5.39 | 4.51 | 4.02 | 3.7 | 3.47 | 3.3 | 3.17 | 3.07 |
|  | 0.001 | 13.29 | 8.77 | 7.05 | 6.12 | 5.53 | 5.12 | 4.82 | 4.58 | 4.39 |

Table E: F-critical values

|  |  | Degrees of freedom in the numerator |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFD | p | 10 | 12 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 120 | 1000 |
|  | 0.1 | 1.92 | 1.87 | 1.83 | 1.78 | 1.74 | 1.72 | 1.69 | 1.67 | 1.66 | 1.62 | 1.59 |
|  | 0.05 | 2.32 | 2.25 | 2.18 | 2.1 | 2.05 | 2.01 | 1.96 | 1.94 | 1.92 | 1.87 | 1.82 |
| 21 | 0.025 | 2.73 | 2.64 | 2.53 | 2.42 | 2.36 | 2.31 | 2.25 | 2.21 | 2.18 | 2.11 | 2.05 |
|  | 0.01 | 3.31 | 3.17 | 3.03 | 2.88 | 2.79 | 2.72 | 2.64 | 2.58 | 2.55 | 2.46 | 2.37 |
|  | 0.001 | 4.95 | 4.7 | 4.44 | 4.17 | 4 | 3.88 | 3.74 | 3.64 | 3.58 | 3.42 | 3.28 |
|  | 0.1 | 1.9 | 1.86 | 1.81 | 1.76 | 1.73 | 1.7 | 1.67 | 1.65 | 1.64 | 1.6 | 1.57 |
|  | 0.05 | 2.3 | 2.23 | 2.15 | 2.07 | 2.02 | 1.98 | 1.94 | 1.91 | 1.89 | 1.84 | 1.79 |
| 22 | 0.025 | 2.7 | 2.6 | 2.5 | 2.39 | 2.32 | 2.27 | 2.21 | 2.17 | 2.14 | 2.08 | 2.01 |
|  | 0.01 | 3.26 | 3.12 | 2.98 | 2.83 | 2.73 | 2.67 | 2.58 | 2.53 | 2.5 | 2.4 | 2.32 |
|  | 0.001 | 4.83 | 4.58 | 4.33 | 4.06 | 3.89 | 3.78 | 3.63 | 3.54 | 3.48 | 3.32 | 3.17 |
|  | 0.1 | 1.89 | 1.84 | 1.8 | 1.74 | 1.71 | 1.69 | 1.66 | 1.64 | 1.62 | 1.59 | 1.55 |
|  | 0.05 | 2.27 | 2.2 | 2.13 | 2.05 | 2 | 1.96 | 1.91 | 1.88 | 1.86 | 1.81 | 1.76 |
| 23 | 0.025 | 2.67 | 2.57 | 2.47 | 2.36 | 2.29 | 2.24 | 2.18 | 2.14 | 2.11 | 2.04 | 1.98 |
|  | 0.01 | 3.21 | 3.07 | 2.93 | 2.78 | 2.69 | 2.62 | 2.54 | 2.48 | 2.45 | 2.35 | 2.27 |
|  | 0.001 | 4.73 | 4.48 | 4.23 | 3.96 | 3.79 | 3.68 | 3.53 | 3.44 | 3.38 | 3.22 | 3.08 |
|  | 0.1 | 1.88 | 1.83 | 1.78 | 1.73 | 1.7 | 1.67 | 1.64 | 1.62 | 1.61 | 1.57 | 1.54 |
|  | 0.05 | 2.25 | 2.18 | 2.11 | 2.03 | 1.97 | 1.94 | 1.89 | 1.86 | 1.84 | 1.79 | 1.74 |
| 24 | 0.025 | 2.64 | 2.54 | 2.44 | 2.33 | 2.26 | 2.21 | 2.15 | 2.11 | 2.08 | 2.01 | 1.94 |
|  | 0.01 | 3.17 | 3.03 | 2.89 | 2.74 | 2.64 | 2.58 | 2.49 | 2.44 | 2.4 | 2.31 | 2.22 |
|  | 0.001 | 4.64 | 4.39 | 4.14 | 3.87 | 3.71 | 3.59 | 3.45 | 3.36 | 3.29 | 3.14 | 2.99 |
|  | 0.1 | 1.87 | 1.82 | 1.77 | 1.72 | 1.68 | 1.66 | 1.63 | 1.61 | 1.59 | 1.56 | 1.52 |
|  | 0.05 | 2.24 | 2.16 | 2.09 | 2.01 | 1.96 | 1.92 | 1.87 | 1.84 | 1.82 | 1.77 | 1.72 |
| 25 | 0.025 | 2.61 | 2.51 | 2.41 | 2.3 | 2.23 | 2.18 | 2.12 | 2.08 | 2.05 | 1.98 | . 91 |
|  | 0.01 | 3.13 | 2.99 | 2.85 | 2.7 | 2.6 | 2.54 | 2.45 | 2.4 | 2.36 | 2.27 | 2.18 |
|  | 0.001 | 4.56 | 4.31 | 4.06 | 3.79 | 3.63 | 3.52 | 3.37 | 3.28 | 3.22 | 3.06 | 2.91 |
|  | 0.1 | 1.86 | 1.81 | 1.76 | 1.71 | 1.67 | 1.65 | 1.61 | 1.59 | 1.58 | 1.54 | 1.51 |
|  | 0.05 |  | 2.15 | 2.07 | 1.99 | 1.94 | 1.9 | 1.85 | 1.82 | 1.8 | 1.75 | 1.70 |
| 26 | 0.025 | 2.59 | 2.49 | 2.39 | 2.28 | 2.21 | 2.16 | 2.09 | 2.05 | 2.03 | 1.95 | 1.89 |
|  | 0.01 | 3.09 | 2.96 | 2.81 | 2.66 | 2.57 | 2.5 | 2.42 | 2.36 | 2.33 | 2.23 | 2.14 |
|  | 0.001 | 4.48 | 4.24 | 3.99 | 3.72 | 3.56 | 3.44 | 3.3 | 3.21 | 3.15 | 2.99 | 2.84 |
|  | 0.1 | 1.85 | 1.8 | 1.75 | 1.7 | 1.66 | 1.64 | 1.6 | 1.58 | 1.57 | 1.53 | 1.50 |
|  | 0.05 | 2.2 | 2.13 | 2.06 | 1.97 | 1.92 | 1.88 | 1.84 | 1.81 | 1.79 | 1.73 | 1.68 |
| 27 | 0.025 | 2.57 | 2.47 | 2.36 | 2.25 | 2.18 | 2.13 | 2.07 | 2.03 | 2 | 1.93 | 1.86 |
|  | 0.01 | 3.06 | 2.93 | 2.78 | 2.63 | 2.54 | 2.47 | 2.38 | 2.33 | 2.29 | 2.2 | 2.11 |
|  | 0.001 | 4.41 | 4.17 | 3.92 | 3.66 | 3.49 | 3.38 | 3.23 | 3.14 | 3.08 | 2.92 | 2.78 |
|  | 0.1 | 1.84 | 1.79 | 1.74 | 1.69 | 1.65 | 1.63 | 1.59 | 1.57 | 1.56 | 1.52 | 1.48 |
|  | 0.05 | 2.19 | 2.12 | 2.04 | 1.96 | 1.91 | 1.87 | 1.82 | 1.79 | 1.77 | 1.71 | 1.66 |
| 28 | 0.025 | 2.55 | 2.45 | 2.34 | 2.23 | 2.16 | 2.11 | 2.05 | 2.01 | 1.98 | 1.91 | 1.84 |
|  | 0.01 | 3.03 | 2.9 | 2.75 | 2.6 | 2.51 | 2.44 | 2.35 | 2.3 | 2.26 | 2.17 | 2.08 |
|  | 0.001 | 4.35 | 4.11 | 3.86 | 3.6 | 3.43 | 3.32 | 3.18 | 3.09 | 3.02 | 2.86 | 2.72 |
|  | 0.1 | 1.83 | 1.78 | 1.73 | 1.68 | 1.64 | 1.62 | 1.58 | 1.56 | 1.55 | 1.51 | 1.47 |
|  | 0.05 | 2.18 | 2.1 | 2.03 | 1.94 | 1.89 | 1.85 | 1.81 | 1.77 | 1.75 | 1.7 | 1.65 |
| 29 | 0.025 | 2.53 | 2.43 | 2.32 | 2.21 | 2.14 | 2.09 | 2.03 | 1.99 | 1.96 | 1.89 | 1.82 |
|  | 0.01 | 3 | 2.87 | 2.73 | 2.57 | 2.48 | 2.41 | 2.33 | 2.27 | 2.23 | 2.14 | 2.05 |
|  | 0.001 | 4.29 | 4.05 | 3.8 | 3.54 | 3.38 | 3.27 | 3.12 | 3.03 | 2.97 | 2.81 | 2.66 |
|  | 0.1 | 1.82 | 1.77 | 1.72 | 1.67 | 1.63 | 1.61 | 1.57 | 1.55 | 1.54 | 1.5 | 1.46 |
|  | 0.05 | 2.16 | 2.09 | 2.01 | 1.93 | 1.88 | 1.84 | 1.79 | 1.76 | 1.74 | 1.68 | 1.63 |
| 30 | 0.025 | 2.51 | 2.41 | 2.31 | 2.2 | 2.12 | 2.07 | 2.01 | 1.97 | 1.94 | 1.87 | 1.80 |
|  | 0.01 | 2.98 | 2.84 | 2.7 | 2.55 | 2.45 | 2.39 | 2.3 | 2.25 | 2.21 | 2.11 | 2.02 |
|  | 0.001 | 4.24 | 4 | 3.75 | 3.49 | 3.33 | 3.22 | 3.07 | 2.98 | 2.92 | 76 | 2.61 |

Table E: F-critical values

|  |  | Degrees of freedom in the numerator |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFD | p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 0.1 | 2.84 | 2.44 | 2.23 | 2.09 | 2 | 1.93 | 1.87 | 1.83 | 1.79 |
|  | 0.05 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 |
| 40 | 0.025 | 5.42 | 4.05 | 3.46 | 3.13 | 2.9 | 2.74 | 2.62 | 2.53 | 2.45 |
|  | 0.01 | 7.31 | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.89 |
|  | 0.001 | 12.61 | 8.25 | 6.59 | 5.7 | 5.13 | 4.73 | 4.44 | 4.21 | 4.02 |
|  | 0.1 | 2.81 | 2.41 | 2.2 | 2.06 | 1.97 | 1.9 | 1.84 | 1.8 | 1.76 |
|  | 0.05 | 4.03 | 3.18 | 2.79 | 2.56 | 2.4 | 2.29 | 2.2 | 2.13 | 2.07 |
| 50 | 0.025 | 5.34 | 3.97 | 3.39 | 3.05 | 2.83 | 2.67 | 2.55 | 2.46 | 2.38 |
|  | 0.01 | 7.17 | 5.06 | 4.2 | 3.72 | 3.41 | 3.19 | 3.02 | 2.89 | 2.78 |
|  | 0.001 | 12.22 | 7.96 | 6.34 | 5.46 | 4.9 | 4.51 | 4.22 | 4 | 3.82 |
|  | 0.1 | 2.79 | 2.39 | 2.18 | 2.04 | 1.95 | 1.87 | 1.82 | 1.77 | 1.74 |
|  | 0.05 | 4 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.1 | 2.04 |
| 60 | 0.025 | 5.29 | 3.93 | 3.34 | 3.01 | 2.79 | 2.63 | 2.51 | 2.41 | 2.33 |
|  | 0.01 | 7.08 | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 |
|  | 0.001 | 11.97 | 7.77 | 6.17 | 5.31 | 4.76 | 4.37 | 4.09 | 3.86 | 3.69 |
|  | 0.1 | 2.76 | 2.36 | 2.14 | 2 | 1.91 | 1.83 | 1.78 | 1.73 | 1.69 |
|  | 0.05 | 3.94 | 3.09 | 2.7 | 2.46 | 2.31 | 2.19 | 2.1 | 2.03 | 1.97 |
| 100 | 0.025 | 5.18 | 3.83 | 3.25 | 2.92 | 2.7 | 2.54 | 2.42 | 2.32 | 2.24 |
|  | 0.01 | 6.9 | 4.82 | 3.98 | 3.51 | 3.21 | 2.99 | 2.82 | 2.69 | 2.59 |
|  | 0.001 | 11.5 | 7.41 | 5.86 | 5.02 | 4.48 | 4.11 | 3.83 | 3.61 | 3.44 |
|  | 0.1 | 2.73 | 2.33 | 2.11 | 1.97 | 1.88 | 1.8 | 1.75 | 1.7 | 1.66 |
|  | 0.05 | 3.89 | 3.04 | 2.65 | 2.42 | 2.26 | 2.14 | 2.06 | 1.98 | 1.93 |
| 200 | 0.025 | 5.1 | 3.76 | 3.18 | 2.85 | 2.63 | 2.47 | 2.35 | 2.26 | 2.18 |
|  | 0.01 | 6.76 | 4.71 | 3.88 | 3.41 | 3.11 | 2.89 | 2.73 | 2.6 | 2.50 |
|  | 0.001 | 11.15 | 7.15 | 5.63 | 4.81 | 4.29 | 3.92 | 3.65 | 3.43 | 3.26 |
|  | 0.1 | 2.71 | 2.31 | 2.09 | 1.95 | 1.85 | 1.78 | 1.72 | 1.68 | 1.64 |
|  | 0.05 | 3.85 | 3 | 2.61 | 2.38 | 2.22 | 2.11 | 2.02 | 1.95 | 1.89 |
| 1000 | 0.025 | 5.04 | 3.7 | 3.13 | 2.8 | 2.58 | 2.42 | 2.3 | 2.2 | 2.13 |
|  | 0.01 | 6.66 | 4.63 | 3.8 | 3.34 | 3.04 | 2.82 | 2.66 | 2.53 | 2.43 |
|  | 0.001 | 10.89 | 6.96 | 5.46 | 4.65 | 4.14 | 3.78 | 3.51 | 3.3 | 3.13 |

Table E: F-critical values

|  | Degrees of freedom in the numerator |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DFD | p | 10 | 12 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 120 | 1000 |
|  | 0.1 | 1.76 | 1.71 | 1.66 | 1.61 | 1.57 | 1.54 | 1.51 | 1.48 | 1.47 | 1.42 | 1.38 |
|  | 0.05 | 2.08 | 2 | 1.92 | 1.84 | 1.78 | 1.74 | 1.69 | 1.66 | 1.64 | 1.58 | 1.52 |
| 40 | 0.025 | 2.39 | 2.29 | 2.18 | 2.07 | 1.99 | 1.94 | 1.88 | 1.83 | 1.8 | 1.72 | 1.65 |
|  | 0.01 | 2.8 | 2.66 | 2.52 | 2.37 | 2.27 | 2.2 | 2.11 | 2.06 | 2.02 | 1.92 | 1.82 |
|  | 0.001 | 3.87 | 3.64 | 3.4 | 3.14 | 2.98 | 2.87 | 2.73 | 2.64 | 2.57 | 2.41 | 2.25 |
|  | 0.1 | 1.73 | 1.68 | 1.63 | 1.57 | 1.53 | 1.5 | 1.46 | 1.44 | 1.42 | 1.38 | 1.33 |
|  | 0.05 | 2.03 | 1.95 | 1.87 | 1.78 | 1.73 | 1.69 | 1.63 | 1.6 | 1.58 | 1.51 | 1.45 |
| 50 | 0.025 | 2.32 | 2.22 | 2.11 | 1.99 | 1.92 | 1.87 | 1.8 | 1.75 | 1.72 | 1.64 | 1.56 |
|  | 0.01 | 2.7 | 2.56 | 2.42 | 2.27 | 2.17 | 2.1 | 2.01 | 1.95 | 1.91 | 1.8 | 1.70 |
|  | 0.001 | 3.67 | 3.44 | 3.2 | 2.95 | 2.79 | 2.68 | 2.53 | 2.44 | 2.38 | 2.21 | 2.05 |
|  | 0.1 | 1.71 | 1.66 | 1.6 | 1.54 | 1.5 | 1.48 | 1.44 | 1.41 | 1.4 | 1.35 | 1.30 |
|  | 0.05 | 1.99 | 1.92 | 1.84 | 1.75 | 1.69 | 1.65 | 1.59 | 1.56 | 1.53 | 1.47 | 1.40 |
| 60 | 0.025 | 2.27 | 2.17 | 2.06 | 1.94 | 1.87 | 1.82 | 1.74 | 1.7 | 1.67 | 1.58 | 1.49 |
|  | 0.01 | 2.63 | 2.5 | 2.35 | 2.2 | 2.1 | 2.03 | 1.94 | 1.88 | 1.84 | 1.73 | 1.62 |
|  | 0.001 | 3.54 | 3.32 | 3.08 | 2.83 | 2.67 | 2.55 | 2.41 | 2.32 | 2.25 | 2.08 | 1.92 |
|  | 0.1 | 1.66 | 1.61 | 1.56 | 1.49 | 1.45 | 1.42 | 1.38 | 1.35 | 1.34 | 1.28 | 1.22 |
|  | 0.05 | 1.93 | 1.85 | 1.77 | 1.68 | 1.62 | 1.57 | 1.52 | 1.48 | 1.45 | 1.38 | 1.30 |
| 100 | 0.025 | 2.18 | 2.08 | 1.97 | 1.85 | 1.77 | 1.71 | 1.64 | 1.59 | 1.56 | 1.46 | 1.36 |
|  | 0.01 | 2.5 | 2.37 | 2.22 | 2.07 | 1.97 | 1.89 | 1.8 | 1.74 | 1.69 | 1.57 | 1.45 |
|  | 0.001 | 3.3 | 3.07 | 2.84 | 2.59 | 2.43 | 2.32 | 2.17 | 2.08 | 2.01 | 1.83 | 1.64 |
|  | 0.1 | 1.63 | 1.58 | 1.52 | 1.46 | 1.41 | 1.38 | 1.34 | 1.31 | 1.29 | 1.23 | 1.16 |
|  | 0.05 | 1.88 | 1.8 | 1.72 | 1.62 | 1.56 | 1.52 | 1.46 | 1.41 | 1.39 | 1.3 | 1.21 |
| 200 | 0.025 | 2.11 | 2.01 | 1.9 | 1.78 | 1.7 | 1.64 | 1.56 | 1.51 | 1.47 | 1.37 | 1.25 |
|  | 0.01 | 2.41 | 2.27 | 2.13 | 1.97 | 1.87 | 1.79 | 1.69 | 1.63 | 1.58 | 1.45 | 1.30 |
|  | 0.001 | 3.12 | 2.9 | 2.67 | 2.42 | 2.26 | 2.15 | 2 | 1.9 | 1.83 | 1.64 | 1.43 |
|  | 0.1 | 1.61 | 1.55 | 1.49 | 1.43 | 1.38 | 1.35 | 1.3 | 1.27 | 1.25 | 1.18 | 1.08 |
|  | 0.05 | 1.84 | 1.76 | 1.68 | 1.58 | 1.52 | 1.47 | 1.41 | 1.36 | 1.33 | 1.24 | 1.11 |
|  | 0.025 | 2.06 | 1.96 | 1.85 | 1.72 | 1.64 | 1.58 | 1.5 | 1.45 | 1.41 | 1.29 | 1.13 |
|  | 0.01 | 2.34 | 2.2 | 2.06 | 1.9 | 1.79 | 1.72 | 1.61 | 1.54 | 1.5 | 1.35 | 1.16 |
|  | 0.001 | 2.99 | 2.77 | 2.54 | 2.3 | 2.14 | 2.02 | 1.87 | 1.77 | 1.69 | 1.49 | 1.22 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 21: Percentage Points of the Maximum F-Ratio

| $\alpha=0.05$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu$ | 2 | 3 | 4 | $r$ |  |  |  |  |  |  |  |  |  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 39.0 | 87.5 | 142 | 202 | 266 | 333 | 403 | 475 | 550 | 626 | 704 |  |  |  |  |  |  |  |  |  |
| 3 | 15.4 | 27.8 | 39.2 | 50.7 | 62.0 | 72.9 | 83.5 | 93.9 | 104 | 114 | 124 |  |  |  |  |  |  |  |  |  |
| 4 | 9.60 | 15.5 | 20.6 | 25.2 | 29.5 | 33.6 | 37.5 | 41.1 | 44.6 | 48.0 | 51.4 |  |  |  |  |  |  |  |  |  |
| 5 | 7.15 | 10.8 | 13.7 | 16.3 | 18.7 | 20.8 | 22.9 | 24.7 | 26.5 | 28.2 | 29.9 |  |  |  |  |  |  |  |  |  |
| 6 | 5.82 | 8.38 | 10.4 | 12.1 | 13.7 | 15.0 | 16.3 | 17.5 | 18.6 | 19.7 | 20.7 |  |  |  |  |  |  |  |  |  |
| 7 | 4.99 | 6.94 | 8.44 | 9.70 | 10.8 | 11.8 | 12.7 | 13.5 | 14.3 | 15.1 | 15.8 |  |  |  |  |  |  |  |  |  |
| 8 | 4.43 | 6.00 | 7.18 | 8.12 | 9.03 | 9.78 | 10.5 | 11.1 | 11.7 | 12.2 | 12.7 |  |  |  |  |  |  |  |  |  |
| 9 | 4.03 | 5.34 | 6.31 | 7.11 | 7.80 | 8.41 | 8.95 | 9.45 | 9.91 | 10.3 | 10.7 |  |  |  |  |  |  |  |  |  |
| 10 | 3.72 | 4.85 | 5.67 | 6.34 | 6.92 | 7.42 | 7.87 | 8.28 | 8.66 | 9.01 | 9.34 |  |  |  |  |  |  |  |  |  |
| 12 | 3.28 | 4.16 | 4.79 | 5.30 | 5.72 | 6.09 | 6.42 | 6.72 | 7.00 | 7.25 | 7.48 |  |  |  |  |  |  |  |  |  |
| 15 | 2.86 | 3.54 | 4.01 | 4.37 | 4.68 | 4.95 | 5.19 | 5.40 | 5.59 | 5.77 | 5.93 |  |  |  |  |  |  |  |  |  |
| 20 | 2.46 | 2.95 | 3.29 | 3.54 | 3.76 | 3.94 | 4.10 | 4.24 | 4.37 | 4.49 | 4.59 |  |  |  |  |  |  |  |  |  |
| 30 | 2.07 | 2.40 | 2.61 | 2.78 | 2.91 | 3.02 | 3.12 | 3.21 | 3.29 | 3.36 | 3.39 |  |  |  |  |  |  |  |  |  |
| 60 | 1.67 | 1.85 | 1.96 | 2.04 | 2.11 | 2.17 | 2.22 | 2.26 | 2.30 | 2.33 | 2.36 |  |  |  |  |  |  |  |  |  |
| $\infty$ | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.0 |  |  |  |  |  |  |  |  |  |


| $\alpha=0.01$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r$ |  |  |  |  |  |  |  |  |  |  |  |
| $\nu$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 199 | 448 | 729 | 1036 | 1362 | 1705 | 2063 | 2432 | 2813 | 3204 | 3605 |
| 3 | 47.5 | 85 | 120 | 151 | 184 | 21(6) | 24(9) | 28(1) | 31(0) | 33(7) | 36(1) |
| 4 | 23.2 | 37 | 49 | 59 | 69 | 79 | 89 | 97 | 106 | 113 | 120 |
| 5 | 14.9 | 22 | 28 | 33 | 38 | 42 | 46 | 50 | 54 | 57 | 60 |
| 6 | 11.1 | 15.5 | 19.1 | 22 | 25 | 27 | 30 | 32 | 34 | 36 | 37 |
| 7 | 8.89 | 12.1 | 14.5 | 16.5 | 18.4 | 20 | 22 | 23 | 24 | 26 | 27 |
| 8 | 7.50 | 9.9 | 11.7 | 13.2 | 14.5 | 15.8 | 16.9 | 17.9 | 18.9 | 19.8 | 21 |
| 9 | 6.54 | 8.5 | 9.9 | 11.1 | 12.1 | 13.1 | 13.9 | 14.7 | 15.3 | 16.0 | 16.6 |
| 10 | 5.85 | 7.4 | 8.6 | 9.6 | 10.4 | 11.1 | 11.8 | 12.4 | 12.9 | 13.4 | 13.9 |
| 12 | 4.91 | 6.1 | 6.9 | 7.6 | 8.2 | 8.7 | 9.1 | 9.5 | 9.9 | 10.2 | 10.6 |
| 15 | 4.07 | 4.9 | 5.5 | 6.0 | 6.4 | 6.7 | 7.1 | 7.3 | 7.5 | 7.8 | 8.0 |
| 20 | 3.32 | 3.8 | 4.3 | 4.6 | 4.9 | 5.1 | 5.3 | 5.5 | 5.6 | 5.8 | 5.9 |
| 30 | 2.63 | 3.0 | 3.3 | 3.4 | 3.6 | 3.7 | 3.8 | 3.9 | 4.0 | 4.1 | 4.2 |
| 60 | 1.96 | 2.2 | 2.3 | 2.4 | 2.4 | 2.5 | 2.5 | 2.6 | 2.6 | 2.7 | 2.7 |
| $\infty$ | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |



Table entry for F is the probability $\alpha$ lying above $F^{*}$ (ie. tail probabilities)

Table 22: Critical values of the F - distribution $-\alpha=0.05$

| $\nu_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 30 | 40 | 60 | 120 | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 245.95 | 248.01 | 250.10 | 251.14 | 252.20 | 253.25 | 254.25 |
| 2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.43 | 19.45 | 19.46 | 19.47 | 19.48 | 19.49 | 19.50 |
| 3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.70 | 8.66 | 8.62 | 8.59 | 8.57 | 8.55 | 8.53 |
| 4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.86 | 5.80 | 5.75 | 5.72 | 5.69 | 5.66 | 5.63 |
| 5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.62 | 4.56 | 4.50 | 4.46 | 4.43 | 4.40 | 4.37 |
| 6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 3.94 | 3.87 | 3.81 | 3.77 | 3.74 | 3.70 | 3.67 |
| 7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.51 | 3.44 | 3.38 | 3.34 | 3.30 | 3.27 | 3.23 |
| 8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.22 | 3.15 | 3.08 | 3.04 | 3.01 | 2.97 | 2.93 |
| 9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.01 | 2.94 | 2.86 | 2.83 | 2.79 | 2.75 | 2.71 |
| 10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.85 | 2.77 | 2.70 | 2.66 | 2.62 | 2.58 | 2.54 |
| 11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 | 2.72 | 2.65 | 2.57 | 2.53 | 2.49 | 2.45 | 2.41 |
| 12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.62 | 2.54 | 2.47 | 2.43 | 2.38 | 2.34 | 2.30 |
| 13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 | 2.53 | 2.46 | 2.38 | 2.34 | 2.30 | 2.25 | 2.21 |
| 14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 | 2.46 | 2.39 | 2.31 | 2.27 | 2.22 | 2.18 | 2.13 |
| 15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.40 | 2.33 | 2.25 | 2.20 | 2.16 | 2.11 | 2.07 |
| 16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 | 2.35 | 2.28 | 2.19 | 2.15 | 2.11 | 2.06 | 2.01 |
| 17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 | 2.31 | 2.23 | 2.15 | 2.10 | 2.06 | 2.01 | 1.96 |
| 18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 | 2.27 | 2.19 | 2.11 | 2.06 | 2.02 | 1.97 | 1.92 |
| 19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 | 2.23 | 2.16 | 2.07 | 2.03 | 1.98 | 1.93 | 1.88 |
| 20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.20 | 2.12 | 2.04 | 1.99 | 1.95 | 1.90 | 1.85 |
| 21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 | 2.18 | 2.10 | 2.01 | 1.96 | 1.92 | 1.87 | 1.82 |
| 22 | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 | 2.34 | 2.30 | 2.15 | 2.07 | 1.98 | 1.94 | 1.89 | 1.84 | 1.79 |
| 23 | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 | 2.27 | 2.13 | 2.05 | 1.96 | 1.91 | 1.86 | 1.81 | 1.76 |
| 24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 | 2.11 | 2.03 | 1.94 | 1.89 | 1.84 | 1.79 | 1.74 |
| 25 | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 | 2.28 | 2.24 | 2.09 | 2.01 | 1.92 | 1.87 | 1.82 | 1.77 | 1.71 |
| 30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 2.01 | 1.93 | 1.84 | 1.79 | 1.74 | 1.68 | 1.63 |
| 40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 1.92 | 1.84 | 1.74 | 1.69 | 1.64 | 1.58 | 1.51 |
| 50 | 4.03 | 3.18 | 2.79 | 2.56 | 2.40 | 2.29 | 2.20 | 2.13 | 2.07 | 2.03 | 1.87 | 1.78 | 1.69 | 1.63 | 1.58 | 1.51 | 1.44 |
| 60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.84 | 1.75 | 1.65 | 1.59 | 1.53 | 1.47 | 1.39 |
| 120 | 3.92 | 3.07 | 2.68 | 2.45 | 2.29 | 2.18 | 2.09 | 2.02 | 1.96 | 1.91 | 1.75 | 1.66 | 1.55 | 1.50 | 1.43 | 1.35 | 1.26 |
| 1000 | 3.85 | 3.00 | 2.61 | 2.38 | 2.22 | 2.10 | 2.01 | 1.94 | 1.88 | 1.84 | 1.67 | 1.58 | 1.46 | 1.40 | 1.32 | 1.23 | 1.00 |



Table 22: Critical values of the F - distribution (continued) $-\alpha=0.01$

|  | $\nu_{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 30 | 40 | 60 | 120 | $\infty$ |
| 2 | 98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 | 99.36 | 99.37 | 99.39 | 99.40 | 99.43 | 99.45 | 99.47 | 99.47 | 99.48 | 99.49 | 99.50 |
| 3 | 34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 | 27.67 | 27.49 | 27.35 | 27.23 | 26.87 | 26.69 | 26.50 | 26.41 | 26.32 | 26.22 | 26.13 |
| 4 | 21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 | 14.98 | 14.80 | 14.66 | 14.55 | 14.20 | 14.02 | 13.84 | 13.75 | 13.65 | 13.56 | 13.47 |
| 5 | 16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 | 10.46 | 10.29 | 10.16 | 10.05 | 9.72 | 9.55 | 9.38 | 9.29 | 9.20 | 9.11 | 9.03 |
| 6 | 13.75 | 10.92 | 9.78 | 9.15 | 8.75 | 8.47 | 8.26 | 8.10 | 7.98 | 7.87 | 7.56 | 7.40 | 7.23 | 7.14 | 7.06 | 6.97 | 6.89 |
| 7 | 12.25 | 9.55 | 8.45 | 7.85 | 7.46 | 7.19 | 6.99 | 6.84 | 6.72 | 6.62 | 6.31 | 6.16 | 5.99 | 5.91 | 5.82 | 5.74 | 5.65 |
| 8 | 11.26 | 8.65 | 7.59 | 7.01 | 6.63 | 6.37 | 6.18 | 6.03 | 5.91 | 5.81 | 5.52 | 5.36 | 5.20 | 5.12 | 5.03 | 4.95 | 4.86 |
| 9 | 10.56 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.61 | 5.47 | 5.35 | 5.26 | 4.96 | 4.81 | 4.65 | 4.57 | 4.48 | 4.40 | 4.32 |
| 10 | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 | 4.94 | 4.85 | 4.56 | 4.41 | 4.25 | 4.17 | 4.08 | 4.00 | 3.91 |
| 11 | 9.65 | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 | 4.89 | 4.74 | 4.63 | 4.54 | 4.25 | 4.10 | 3.94 | 3.86 | 3.78 | 3.69 | 3.61 |
| 12 | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 | 4.39 | 4.30 | 4.01 | 3.86 | 3.70 | 3.62 | 3.54 | 3.45 | 3.37 |
| 13 | 9.07 | 6.70 | 5.74 | 5.21 | 4.86 | 4.62 | 4.44 | 4.30 | 4.19 | 4.10 | 3.82 | 3.66 | 3.51 | 3.43 | 3.34 | 3.25 | 3.17 |
| 14 | 8.86 | 6.51 | 5.56 | 5.04 | 4.69 | 4.46 | 4.28 | 4.14 | 4.03 | 3.94 | 3.66 | 3.51 | 3.35 | 3.27 | 3.18 | 3.09 | 3.01 |
| 15 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.89 | 3.80 | 3.52 | 3.37 | 3.21 | 3.13 | 3.05 | 2.96 | 2.87 |
| 16 | 8.53 | 6.23 | 5.29 | 4.77 | 4.44 | 4.20 | 4.03 | 3.89 | 3.78 | 3.69 | 3.41 | 3.26 | 3.10 | 3.02 | 2.93 | 2.84 | 2.76 |
| 17 | 8.40 | 6.11 | 5.19 | 4.67 | 4.34 | 4.10 | 3.93 | 3.79 | 3.68 | 3.59 | 3.31 | 3.16 | 3.00 | 2.92 | 2.83 | 2.75 | 2.66 |
| 18 | 8.29 | 6.01 | 5.09 | 4.58 | 4.25 | 4.01 | 3.84 | 3.71 | 3.60 | 3.51 | 3.23 | 3.08 | 2.92 | 2.84 | 2.75 | 2.66 | 2.57 |
| 19 | 8.18 | 5.93 | 5.01 | 4.50 | 4.17 | 3.94 | 3.77 | 3.63 | 3.52 | 3.43 | 3.15 | 3.00 | 2.84 | 2.76 | 2.67 | 2.58 | 2.50 |
| 20 | 8.10 | 5.85 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 | 3.46 | 3.37 | 3.09 | 2.94 | 2.78 | 2.69 | 2.61 | 2.52 | 2.43 |
| 21 | 8.02 | 5.78 | 4.87 | 4.37 | 4.04 | 3.81 | 3.64 | 3.51 | 3.40 | 3.31 | 3.03 | 2.88 | 2.72 | 2.64 | 2.55 | 2.46 | 2.37 |
| 22 | 7.95 | 5.72 | 4.82 | 4.31 | 3.99 | 3.76 | 3.59 | 3.45 | 3.35 | 3.26 | 2.98 | 2.83 | 2.67 | 2.58 | 2.50 | 2.40 | 2.31 |
| 23 | 7.88 | 5.66 | 4.76 | 4.26 | 3.94 | 3.71 | 3.54 | 3.41 | 3.30 | 3.21 | 2.93 | 2.78 | 2.62 | 2.54 | 2.45 | 2.35 | 2.26 |
| 24 | 7.82 | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 | 3.26 | 3.17 | 2.89 | 2.74 | 2.58 | 2.49 | 2.40 | 2.31 | 2.22 |
| 25 | 7.77 | 5.57 | 4.68 | 4.18 | 3.85 | 3.63 | 3.46 | 3.32 | 3.22 | 3.13 | 2.85 | 2.70 | 2.54 | 2.45 | 2.36 | 2.27 | 2.18 |
| 30 | 7.56 | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 | 3.07 | 2.98 | 2.70 | 2.55 | 2.39 | 2.30 | 2.21 | 2.11 | 2.01 |
| 40 | 7.31 | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.89 | 2.80 | 2.52 | 2.37 | 2.20 | 2.11 | 2.02 | 1.92 | 1.81 |
| 50 | 7.17 | 5.06 | 4.20 | 3.72 | 3.41 | 3.19 | 3.02 | 2.89 | 2.78 | 2.70 | 2.42 | 2.27 | 2.10 | 2.01 | 1.91 | 1.80 | 1.69 |
| 60 | 7.08 | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 | 2.63 | 2.35 | 2.20 | 2.03 | 1.94 | 1.84 | 1.73 | 1.61 |
| 120 | 6.85 | 4.79 | 3.95 | 3.48 | 3.17 | 2.96 | 2.79 | 2.66 | 2.56 | 2.47 | 2.19 | 2.03 | 1.86 | 1.76 | 1.66 | 1.53 | 1.39 |
| 1000 | 6.65 | 4.62 | 3.79 | 3.33 | 3.03 | 2.81 | 2.65 | 2.52 | 2.42 | 2.33 | 2.05 | 1.89 | 1.71 | 1.60 | 1.48 | 1.34 | 1.00 |


$\operatorname{Pr}\left\{\mathbf{F} \geq F^{*}\right\}$
Table entry for F is the probability $\alpha$ lying above $F^{*}$ (ie. tail probabilities)

Table 22: Critical values of the F - distribution(continued) $-\alpha=0.001$

|  | $\nu_{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 30 | 40 | 60 | 120 | $\infty$ |
| 2 | 998.50 | 999.00 | 999.17 | 999.25 | 999.30 | 999.33 | 999.36 | 999.37 | 999.39 | 999.40 | 999.43 | 999.45 | 999.47 | 999.47 | 999.48 | 999.49 | 999.50 |
| 3 | 167.03 | 148.50 | 141.11 | 137.10 | 134.58 | 132.85 | 131.58 | 130.62 | 129.86 | 129.25 | 127.37 | 126.42 | 125.45 | 124.96 | 124.47 | 123.97 | 123.50 |
| 4 | 74.14 | 61.25 | 56.18 | 53.44 | 51.71 | 50.53 | 49.66 | 49.00 | 48.47 | 48.05 | 46.76 | 46.10 | 45.43 | 45.09 | 44.75 | 44.40 | 44.07 |
| 5 | 47.18 | 37.12 | 33.20 | 31.09 | 29.75 | 28.83 | 28.16 | 27.65 | 27.24 | 26.92 | 25.91 | 25.39 | 24.87 | 24.60 | 24.33 | 24.06 | 23.80 |
| 6 | 35.51 | 27.00 | 23.70 | 21.92 | 20.80 | 20.03 | 19.46 | 19.03 | 18.69 | 18.41 | 17.56 | 17.12 | 16.67 | 16.44 | 16.21 | 15.98 | 15.76 |
| 7 | 29.25 | 21.69 | 18.77 | 17.20 | 16.21 | 15.52 | 15.02 | 14.63 | 14.33 | 14.08 | 13.32 | 12.93 | 12.53 | 12.33 | 12.12 | 11.91 | 11.71 |
| 8 | 25.41 | 18.49 | 15.83 | 14.39 | 13.48 | 12.86 | 12.40 | 12.05 | 11.77 | 11.54 | 10.84 | 10.48 | 10.11 | 9.92 | 9.73 | 9.53 | 9.35 |
| 9 | 22.86 | 16.39 | 13.90 | 12.56 | 11.71 | 11.13 | 10.70 | 10.37 | 10.11 | 9.89 | 9.24 | 8.90 | 8.55 | 8.37 | 8.19 | 8.00 | 7.82 |
| 10 | 21.04 | 14.91 | 12.55 | 11.28 | 10.48 | 9.93 | 9.52 | 9.20 | 8.96 | 8.75 | 8.13 | 7.80 | 7.47 | 7.30 | 7.12 | 6.94 | 6.77 |
| 11 | 19.69 | 13.81 | 11.56 | 10.35 | 9.58 | 9.05 | 8.66 | 8.35 | 8.12 | 7.92 | 7.32 | 7.01 | 6.68 | 6.52 | 6.35 | 6.18 | 6.01 |
| 12 | 18.64 | 12.97 | 10.80 | 9.63 | 8.89 | 8.38 | 8.00 | 7.71 | 7.48 | 7.29 | 6.71 | 6.40 | 6.09 | 5.93 | 5.76 | 5.59 | 5.43 |
| 13 | 17.82 | 12.31 | 10.21 | 9.07 | 8.35 | 7.86 | 7.49 | 7.21 | 6.98 | 6.80 | 6.23 | 5.93 | 5.63 | 5.47 | 5.30 | 5.14 | 4.98 |
| 14 | 17.14 | 11.78 | 9.73 | 8.62 | 7.92 | 7.44 | 7.08 | 6.80 | 6.58 | 6.40 | 5.85 | 5.56 | 5.25 | 5.10 | 4.94 | 4.77 | 4.61 |
| 15 | 16.59 | 11.34 | 9.34 | 8.25 | 7.57 | 7.09 | 6.74 | 6.47 | 6.26 | 6.08 | 5.54 | 5.25 | 4.95 | 4.80 | 4.64 | 4.47 | 4.32 |
| 16 | 16.12 | 10.97 | 9.01 | 7.94 | 7.27 | 6.80 | 6.46 | 6.19 | 5.98 | 5.81 | 5.27 | 4.99 | 4.70 | 4.54 | 4.39 | 4.23 | 4.07 |
| 17 | 15.72 | 10.66 | 8.73 | 7.68 | 7.02 | 6.56 | 6.22 | 5.96 | 5.75 | 5.58 | 5.05 | 4.78 | 4.48 | 4.33 | 4.18 | 4.02 | 3.86 |
| 18 | 15.38 | 10.39 | 8.49 | 7.46 | 6.81 | 6.35 | 6.02 | 5.76 | 5.56 | 5.39 | 4.87 | 4.59 | 4.30 | 4.15 | 4.00 | 3.84 | 3.68 |
| 19 | 15.08 | 10.16 | 8.28 | 7.27 | 6.62 | 6.18 | 5.85 | 5.59 | 5.39 | 5.22 | 4.70 | 4.43 | 4.14 | 3.99 | 3.84 | 3.68 | 3.52 |
| 20 | 14.82 | 9.95 | 8.10 | 7.10 | 6.46 | 6.02 | 5.69 | 5.44 | 5.24 | 5.08 | 4.56 | 4.29 | 4.00 | 3.86 | 3.70 | 3.54 | 3.39 |
| 21 | 14.59 | 9.77 | 7.94 | 6.95 | 6.32 | 5.88 | 5.56 | 5.31 | 5.11 | 4.95 | 4.44 | 4.17 | 3.88 | 3.74 | 3.58 | 3.42 | 3.27 |
| 22 | 14.38 | 9.61 | 7.80 | 6.81 | 6.19 | 5.76 | 5.44 | 5.19 | 4.99 | 4.83 | 4.33 | 4.06 | 3.78 | 3.63 | 3.48 | 3.32 | 3.16 |
| 23 | 14.20 | 9.47 | 7.67 | 6.70 | 6.08 | 5.65 | 5.33 | 5.09 | 4.89 | 4.73 | 4.23 | 3.96 | 3.68 | 3.53 | 3.38 | 3.22 | 3.07 |
| 24 | 14.03 | 9.34 | 7.55 | 6.59 | 5.98 | 5.55 | 5.23 | 4.99 | 4.80 | 4.64 | 4.14 | 3.87 | 3.59 | 3.45 | 3.29 | 3.14 | 2.98 |
| 25 | 13.88 | 9.22 | 7.45 | 6.49 | 5.89 | 5.46 | 5.15 | 4.91 | 4.71 | 4.56 | 4.06 | 3.79 | 3.52 | 3.37 | 3.22 | 3.06 | 2.90 |
| 30 | 13.29 | 8.77 | 7.05 | 6.12 | 5.53 | 5.12 | 4.82 | 4.58 | 4.39 | 4.24 | 3.75 | 3.49 | 3.22 | 3.07 | 2.92 | 2.76 | 2.60 |
| 40 | 12.61 | 8.25 | 6.59 | 5.70 | 5.13 | 4.73 | 4.44 | 4.21 | 4.02 | 3.87 | 3.40 | 3.14 | 2.87 | 2.73 | 2.57 | 2.41 | 2.24 |
| 50 | 12.22 | 7.96 | 6.34 | 5.46 | 4.90 | 4.51 | 4.22 | 4.00 | 3.82 | 3.67 | 3.20 | 2.95 | 2.68 | 2.53 | 2.38 | 2.21 | 2.04 |
| 60 | 11.97 | 7.77 | 6.17 | 5.31 | 4.76 | 4.37 | 4.09 | 3.86 | 3.69 | 3.54 | 3.08 | 2.83 | 2.55 | 2.41 | 2.25 | 2.08 | 1.90 |
| 120 | 11.38 | 7.32 | 5.78 | 4.95 | 4.42 | 4.04 | 3.77 | 3.55 | 3.38 | 3.24 | 2.78 | 2.53 | 2.26 | 2.11 | 1.95 | 1.77 | 1.56 |
| 1000 | 10.86 | 6.93 | 5.44 | 4.64 | 4.12 | 3.76 | 3.49 | 3.28 | 3.11 | 2.97 | 2.53 | 2.28 | 2.01 | 1.85 | 1.68 | 1.47 | 1.00 |

## 22 Table credits

1. Table 21.4 Reprinted from: Handbook of Tables for Probability and Statistics, Second Edition. Edited by William H. Beyer, (c) The Chemical Rubber Co., 1968. Used by permission of CRC Press Inc., Boca Raton, FL.

[^0]:    ${ }^{\dagger}$ Source: Prewett, Peter N., and D. B. Fowler. "Predictive Validity of the Slosson Intelligence Test with the WISC-R and WRAT-R Level 1." Psychology in the Schools 29 (January 1992), p. 17.

[^1]:    ${ }^{\dagger}$ Rikkers, Layton F., Rudman, Daniel, Galambos, John T., Fulenwider, J. Timothy, Milliken, William J., Kutner, Michael H., Smith, Robert B., Salam, Atef A., Sones, Peter J., and Warren, W. Dean (1978), "A Randomized, Controlled Trial of the Distal Spenorenal Shunt," Annals of Surgery, 188, 271-282.

[^2]:    ${ }^{\dagger}$ Long, L. H. (ed.) (1972), The 1972 World Almanac and Book of Facts New York: Newspaper Enterprise Association.

[^3]:    ${ }^{\dagger}$ Waiting time data frequently violate the assumptions required for significance tests and confidence intervals in a regression analysis. The probability distribution for waiting times is often skewed, and its variance increases as the mean waiting time increases. Methods are available for coping with this problem, but we will ignore it for the purposes of this introductory discussion.

