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Course Syllabus

Mathematical Sciences 405/605
Statistical Methods II

Instructor: Calvin L. Williams, Ph.D. Class Location:M-103 Martin Hall
Office: 0-323 Martin Hall Class Time:9:45-11:15 M-F
Telephone:656-5241 Office Hours: M-F:2:00-3:00 or By Appointment
E-mail: calvinw@math.clemson.edu WWW: http://www.math.clemson.edu/�calvinw/MthSc405

I. Text: Linear Statistical Models : An Applied Approach by Bowerman and O’Connell.

Prerequisites: MthSc 301-302 or equivalent

II. Course Description: This course is designed to continue with intermediate probability and statis-
tics at an intermediate level. Emphasis is placed on the understanding of the concepts of techniques
in inferential statistics, data analysis, and regression analysis along with its appropriate application.
This should prepare you for the practical application of regression and other modeling techniques
in more general areas such as engineering, the sciences, education, and management. The intent is
to cover the prescribed text omitting those sections that are unneeded with additional information
given in the form of handouts and take home projects. Although there will be no requirement of a
specific statistical computing package, it would be in your best interest to be familiar with a pack-
age. Examples shown in class will be done using Statistix and SAS. Notes and example code are
available for students wishing to use SAS.

III. Short Course Itinerary

� Brief review of techniques in statistical inference

� Least Squares and Simple Linear Regression

� Polynomial Regression

� Multiple Linear Regression

� Diagnostics and Model Building

� Indicator variables and the Analysis of Variance

� Nonlinear Regression, just a little.

IV. Attendance Policy: All classes should be attended. If not, legitimate excuses must be offered
with respect to the day(s) missed. Attendance will be monitored. It is to the instructors discretion
whether an excuse is legitimate or not. Accordingly, the university’s policy on religious holidays
will be acknowledged and honored. IF YOU ARE ILL STAY HOME. You may call me or e-mail
me in advance of class if you are ailing.Note that this does not exempt you from examinations,
homework or project due dates.

V. Tardy Professor Policy: If the instructor is more than 15 minutes late for any class you may leave.

VI. Examination Policy: There will be weekly fifty minutes in class closed book quizzes and afinal
examination, also closed book. Students should bring a calculator, two clean regulation size(81

2”)
sheets for scratch work to be turned in with exams, and of course something with which to write,
preferably pencil. There will be no sharing of calculators, scratch sheets, or writing utensils during
the exams.No makeup examinations will be given. Any student who misses an examination
without alegitimate excuse,e.g. a documented medical excuse, will receive a score ofzero for that
exam. A student with alegitimate excuse, will receive a final score based on all other class work.
More than one missed exam with require withdrawal from the course and/or the receipt of a failing
final grade.
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VII. Homework Assignments, Case Studies, and Class Project:

There will also be several homework sets and case studies from different application areas assigned
from the text as well as from material covered during class. Although it is imperative that each
student be completely comfortable with these assigned problems and projects, group study is en-
couraged. There will also be a class project as described below.

VIII. Requirements for Homework Assignments

A. Homework:

(a) Problems will generally be due thenext class session after the class session in
which they were assigned unless stated otherwise at the time of the assignment.

(b) Solutions should be written out clearly and completelyin the context of the
problem posed.

B. Case Studies:

(a) Case studies will generally be due thesecondclass session after the class ses-
sion in which they were assigned.

(b) The analysis should include adescriptionof the problem. I will generally in-
clude this with the assignment.

(c) The analysis should includesummarystatistics written in anarrative form.
Tables can be included for centrally locating these results.

(d) The analysis should also include any graphical descriptions, along with anar-
rative describing the graphs, plots, etc.

(e) Complete computer printouts, command line results, or any other precursory
results are not necessary and should not be turned in unless requested.

C. Class Project:

(a) The data set must not be taken from any text book, although data from journal
articles are satisfactory. You may even consider collecting your own data. In
other words, the internet or the course web page will be your best source.

(b) Data must have at least 40 cases and at least three measured characteristics.
You can reduce this for you presentations, but must justify your reasons for
doing so.

(c) Write ups should include all of those items required for regular class home-
work, ie, summaries, graphics, exposition, etc.

IX. Grading Policy: The weekly regular quizzes will count as 60% of the final grade, homework sets
and projects 20%, and final exam 20%. The final exam will cover the more important topics covered
during the semester.

X. Grading Scale: A( 100 - 90,B( 89 - 80,C( 79 - 70,D( 69 - 60, andF( 59 - 0

XI. Academic Dishonesty:Academic dishonesty will not be tolerated. For information regarding the
definition of acts ofacademic dishonesty and the subsequent penalties, you are referred to the 1999-
2000 Student Handbook.
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1 Class Project

Mathematical Sciences 405
Statistical Theory and Methods II
Project Description, Summer 2000

This project is an opportunity to use the statistical techniques we have learned in class, to answer real-life
questions. Projects may be done individually, or as a team of 1 or 2, preferably 2. Each team must:

� Choose a question that is of interest to them, and that can be answered via a designed experiment or an
observational study.

� Design and perform an experiment, gathering data to answer the question. Published data are not accept-
able. Data that were gathered for a project in another class are acceptable, provided the guidelines forthis
project are met.

� Analyze the data in whatever way is appropriate.

� Report the findings.

You will have about 2 weeks to perform your experiment and analyze and report your findings. Plan your time
accordingly.

The team grade will be based on the final report, which should contain the following items.

� A description of the question, and the team’s reasons for wanting to know the answer,

� A description of the techniques used for gathering the data, including how randomization was performed
and how the sample size was chosen,

� Analysis and illustration of the findings and conclusions.

� A listing of all the data, and example of a data-collection form (if used) and the details of any unusual
calculations.

Reports should be neatly typed, well-organized and attractive. Graphical displays (either computer-generated or
hand-drawn) are encouraged. Generally, graphs are more effective if they are incorporated into the text, rather
than hidden at the end of the report. You may also use a computer package to aid in the data analysis. If you do
so, the results should be discussed in the text of your report, and the computer output itself may be included in
an appendix.

A rough draft of the final report will be due approximately 2 weeks before the final report is due. The
critique and rough draft will be given back to the original group, who can change or add finishing touches before
turning in the final report.

The project is worth 100 points. Grades will be based on:

Appropriate and correct procedures 50 pts
Well-written and attractive presentation 20 pts
Grammar, spelling and punctuation 20 pts
Complexity 10 pts

All members of the team will receive the same grade. It is the team’s responsibility to see that all members
make a fair contribution. A project proposal (not graded) must be approved before the project is started. An
approved proposal must be turned in with the final report. The proposal should state:

� The question and its motivation
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� Plan for collecting data, details of how randomness will be achieved, planned sample size and reason for
it.

� Proposed analysis.

Due dates:
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3 Introduction

At its basic study, Statistics can be partitioned into two or three major foundational areas: data exploration,
data categorization and analysis (eg. modeling), and statistical inference. Data exploration begins in a ex-
ploratory form and becomes more practical and provocative as data and the constraints placed on modeling data
becomes more complex.

4 Data Types

� Quantitative data

– Continuous data

– Discrete data

� Qualitative(categorical) data

– Nominal data

– Ordinal data

5 Descriptive Statistics-Informal data definitions

5.1 Main terms and concepts

Population, population distribution, population parameters, sample, sample statistics, sampling distribution,
point estimator, interval estimator, confidence interval.

� Population: A population is the totality of units under study. That is, units that are unmeasured as well
as those measured. One or more characteristics or attributes are measured and analyzed.

� Cumulative distribution: A population can be described in terms of its cumulative distribution function
which gives the proportion of the population less than each possible value, usually denoted,Pr(X � x).

A discretepopulation can be described by a probability function giving the proportion of the population
equal to each possible value.

� Density function: A continuous population can be described by a density function, which is the derivative
of the cumulative distribution function. A density function can be approximated by a histogram giving
the proportion of the population lying within each of a series of intervals of values. A probability density
function is like a histogram with an infinite number of infinitely small intervals.

� Sample: A sample is a part of the population from which the characteristic under study is measured and
analyzed in order to make inferences back to the population.

� Samplestatistic: A sample statistic is a mathematical function of the sample values. A statistic is to a
sample what a parameter is to a population. It is customary to denote sample statistics in arabic, such as
the sample meanX , and to denote population parameters in greek, such as the population mean�.

� Estimate: Often we wish to estimate or guess what a population characteristic’s value is under certain
circumstances. We can get an estimate of the characteristic’s value based on the characteristic’s value for
a simple random sample. There could be several ways to estimate the population parameter. For different
characteristics there could be different estimates.
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� Simple randomsample:A simple random sample is a sample taken from the population where every unit
in the population has the same probability of being selected.

� Parameterestimation: Assume a simple random sample of sizen is taken from a population with mean
� and variance�2. If these population parameters are unknown, they must be estimated from the sample
data.

5.2 Measures of Location or Central tendency

LetX1; X2; : : : ; Xn denote a random sample of sizen drawn from some population

� Mean: The sample meanX is defined by:

X =
x1 + x2 + � � �+ xn

n

It is the “best” point estimate of the population mean� = E(X), when it is unknown.

� Median: The population median is the central value, lying above and below half of the population values.
The sample median is determined similarly, that is, it is the middle value when the sample values are
ordered in ascending or descending order. Ifn is odd, the median is just then2 + 1st value. If n is evenit
is the average of the middle two points, the (n

2 ) + (n2 + 1)stvalues divided by two.

� Mode: The mode is the value at which the density of the population is at a maximum. Some densities
have more than one maximum point and are said to be multimodal. The sample mode is the value that
occurs most often in the sample. If there is a tie for the most often occurring sample value, the sample is
said not to have a mode. If the population is continuous, then all sample values occur only once and the
sample mode has very little use.

� WeightedMean Given that the weight associated withxi iswi > 0, positive and non-zero for alli: x

=
Pn

i=1 wixiPn
i=1 wi

= x1+x2+���+xn
n

� GeometricMean Given thatxi > 0, positive and non-zero for alli: GM = n
p
x1 � x2 � � �xn

� Harmonic Mean Given thatxi > 0, positive and non-zero for alli:

HM =
n

nX
i=1

1

xi

=
n

1
x1

+ 1
x2

+ � � �+ 1
xn

. Given equal observations GM�HM� x.

� Percentile Trimmed (p%)Mean Delete thep% smallest and the largestp% of a sample.xtr(p) is the
arithmetic mean of the remaining data.
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5.3 Quantiles

Quantiles, including percentiles, quartiles, and the median, are useful for a detailed study of a distribution.

� [Quantiles] For a data set consisting ofn values that when ordered arex(1) � x(2) � : : : � x(n),

1. for any numberp of the form i�0:5
n , wherei is an integer from 1 ton, thep quantile of the data set

will be taken to bexi. (Theith smallest data point will be called thei�0:5n quantile.)

2. for any numberp between0:5n and n�0:5
n that is not of the formi�0:5n , thep quantile of the data set

will be obtained by linear interpolation between the quantiles corresponding to the two values of
i�0:5
n that bracketp.

In both cases, the notation Q(p) will be used to symbolize thep quantile.

� Percentile:For a set of measurements arranged in order of magnitude, thepth percentile is the value that
hasp% of the measurements below it and(100-p)% above it.

� Quartiles Q1; Q2; Q3:

If the number n is even :

(
Q1 is the median of the smallest n=2 observations
Q3 is the median of the largest n=2 observations

If the number n is odd :

(
Q1 is the median of the smallest (n� 1)=2 observations
Q3 is the median of the largest (n� 1)=2 observations

The1st quartile is25th% tile. The2nd quartile is50th% tile and Median. And, the3rd quartile is75th%
tile. Obviously the4th quartile is100th% tile.

� Quintiles P20,P40,P60, andP80 percentiles:
P20 = 20

100 (n+1)st= 1
5 (n+1)stobservation.

P40 = 40
100 (n+1)st= 2

5 (n+1)stobservation.

P60 = 60
100(n+1)st= 3

5 (n+1)stobservation.

P80 = 80
100 (n+1)st= 4

5 (n+1)stobservation.

The common thought is to round up on all non-integer values for measures of location.

5.4 Measures of Variability or Spread

This group of measures are also important in giving a detailed study of a distribution. It is important to note
that with measures of variability or spread if the entire set of observations are changed by adding or subtracting
a fixed(constant) amount then the sample statistics are unchanged, but if the are multiplied by a fixed constant,
they sample statistics are changed.

� Range:The sample range is the difference between the largest and the smallest values in the sample. For
many populations, at least in statistical theory, the range is infinite, so the sample range may not tell you
much about the population. The sample range is finite and tends to increase as the sample size increases.
If all the sample values are multiplied by a constant, the sample range is multiplied by the same constant.

� Interquartile range: The interquartile range is the difference between the the3rd quartile and the1st
quartile. If the sample values are multiplied by a constant, the sample interquartile range is multiplied by
a constant.

� Variance: The population variance, usually denoted�2 when it is clear what population is being consid-
ered, is the expected value of the squared difference of the values from the population mean:

�2 = E(X � �)2
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The sample variance,s2, is defined by:

s2 =

Pn
i=1(xi � x)2

n� 1

=
(x1 � x)2 + (x2 � x)2 + � � �+ (xn � x)2

n � 1

=
n
Pn

i=1 x
2
i � (

Pn
i=1 xi)

2

n(n� 1)
:

The difference between a value and the mean is called a deviation from the mean. Thus the variance is
the sum of the squared deviations from the mean divided byn in the case of the population, andn-1 in
the case of the sample. When all of the values lie close to the mean, the variance is small but never zero.
If the sample values are multiplied by a constant, the sample variance is multiplied by the square of the
constant.

� Standard Deviation: the standard deviation is the square root of the variance, or root-mean-square devi-
ation from the mean, in either the population or the sample. The sample standard deviation is expressed
in the same units as the values in the sample, not squared units like the variance. If all sample values are
multiplies by a constant, the sample standard deviation is multiplied by the same constant.

� Standard Deviation:
s=
p
s2(unbiased variance) or~s=

p
~s2(biased variance)

� Standard Error of X as an estimate of the population mean:
s.e(x)= sx = s/

p
n

� Coefficient of variation: The coefficient of variation is a unitless measure of relative variability. It is
defined as the ratio of the standard deviation to the mean expressed as a percentage. The coefficient of
variation is meaningful only if the variable is measured on the ration scale. If the sample values are
multiplied by a constant, the sample coefficient of variation remains unchanged.

� Variability:(sample), unbiased s2=
1

n � 1

nX
i=1

�
x2i � x

�2

� Variability:(sample), biased ~s2=
1

n

nX
i=1

�
x2i � x

�2
� Range: R= maxfx1; x2; : : : ; xng - minfx1; x2; : : : ; xng = x(n) - x(1)

� Interquartile Range: IQR= Q3 - Q1

� Useful for Box Plots:
Inner Fences:Q1-1.5 IQR, Q3+1.5 IQR
Outer Fences:Q1-3 IQR, Q3+3 IQR

� Linear Transformations: Let yi = axi+ b, theny = ax + b, s2y = a2s2x, sy = j a j sx
Important notes: Linear transformations do not change the shape of the data (distribution).

5.5 Measures of Shape

� Skewness:The variance is a measure of the overall size of the deviations form the mean. Since the formula
for the variance squares the deviations, both positive and negative deviations contribute to the variance in
the same way. In may distributions, positive deviations may tend to be larger in magnitude than negative
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deviations, or vice versa.Skewnessis a measure of the tendency of deviations to be larger in one direction
than the other. The population skewness is defined by

E(X � �)3

�2

Since the deviations are cubed, rather than squared, the signs of the deviations are maintained. Cubing the
deviations also emphasizes the effects of large deviations. The formula includes a divisor of�3 to remove
the effect of scale, so multiplying all values by a constant does not change the skewness. Skewness can
thus be interpreted as a tendency for one tail of the population to be heavier than the other. The sample
skewness can be calculated by:

m3

(m2)
3
2

where

mj =
1

n

nX
i=1

(xi � x)j

� Kurtosis: the heaviness of the tails of the population affects the behavior of many statistics. Hence it
is useful to have a measure of tail heaviness. One such measure iskurtosis. The population kurtosis is
usually defined as:

E(X � �)4

�4
� 3;

although some statisticians omit the subtraction of 3. Since deviations are raised to the fourth power,
positive and negative deviations make the same contribution, while large deviations contribute strongly.
Because of the divisor�4, multiplyingeach value by a constant has no effect on kurtosis.

Population kurtosis must lie between -2 and positive infinity, inclusive. Ifm3 represents population skew-
ness andm4 represents population kurtosis, them4 � (m3)

2 � 2.

There is a myth in the literature that kurtosis measures the peakedness of a density.

Sample skewness and kurtosis are rather unreliable estimators of the corresponding parameters in small
samples. Trust them only if you have a very large sample. However, large values of skewness or kurtosis
may merit attention even in small samples because such values indicate that statistical methods based on
normality assumptions may be inappropriate.

6 Graphical Descriptions of Data

6.1 Boxplots

A boxplot or box-and-whiskerplot is a graphical representation of data in which a rectangle is used to summarize
the data distribution. The top and the bottom, sometimes the left and right, of the rectangle represent the third
and first quartiles, respectively. The line inside the rectangle represents the median. The lines extending from
the top and bottom of the rectangle represent either the actual limits of the data, or the limits of the bulk of the
data (with unusual observations, sometimes referred to asoutliers see below, being represented by individual
symbols [“flagged”] if they are further out,modified box plot). The boxplot is particularly useful for comparing
the location and variability of several batches of data, as boxes can be plotted side-by-side on one plot.

6.2 Dotplots

A dotplot is a preliminary remedial graphical representation of the data that groups the data into many small
classes or intervals.
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6.3 Histograms

A histogram is another graphical representation of the distributionof a batch of data. The data values are usually
grouped into mutually exclusive and exhaustive intervals of equal width, and the number of observations in each
interval is determined and represented by a vertical bar. In some variations the widths of the intervals are varied,
resulting in potentially different appearances in the plot.

6.4 Stem and leaf

A stem-and-leaf display is another graphical representation of the distribution of a batch of data. Very similar to
a histogram, it is often accompanied by additional information about the data, such as cumulative frequencies and
the position of the median. The plot represents the data values by their numerical values, providing additional
information over the histogram, but the grouping intervals are usually chosen based on using round numbers,
rather than in an attempt to provide the most effective plot.

6.5 Scatter plot

A scatterplot a is a graphical method that can be used to study the joint variation of two variables graphically.
Each observation is represented by a point (x,y) on the plot, indexed by the values on the axes. Each axis is used
for a different variable. Besides showing how (and whether) two variables are related to each other, scatter plots
also can indicate the existence of distinct subgroups in the data. Scatterplots can only be used if there are data
pairs (xi; yi).

6.6 Density Curves

Density curves are functional and or graphical representations of data that are usually continuous in nature.

6.7 Q-Q plots

Quantile-Quantile Plots are useful for comparing distributions. They are generally used to determine if data in
a sample follow a particular distribution. In statistics in order to make inferences, it is often assumed that data
follow the normal distribution. In which case the quantiles of the sample are compared to the quantiles of the
normal distribution. These are generally referred to as normal probability plots.
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7 Sampling Distributions derived from the normal

7.1 The Normal distribution

The normal distribution is probably the most important probability distribution in statistics! It is a probability
distribution of a continuous random variable, yet it is often used to model the distribution of other continuous
random variables and discrete random variables. The reason for the versatility in using the normal distribution
as a probability distribution model is indicated in the figure below. The basic form of the normal distribution is
that of a bell it has a single mode and is symmetric about its central value. The flexibility in using the normal
distribution is due to the fact that the “bell” may be centered over any number on the real line and it may be
made flat or peaked to correspond to the amount of dispersion that the values of a random variable may assume.
Examples of random variables that have been successfully modeled by the normal distribution are the height
and weight of persons, the diameter of bolts of a specified size produced on a machine, the IQ of persons, and
the lifetime in hours of batteries or light bulbs. Typically, in the type of experiment that produces a random
variable that can be successfully approximated by a normal random variable, the values of the random variable
are produced by a measuring process, where it is known that the measurements tend to cluster symmetrically
about a central value.A random variable that is an average or a sum of values of another random variable
is, under very general conditions, almost always distributed approximately as a normal random variable,
regardless of the form of the distribution of the random variable with values that are summed or averaged.
An example of such a random variable is the average grade point average of a group of students selected at
random from the population of students at your university or college. The notion that a random variable that is
an average is distributed as a normal random variable is discussed when we describe the central limit theorem.
For a random variable to be normally distributed, the mathematical expression delineating the form of the bell
must be of a specific type as described in the following definition:

f(y : �; �2) =
1p
2��

e�
(y��)2

2�2 �1 � y � 1

Z 1

�1
1p
2��

e�
(y��)2

2�2 dy = 1

E [Y ] = �; E
�
Y 2
�

= �2 + �2; V ar [Y ] = �2

7.2 t-distribution

Given the sample statisticsX , the sample mean,S2the sample variance, we now derive distributions based on

the normal distribution. Let X1, . . . , Xn be a random sample from a N
�
�; �2

�
distribution. The quantity(

X��)
S=
p
n

has a Student’s t distribution withn - 1 degrees of freedom. The moments of which are 0 andn
n�2 . Thedensity

function of thet-distribution is given by

f(y; �) =
1p
��

�( (�+1)2 )

�(�2 )

 
1 +

y2

�

!�(�+1)
2

�1 � y � 1

Z 1

�1
1p
��

�(�+12 )

�(�2 )

 
1 +

y2

�

!�(�+1)
2

dy = 1:

E [Y ] = 0; � � 2; E
�
Y 2
�

= �
��2 ; V ar [Y ] = �

��2 ; � � 3
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7.3 �2-distribution

Let X1, . . . , Xn be a random sample from a N
�
�; �2

�
distribution. The quantity(n�1)S

2

�2 has a chi-squared
distribution. Thedensity function of the�2-distribution is given by

f(y; �) =
1

2
�
2�(�2 )

y
�
2
�1e�

y
2 0 � y � 1

Z 1

0

1

2
�
2 �(�2)

y
�
2�1e�

y
2dy = 1:

E [Y ] = �; E
�
Y 2
�

= 2� + �2; V ar [Y ] = 2�

7.4 F-distribution

Let X1, . . . , Xn be a random sample from a N
�
�x; �

2
x

�
population, and let Y1, . . . , Ym be a random sample

from an independent N
�
�y ; �

2
y

�
population. If we were interested in comparing the variability of the popula-

tions, one quantity of interest would be the ratio�
2
x
�2y

. Information about this ratio is contained inS2
X=S

2
Y the

ratio of sample variances. Recall from our previous discussion that(n�1)S2
�2

has a chi-squared distribution. Then
the ratio of two chi-squares, divided by their respective degrees of freedom has anf-distribution withn � 1=p
numerator andm� 1 = q denominator degrees of freedom. Note that if the null hypothesis is true then this ratio
is the same asf , given before. Thedensity function of theF-distribution is given by

f(y; �) =

�
p

q

�p=2 �( (p+q)2 )

�(p2)�(
q
2)
yp=2�1

�
1 +

�
p

q

�
y

��(p+q)
2 �1 � y � 1

Z 1

�1

�
p

q

�p=2 �( (p+q)2 )

�(p2)�(
q
2)
yp=2�1

�
1 +

�
p

q

�
y

��(p+q)
2

dy = 1:

The cumulative distribution is given obviously by Pr[fn1�1;n2�1 � f ]
Examples of using thef-distribution :
For instance,

(a) Pr[f10;15 � 2:54] = 0.95

(b) Pr[f10;15 > 3:06] = 0.025

(c) F10;15;0:0:975 = 3.06

(d) F10;15;0:95 = 2.54

(e) F10;15;0:0:025 = 1
F15;10;0:0:975

= 1
3:52 = 0.28

(f) F10;15;0:05 = 1
F15;10;0:0:95

= 1
2:85 = 0.35.

The F distribution can be derived in a more general setting than is done here. A variance ratio may have
an F distribution even if the parent populations are not normal. Kelker (1970) has shown that as long as the
parent populations have a certain type of symmetry (spherical symmetry), then the variance ratio will have an F
distribution.
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8 Analyses of Univariate Data

Univariate data can be broadly classified into one of two types:

1. Cross-sectional data, measurements from a random sample, data in which the ordering is not important in
the analysis.

2. Logitudinal data are measurements (observations) of the same quantity on the same subject ate different
time points.

We will concentrate for the time being on cross-sectional data, considering graphical and numerical de-
scriptions of these data, and finally making inference by determining appropriate models, estimates of model
parameters,and making any inferences warranted by the analysis.

For these data types the theory of the normal distribution plays an important role.

1. For theoretical reasons real data are usually considered normally distributed.

2. Once we have determined normality, the data is usually easier to work with.

3. For descriptive reasons as well as reasons corresponding to making inferences on the data. The standard
deviation and mean can be determined readily if the distribution is normal. Other distribution can create
some difficulty in terms of parameter estimation.

It becomes a very important task to determine whether a distribution is normal or nonnormnal. In terms
of numerical measures, this determination can get clouded. For instance, measures of location(mean, median,
mode) can be similar for several distributions.

9 Assessing Normality

9.1 Probability plots

Probability plots are an extremely useful graphical tool for qualitatively assessing the fit of data to a theoret-
ical distribution. Consider a sample of sizen from a uniform distribution on[0,1] . Denote the ordered sample
values byX(1); X(2); : : : ; X(n). These are called the order statistics. It can be shown thatE(X(j)) =

j
n+1 . This

suggests plotting the ordered observationsX(1); X(2); : : : ; X(n), against the points 1
n+1 ;

2
n+1 ; : : : ;

n
n+1 . This

should be recognized as being the cumulative distribution function of the uniform distribution.
This technique can be extended to other continuous probability laws (distributions). Let’s say thatX is a

continuous random variable with a strictly increasing cumulative distribution functionFx, and if Y = Fx(x)
thenY has a uniform distribution on[0; 1]. Y = Fx(x) is known as the probability integral transform. Hence,
the following procedure is suggested. Suppose that it is hypothesized thatX follows a certain distribution,F.
Given a samplex1; x2; : : : ; xn we plot

F
�
X(k)

�
vs

k

n+ 1
Uniform : E

�
X(k)

�
=

k

n+ 1

or equivalently

X(k) vs F�1
�

k

n + 1

�
In some cases, F is of the form

F (x) = G

�
x� �

�

�
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where� and� are called location and scale paramaters, respectively. The normal distribution is of this form.
We could plot

X(k) � �

�
vs: G�1

�
k

n + 1

�
or, if we plotted

X(k) vs: G�1
�

k

n+ 1

�
the result would be approximately a straight line, if the model were correct

X(k) � �G�1
�

k

n+ 1

�
+ �

Slight modifications of the procedure are sometimes used. For example, rather thanG�1( k
n+1), E(X(k)), the

expected value of thekth smallest observation can be used. But it can be argued that

E
�
X(k)

�
� F�1

�
k

n + 1

�
= �G�1

�
k

n+ 1

�
+ �

So, this modification yields very similar results to the original procedure.
The procedure can be viewed from another perspective. Given thatF�1

h
k

n+1

i
is the k

n+1 st quantile of
the distributionF , that is the point such that the probability that a random variable with distribution functionF
is less than it is k

n+1 . We are thus plotting the ordered observation ( which may be viewed as the observed or
empirical quantile) versus the quantile of the theoretical distribution. An example set of observations. We have
tensile strengths from 4 different types of die sets in which we have taken 10 observations each.

Table 1: Tensile Strengths from 4 Die Sets
Observation Die 1 Die 2 Die 3 Die 4

1 18.9 16.9 19.9 15.9
2 19.3 17.5 20.2 16.0
3 19.5 17.8 21.3 16.8
4 20.0 18.0 21.5 17.2
5 20.5 18.3 21.7 17.4
6 20.6 18.4 21.8 17.5
7 20.7 18.6 21.9 17.7
8 20.8 18.8 21.9 17.9
9 21.0 19.2 22.5 18.1
10 22.1 19.9 23.0 19.0
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We can get summary statistics for the tensile strengths of these different types of dies. They are:

DIE1 DIE2 DIE3 DIE4
N 10 10 10 10
SUM 203.40 183.40 215.70 173.50
MEAN 20.340 18.340 21.570 17.350
SD 0.9395 0.8592 0.9393 0.9419
VARIANCE 0.8827 0.7382 0.8823 0.8872
SE MEAN 0.2971 0.2717 0.2970 0.2979
C.V. 4.6190 4.6848 4.3548 5.4290
MINIMUM 18.900 16.900 19.900 15.900
1ST QUARTILE 19.450 17.725 21.025 16.600
MEDIAN 20.550 18.350 21.750 17.450
3RD QUARTILE 20.850 18.900 22.050 17.950
MAXIMUM 22.100 19.900 23.000 19.000
MAD 0.5000 0.5000 0.3500 0.5500
BIASED VAR 0.7944 0.6644 0.7941 0.7985
SKEW 0.1641 0.1426 -0.4853 -0.0774
KURTOSIS -0.4912 -0.4141 -0.4211 -0.5424

9.2 Quantile-plots

Let’s construct a quantile plot for die types 2 and 3. First, reconsider the table of values. A quantile plot is

Table 2:Tensile Strengths from 4 Precision Die Sets
Observation p=i�0:5n Die 1 Die 2 Die 3 Die 4

1 0.05 18.9 16.9 19.9 15.9
2 0.15 19.3 17.5 20.2 16.0
3 0.25 19.5 17.8 21.3 16.8
4 0.35 20.0 18.0 21.5 17.2
5 0.45 20.5 18.3 21.7 17.4
6 0.55 20.6 18.4 21.8 17.5
7 0.65 20.7 18.6 21.9 17.7
8 0.75 20.8 18.8 21.9 17.9
9 0.85 21.0 19.2 22.5 18.1
10 0.95 22.1 19.9 23.0 19.0

simply a scatterplot of the observation versus it’s quantile. So the quantile plot for the third die type is given in
figure 1.

9.3 Quantile-Quantile Plots

Quantile-Quantile plots are useful for comparing distributions. They are generally used to determine if data in
a sample follow a particular distribution. In statistics in order to make inferences, it is often assumed that data
follow the normal distribution. In which case the quantiles of the sample are compared to the quantiles of the
normal distribution. These are generally referred to as normal probability plots.

Let’s construct a Q-Q plot for die types 2 and 3. This is given in figure 2. The fact that a significant amount
of points do not fall on the line superimposed signifies that the two sets of observation are different in terms of
there distribution.
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Figure 2: Comparative Quantile-Quantile plot for Die Sets 2 and 3

9.4 Comparable Normal probability plots
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Figure 3: Ideal normal plot - signifying data is normally distributed
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Figure 4: Figure on left - heavy tailed distribution, figure on right light - tailed
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Figure 5: Figure on left - positive skew (skewed right) , figure on right negative skew (skewed left)

10 Statistical Inference Tests and Confidence Intervals (Chapt. 3 LSM)

10.1 Confidence Intervals

The general form of a confidence interval for some unknown parameter is given by:b� � SDb��2 SEb�
where

� b� is an estimator of the parameter,

� SDb� is the sampling distribution of the estimator, and

� SEb� is the standard error of the estimator.

That is, if we were to sample the population say, a large but finite number of times,(1 � �)100% of the
intervals generated from the samples will contain the true population parameter.

There is a duality between confidence intervals and hypotheses tests. Consider the following example. Let
X1; : : : ; Xn be a random sample from a normal distribution having unknown mean� and known variance�2.
We consider testing the following hypothesis:

H0 : � = �0

H0 : � 6= �0

Consider a test at a specific level� that rejects forjx��0j > C, whereC is determined so thatPrfjx��0j > Cg
if H0 is true:C = �xZ �

2
. The test thus does not reject when:

jx� �0j < �xZ�
2
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or

��xZ�
2
< x� �0 < �xZ�

2

or

x� �xZ�
2
< �0 < x+ �xZ�

2

A (1� �)100% confidence interval for�0 is

[x� �xZ�
2
; x+ �xZ�

2
]

Comparing the acceptance region of the test to the confidence interval, we see that�0 lies in the confidence
interval if and only if the hypothesis tests does not reject. In other words, the confidence interval consists
precisely of all those values of�0 for which the null hypothesisH0 : � = �0 is not rejected.

10.2 Tables of Confidence Intervals-Single Sample(Chapt. 3 LSM)

Parameter Assumptions 100(1� �)% Confidenceinterval
n large,� known,

� or normality, x� z�
2

�p
n

�2 known

� n large,� unknown x� z�
2

sp
n

� normality,�2 unknown x� t�=2;n�1 sp
n

p binomial experiment, bp� z�
2

qbpbq
n

large n

�2 normality

 
(n�1)S2
�2�
2
;df=n�1

; (n�1)S2
�2
1��

2
;df=n�1

!
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11 Normal Models - Single Sample Tests of Hypothesis (Chapt. 3 LSM)

Table 3: Single Sample Tests of Hypothesis-Normal Models
Null Test Alternative Rejection

Hypothesis Assumptions Statistic Hypothesis Region

� = �0 n large,� known, or � > �0 Z � z�

normality,�2 known Z =X��0
�=
p
n

� < �0 Z � �z�
� 6= �0 j Z j� z�=2

� = �0 n large,� unknown � > �0 Z � z�

Z =
X��0
S=
p
n

� < �0 Z � �z�
� 6= �0 j Z j� z�=2

� = �0 normality, n small, � > �0 T � tn�1;�

� unknown T =X��0
S=
p
n

� < �0 T � �tn�1;�
� 6= �0 j T j� tn�1;�=2

�2 = �20 normality �2 > �20 X2 � �2n�1;�
X

2

=
(n�1)S2

�2
0

�2 < �20 X
2 � �2n�1;(1��)

X2 � �2n�1;�=2
�2 6= �20 or

X2 � �2n�1;(1��=2)

p = p0 binomial experiment, p > p0 Z � z�

n large Z =
bp�p0p

p0(1�p0)=n
p < p0 Z � �z�
p 6= p0 j Z j� z�=2
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Case Study: Education

Mathematical Sciences 405/605
Case Study: Education

Intelligence tests are routinely administered by school guidance counselors and psychcologists as screening
devices for their students. However, are all of these tests really accurate indicators of a student’s IQ? In a study
y to compare two such tests, the Slosson Intelligence Test (SIT) the Wechsler Intelligence Scale for Children-
Revised (WISC-R), the tests were administered to a sample of 72 children in a large urban school district in
central Ohio. The mean age of the children was 8.5 years with a standard deviation of 16.6 months. Scores on
the two tests for the 72 children were as follows:

Test Mean Standard Deviation
WISC-R Full Scale 86.11 15.65
SIT IQ 90.47 14.77

i) Assume that the scores of the 72 students represent a random sample from the population of scores
for all students who might take the test. Find a point estimate for the average grade on the WISC-R
for the population. What is the margin of error for this estimate ?

ii) Find a 98% confidence interval for the mean grade on the SIT test.

iii) In fact, the sample taken by the experimenters was limited to students who were not making ade-
quate academic progress in the regular classroom. What impact does this have on the inferences
you can make in parts (b) and (c) ?

ySource: Prewett, Peter N., and D. B. Fowler. “Predictive Validity of the Slosson Intelligence Test with the WISC-R and WRAT-R
Level 1.” Psychology in the Schools29 (January 1992), p. 17.
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Case Study: General

Mathematical Sciences 405/605
Case Study: General

Will Your Bill for College Textbooks Continue to Rise?

The number of new U.S. book titles increased from almost 47,000 in 1990 to over 48,000 in 1991. However,
this was still below the historic high of about 56,000 titles attained in 1987 (Grannis, 1992). Can we expect an
increase or decrease in the price of books, especially hardbacks, if there are more competitors on the market?
The following table gives the number of titles and the average price of hardback books classifiedaccording to
23 standard subject groups representing one or more specific Dewey Decimal Classification numbers. Consider

1990 1991
Category Volumes Average Price Volumes Average Price
Agriculture 359 $54.24 371 $57.73
Art 759 42.18 717 44.99
Biography 1,337 28.58 1,416 27.52
Business 748 45.48 790 43.38
Education 562 38.72 556 41.26
Fiction 1,962 19.83 2,062 21.30
General works 1,035 54.77 1,071 51.74
History 1,450 36.43 1,442 39.87
Home economics 357 23.80 341 24.23
Juveniles 3,675 13.01 3,705 16.64
Language 312 42.98 240 51.71
Law 596 60.78 240 63.89
Literature 1,312 35.80 1,265 35.76
Medicine 2,215 72.24 2,078 71.44
Music 184 41.86 173 41.04
Philosophy/Psychology 963 40.58 945 42.74
Poetry/drama 486 32.19 511 33.29
Religion 977 31.31 958 32.33
Science 2,028 74.39 958 80.14
Sociology/Economics 4,504 42.10 4,306 48.83
Sports/recreation 403 30.52 440 30.68
Technology 1,521 76.48 1,620 76.40
Travel 181 30.41 156 33.50
Total 27,926 $42.12 26,361 $43.93

the number of volumes and average price per volume in 1990 and 1991 as paired samples for two randomly
chosen years for each of the 23 categories of books. Although there was an increase in the total number of books
in 1991, the number of hardbacks seems relatively unchanged and the average price per volume seems to have
increased over the average 1990 price.

i) Determine whether the difference in the average number of volumes per category for 1991 differs
significantly from the 1990 average, using a significance level of 5%.

ii) Determine whether the change in the average price of a hardback book per category in 1991 differs
significantly from that in 1990 at the 5% level of significance.

iii) Summarize your results concerning the difference in the number and price of books per category in
1991 compared with 1990.
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11.1 Two Sample Confidence intervals(Chapt. 3 LSM)

Parameter Assumptions 100(1� �)% Confidenceinterval

p1 � p2 binomial experiment, (bp1 � bp2)� z�
2

qbp1bq1
n1

+ bp2bq2
n2

n1, n2 large

independence, n1, n2 large, (x1 � x2)� z�
2

r
�21
n1

+
�22
n2

�1 � �2 �21; �
2
2 known, or

normality, independence, (x1 � x2)� z�
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+
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�21; �
2
2 (un)known
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q
1
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+ 1
n2

�1 � �2 normality,

�21 ; �
2
2 unknown, where S2p =

(n1�1)S21+(n2�1)S22
(n1+n2�2)

but equal

independence, n1, n2 small, (x1 � x2)� t�
2 ;�

r
s21
n1

+
s22
n2

�1 � �2 normality,�21; �
2
2 unknown,

but unequal where� =

�
S21
n1

+
S22
n2

�2
(S21=n1)

2

n1�1 +
(S22=n2)

2

n2�1

�1 � �2 = �D dependence, normality, n pairs, d� t�
2 ;n�1

sDp
n

independence
�21
�22

normality,
�
s21
s22

1
Fn1�1;n2�1; �2

;
s21
s22

1
Fn1�1;n2�1;1��

2
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12 Two Sample Hypothesis Tests of Hypothesis(Chapt. 3 LSM)

12.1 Binomial Models

Table 4: Two Sample Hypothesis Tests- Binomial Models
Null Test Alternative Rejection

Hypothesis Assumptions Statistic Hypothesis Region

p1 � p2 = 0 binomial experiment Z = (bp1� bp2)pbpbq(1=n1+1=n2) p1 � p2 > 0 Z � z�

n1, n2 large p1 � p2 < 0 Z � �z�bp = X1+X2
n1+n2

p1 � p2 6= 0 j Z j� z�=2

p1 � p2 = 40 binomial experiment p1 � p2 > 40 Z � z�

n1, n2 large Z = (bp1�bp2)�40p
(bp1bq1=n1+bp2bq2=n2) p1 � p2 < 40 Z � �z�

p1 � p2 6= 40 j Z j� z�=2
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12.2 Normal Models

Table 5: Two Sample Hypothesis Tests- Normal Models
Null Test Alternative Rejection

Hypothesis Assumptions Statistic Hypothesis Region

independence
�1 � �2 = 40 n1, n2 large, �1 � �2 > 40 Z � z�

�21 ; �
2
2 known,

or Z = (X1�X2)�40p
�21=n1+�

2
2=n2

�1 � �2 < 40 Z � �z�
independence

normality, �1 � �2 6= 40 j Z j� z�=2
�21; �

2
2 known

�1 � �2 = 40 independence, �1 � �2 > 40 Z � z�

n1, n2 large, Z = (X1�X2)�40p
S21=n1+S

2
2=n2

�1 � �2 < 40 Z � �z�
�21 ; �

2
2 unknown �1 � �2 6= 40 j Z j� z�=2

independence
�1 � �2 = 40 n1, n2 small, �1 � �2 > 40 T � tn1+n2�2;�

normality, T = (X1�X2)�40

Sp
p

1=n1+1=n2
�1 � �2 < 40 T � �tn1+n2�2;�
�1 � �2 6= 40 j T j� tn1+n2�2;�=2

�21; �
2
2 unknown, S2p =

(n1�1)S21+(n2�1)S22
(n1+n2�2)

�21 = �22
independence

�1 � �2 = 40 n1, n2 small, �1 � �2 > 40 T � t�;�

normality, T =
(X1�X2)�40p
S21=n1+S

2
2=n2

�1 � �2 < 40 T � �t�;�
�1 � �2 6= 40 j T j� t�;�=2

�21; �
2
2 unknown, � =

�
S21
n1

+
S22
n2

�2
(S21=n1)

2

n1�1 +
(S22=n2)

2

n2�1

�21 6= �22

�D = 40 normality, n pairs �D > 40 T � tn�1;�
n small T = D�40

SD=
p
n

�D < 40 T � �tn�1;�
dependence �D 6= 40 j T j� tn�1;�=2

normality, �21 > �22 F � � Fn1;n2;�

�21 = �22 independence F �=S2
1=S

2
2 �21 < �22 F � � 1=Fn2;n1;�

F � � Fn1;n2;�=2
�21 6= �22 or

F � � 1=Fn2;n1;�=2
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Case Study: Medicine

Mathematical Sciences 405/605
Case Study: Medicine

We consider data from Rikkersy et al. (1978), who report results of a prospective randomized surgical trial
allocating cirrhotic patients who had bled from varices to either a nonselective shunt (standard operation) or
to a selective shunt (new operation). The dependent variable is the maximal rate of urea synthesis (MRUS),
which is a quantitative test of liver function. Poor liver function is associated with a low MRUS value. MRUS
was measured preoperatively and early postoperatively in eight selective shunt patients and thirteen nonselective
shunt patients. The purposes of the study were to assess preoperatively the comparability of the selective and
the nonselective groups and to longitudinally evaluate the change in liver function of the two groups. Table 1
reports MRUS values for each patient for the preoperative and postoperative periods.

Table 6: Pre and Post Maximal Rate of Urea Synthesis Level (mg urea N/hr/kg BW3=4) and Sample Cell Means,
by Group

Group Subject Pre Post
Selective Shunt 1 51 48
(new operation) 2 35 55

3 66 60
4 40 35
5 39 36
6 46 43
7 52 46
8 42 54

Mean x11= 46.375 x12 = 47.125
Nonselective Shunt 1 34 16
(standard operation) 2 40 36

3 34 16
4 36 18
5 38 32
6 32 14
7 44 20
8 50 43
9 60 45
10 63 67
11 50 36
12 42 34
13 43 32

Mean x21= 43.538 x22= 31.462

yRikkers, Layton F., Rudman, Daniel, Galambos, John T., Fulenwider, J. Timothy, Milliken, William J., Kutner, Michael H., Smith,
Robert B., Salam, Atef A., Sones, Peter J., and Warren, W. Dean (1978), ”A Randomized, Controlled Trial of the Distal Spenorenal
Shunt,”Annals of Surgery, 188, 271-282.
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Case Study: Medicine
Review Questions

i) Based on the pre-operative results, can we say that there is a significant difference in the MRUS for
the two groups of individuals selected to compare these two procedures ? In other words are the
groups comparable ? Give ap-value to support your conclusions.

ii) Determine a 95% confidence interval for the difference in the MRUS for the two procedures’ pre-
operative results ?

iii) What if we consider the post-operative results, are they significantly different ? Give ap-value to
support your conclusions.

iv) Determine a 99% confidence interval for the difference in the MRUS for the two procedures’ post-
operative results ?

v) Can you suggest a reason for considering a larger confidence level for the post-operative results ?

vi) If there is a significant difference in the post-operative results, what procedure would you suggest
is the more beneficial to the patients ? Explain.
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13 Goodness of Fit Tests

13.1 First a binomial experiment

The following general description has wide applications. Suppose we can describe a situation as a sequence of
trials, each of which has two possible outcomes commonly referred to as ’success’ or ’failure’. If the probability
of a success at each trial is constant then the number of successes has a binomial distribution. We can summarize
this formally as follows:

1. There is a fixed number of trials (n).

2. There are two possible outcomes for each trial (’success’ or ‘failure’).

3. There is a constant probability of success (p). This implies that the outcomes of trials are independent.

Binomial Distribution Example: Over a long period of time it has been observed that a given rifleman can hit
a target on a single trial with probability equal to 0.8. Suppose he fires four shots at the target.

1. What is the probability that he will hit the target exactly two times ?

2. What is the probability that he will hit the target at least two times ?

3. What is the probability that he will hit the target exactly four times ?

Assume that the trials are independent and that the probabilityp of hitting the target remains constant
from trial to trial,n = 4 andp = .8. Letx denote the number of shots that hit the target. Then, forx = 0, 1,
2, 3, 4, we have

p(x) =

 
4
x

!
(0:8)x (0:2)4�x

p(2) =

 
4
2

!
(0:8)2 (0:2)4�2

=
4!

2!2!
(0:64)(0:04)

=
(4)(3)(2)(1)

(2)(2)
(0:64)(0:04)

= 0:1536:

The probability is .1536 that he will hit the target exactly two times.

P (at least two) = p(2) + p(3) + p(4)

= 1� p(0)� p(1)

= 1

 
4
0

!
(0:8)0 (0:2)4

 
4
1

!
(0:8)1 (0:2)3

= 1� 0:0016� 0:0256

= :9728

The probability is 0.9728 that he will hit the target at least two times.

p(4) =

 
4
4

!
(0:8)4 (0:2)4�4

=
4!

4!0!
(0:4096)(1)

= 0:4096:
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The probability is .4096 that he will hit the target exactly four times.

Note that these probabilities would be incorrect if the rifleman could observe the location ofeach hit on the
target and thereby adjust his aim. In that case, the trials would be dependent andp would likely increase
from trial to trial.

Binomial Distribution Example 2: A student has no knowledge whatsoever of the material to be tested on
a true-false examination, and so the student flips a fair coin in order to determine the response to each
question. What is the probability that the student scores at least 60% on a ten-item examination?

Here the binomial variable, X, the number of correct responses, hasn = 10, andp = q = 1
2 . We need

P (X � 6) =
10X
x=6

 
10
x

!�
1

2

�x �1
2

�10�x

Now we find that P(X � 6) = 193
512= 0.376953.

These calculations can easily be done with a pocket computer. If we want to investigate the probability that
at least 60% of the questions are answered correctly as the number of items on the examination increases,
then use of a computer algebra system is recommended for aiding in the calculation. Many computer
algebra systems contain the binomial probability distribution as a defined probability distribution; for
other systems. the probability distribution function may be entered directly. The following results can be
found wheren is the number of trials andp is the probability of at least 60% correct:

n 10 40 80 100
p 0:376953 0:134094 0:0464559 0:028444

Clearly, guessing is not a sensible strategy on a test with a large number of items.

13.2 A Multinomial Experiment

We can extend the binomial model to the case where instead of there being only 2 possible outcomes there arek
possible outcomes, each with it’s own probability of occurring.

1. The experiment consists ofn identical trials.

2. The outcome of each trial falls into one ofk classes or cells.

3. The probability that the outcome of a single trial will fall in a particular cell, say, celli, is�i (i = 1, 2,. . . ,k)
and remains the same from trial to trial. Note that 0< �i < 1 for all i, and�1 + �2 + �3 + . . . +�k = 1.

4. The trials are independent.

5. The experimenter is interested inn1; n2; : : : ; nk, whereni (i = 1,2,. . . ,k) is equal to the number of trials
in which the outcome falls in celli. Note thatn1 + n2 + � � �+ nk = n.

Definition: (Multinomial random variable) . Let an experiment consist ofn independent and identical multi-
nomial trials with parameters�1, �2, . . . , �k . Let ni denote the number of trials that result in outcomei
for i=1,2,. . . ,k. The k-tuple (n1, n2,. . . , nk) is called a multinomial random variable with parametersn, �1,
�2,. . . ,�k . The purpose of the chi-squared goodness of fit test is to test the null hypothesis that a given set of
observations is drawn from, or “fits”, a specified probability distribution. We consider two distinct situations:

1. The hypothesized distribution is completely specified before the sampling is done.

2. The hypothesized distribution is completely specified only after the sampling is done.

Case 1 is useful, but case 2 is particularly interesting because it provides an alternative to the usual proce-
dures for testing normality, ie, normal probability plots, Shapiro-Wilks, and Lilliefors tests.
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13.3 Goodness of fit

Generally a researcher would be interested in testing the following hypothesis:

H0 : data follows a speci�ed model

HA : data does not follow the speci�ed model

or
H0 : �1 = �10; �2 = �20; � � ��k = �k0; i= 1 : : :k

HA : �i 6= �i0 8i= 1 : : :k

Let (n1, n2, . . . , nk) be a multinomial random variable with parametersn, �1, �2, . . . , �k. Since a function of
random variables is also a random variable, for largen the random variable, under the null hypothesis, that is if
the null hypothesis is true,

X2 =
kX
i=1

(ni � n�i)
2

n�i

follows an approximate chi-squared distribution withk - 1 degrees of freedom, given thatn�i >5 for all i. In
practice, we would reject the null hypothesis in favor of the alternate hypothesis ifX2 > �2�;� as shown in the
figure below, where� = (k-1).
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Pr[χ2 > x2] = α
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13.4 Exercises

I. Suppose that a response can fall in one ofk = 5 categories with probabilities�1, �1, . . . , �5, re-
spectively, and thatn= 300 responses produced the following category counts: Conduct a test to

Category 1 2 3 4 5
Observed count 47 63 74 51 65

determine if there is a difference the proportion of counts that fall in each of the categories. Use
both an hypothesis testing approach ( with� = 0.01) and a significance testing approach ie, deter-
mine ap-value to make your decision.

II. Gregor Mendel was the first to describe a theory of genetics used is determining genotypes of
offspring. The Mendelian theory states that the number of peas of a certain type falling into the
classifications i) round and yellow, ii) wrinkled and yellow, iii) round and green, and iv) wrinkled
and green should be in the ratio 9:3:3:1. Suppose that 100 such peas revealed 56, 19, 17, and 8 in
the respective classes. Do these data disagree with the Mendelian theory ? Use both an hypothesis
testing approach ( with� = 0.05) and a significance testing approach ie, determine ap-value to
make your decision.

III. Medical statistics show that deaths due to four major diseases - call them disease A, disease B,
disease C, and disease D, account for 15, 21, 18, and 14 percent, respectively, of all non-accidental
deaths. A study of the cases of 308 non-accidental deaths at a hospital gave the following counts of
patients dying of disease A, disease B, disease C, and disease D:

Number
Disease of Deaths

A 43
B 76
C 85
D 21

Others 83

Do these data provide sufficient evidence to indicate that the proportion of people dying of diseases
A, B, C, and D at this hospital differ from the proportions accumulated for the population at large ?
Use both an hypothesis testing approach ( with� = 0.025) and a significance testing approach ie,
determine ap-value to make your decision.

IV. Computer systems crash for a number of different reasons, among them are software failures, hard-
ware failures, operator errors, and system overloads. It is believed that 10% of all crashes are due
to software failure, 5% to hardware failure, 25% to operator error, and 40% to system overloading.
Over an extended period of time 150 computer crashes were monitored with the following results:
13 crashes due to software failures, 10 to hardware failures, 42 to operator errors, 65 to system
overloading, and the rest to other causes. Do these data lead us to suspect the accuracy of the stated
percentages ? Use both an hypothesis testing approach ( with� = 0.05) and a significance testing
approach ie, determine ap-value to make your decision.
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V. Although white has long been the most popular car color, recent trends in fashion and home design
have signaled the emergence of green as the new color of the 1990s. The growth in the popu-
larity of green hues stems partially from an increased interest in the environment and increased
feelings of uncertainty. According to an article in the Press-Enterprise (“White Cars Still Favored,”
1993),“green symbolizes harmony and counteracts emotional stress.” The article cites the top five
colors and the percentage of the market share for four different classes of cars. These data are given
below for the truck-van category:

Medium/Dark
Color White Red Green Red Black

Percentage 29.72 11.00 9.24 9.08 9.01

In an attempt to verify the accuracy of these figures, we take a random sample of 250 trucks and
vans and record their color. Suppose that the number of vehicles falling ineach of the five categories
above were 82, 22, 27, 21, and 20, respectively.

(a) Is there any category that is missing in the above classification? How many cars and
trucks fell in that category?

(b) Is there sufficient evidence to indicate that the percentages of trucks and vans differ from
those given above? Find the approximatep-value for the test.
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13.5 r� c Tests for homogeneity - or “likeness”

The goodness of fit tests can be extended to those cases where there are two variables under study, and the main
interest being that of determining if there is an homogeneity or “likeness” between two variables. In this case,
one of the marginal totals is fixed. Assumptions:

1. Two variables - one of which is studied atr levels and the other atc levels.

2. One of the marginal totals is fixed by the researcher or resources

Variable B Row Totals
n11 n12 n13 � � � n1(c�1) n1c n1:
n21 n21 n23 � � � n2(c�1) n2c n2:

Variable A
...

...
... � � � ...

...
...

n(r�1)1 n(r�1)2 n(r�1)3 � � � n(r�1)(c�1) n(r�1)c n(r�1):
nr1 nr2 nr3 � � � nr(c�1) nrc nr:

Column Totals n:1 n:2 n:3 � � � n:(c�1) n:c n::

Variable B Row Totals
�11 �12 �13 � � � �1(c�1) �1c 1
�21 �21 �23 � � � �2(c�1) �2c 1

Variable A
...

...
... � � � ...

...
...

�(r�1)1 �(r�1)2 �(r�1)3 � � � �(r�1)(c�1) �(r�1)c 1
�r1 �r2 �r3 � � � �r(c�1) �rc 1

Generally a researcher would be interested in testing the following hypothesis:

H0 : The proportions are equal

HA : At least one pair of proportions are unequal

or
H0 : �1j = �2j = � � � = �(r�1)c = �rc; j = 1 : : : c

HA : �ij 6= �i0j for anyi0 = 1 : : :r andj = 1 : : : c

Under the null hypothesis the proportion are the same, the expected values for each of these cells are given by:

eij =
ni:n:j
n

Assumption:eij > 5. Under the null hypothesis, that is if the null hypothesis is true,

X2 =

rX
i=1

cX
j=1

(nij � eij)
2

eij

follows an approximate chi-squared distribution withk - 1 degrees of freedom, given thateij > 5 for all i andj.
In practice, we would reject the null hypothesis in favor of the alternate hypothesis ifX2 > �2�;� as shown

in the figure below, where� = (r-1)�(c-1).
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13.6 Exercises

I. A commercial nuclear power plant contains one or more nuclear power units, the termnuclear
power plantusually refers to a single nuclear unit. The Oconee nuclear cluster would have three
units and hence be considered three plants. In a study of the amount of failures in plants similar to
the Oconee plant over the failure history of the plant (time since first failure), the number of failures
reported for 7 plants were considered with the following results:

Number of Failures in
Plant Failure History Period Failure History Period

A 12/82-12/88 35
B 1/78-2/86 16
C 5/76-7/86 18
D 2/83-1/87 9
E 8/83-10/86 13
G 11/78-6/84 8
H 4/84-2/91 11

Ignoring the failure history period, does there appear to be sufficient evidence that the number of
failures is different across all plants ? Use both an hypothesis testing approach ( with� = 0.10)
and a significance testing approach ie, determine ap-value to make your decision. Conduct the test
again, after removing plant A.

II. A study of the purchase decisions for three stock portfolio managers A, B, and C was conducted to
compare the rates of stock purchases that resulted in profits over a time period that was less than or
equal to 1 year. One hundred randomly selected purchases obtained for each of the managers gave
the following results:

Manager
A B C

Purchases that
resulted in a profit 63 71 55

Purchases that
resulted in no profit 37 29 45

Total 100 100 100

Do the data provide evidence of differences among the rates of successful purchases for the three
managers? Use both an hypothesis testing approach ( with� = 0.05) and a significance testing
approach ie, determine ap-value to make your decision.
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III. A study is conducted to test for independence between air quality and air temperature. These data
are obtained from records on 200 randomly selected days over the last few years. Do these data
indicate an association between these variables ? Use both an hypothesis testing approach ( with
� = 0.10) and a significance testing approach ie, determine ap-value to make your decision.

Air quality
Temperature Poor Fair Good

Below average 1 3 24
Average 12 28 76
Above Average 12 14 30

IV. A new method for etching semiconductors is being studied. The quality of the etch is to be compared
to that obtained using two older techniques. The results of the study are given in the table below.
State the null hypothesis of homogeneity mathematically. Use both an hypothesis testing approach
( with � = 0.10) and a significance testing approach ie, determine ap-value to make your decision.

Quality
Method Excellent Good Fair Poor
High Pressure (old) 113 34 21 32 200
Reactive ion(old) 117 31 25 27 200
Magnetron(new) 130 40 20 10 200

600

V. Are baby-boomers more likely to increase their investing now that they are reaching middle age?
A poll was conducted by Hal Riney & Partners (Los Angeles Times, June 11, 1990). in which 400
investors were classified according to their age group and their likely investment pattern over the
next 5 years versus the last 5 years. The data are shown below. Notice that there were 200 investors
included from each age group, ie., a fixed marginal. Do these data provide sufficient evidence to

Age Group More Less Same
35-54 90 18 92
55+ 40 60 100

conclude that the investing patterns of the baby-boomers age group differs from that of that of the
older age group ? Use both an hypothesis testing approach ( with� = 0.01) and a significance
testing approach ie, determine ap-value to make your decision.
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13.7 Tests for Independence

In the case of testing for independence

H0 : Independence

HA : Dependence

or
H0 : �ij = �i:�:j ; 8i and j

HA : �ij 6= �i:�:j for somei andj

Variable B Row Totals
n11 n12 n13 � � � n1(c�1) n1c n1:
n21 n21 n23 � � � n2(c�1) n2c n2:

Variable A
...

...
... � � � ...

...
...

n(r�1)1 n(r�1)2 n(r�1)3 � � � n(r�1)(c�1) n(r�1)c n(r�1):
nr1 nr2 nr3 � � � nr(c�1) nrc nr:

Column Totals n:1 n:2 n:3 � � � n:(c�1) n:c n::

Variable B Row Totals
�11 �12 �13 � � � �1(c�1) �1c �1:
�21 �21 �23 � � � �2(c�1) �2c �2:

Variable A
...

...
... � � � ...

...
...

�(r�1)1 �(r�1)2 �(r�1)3 � � � �(r�1)(c�1) �(r�1)c �(r�1):
�r1 �r2 �r3 � � � �r(c�1) �rc �r:

Column Totals �:1 �:2 �:3 � � � �:(c�1) �:c 1

Under the null hypothesis, the expected values for each of these cells are given by:

eij =
ni:n:j
n

Assumption:eij > 5.
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Under the null hypothesis, that is if the null hypothesis is true,

X2 =

rX
i=1

cX
j=1

(nij � eij)
2

eij

follows an approximate chi-squared distribution withk - 1 degrees of freedom, given thateij > 5 for all i andj.
In practice, we would reject the null hypothesis in favor of the alternate hypothesis ifX2 > �2�;� as shown

in the figure below, where� = (r-1)�(c-1).

x^2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
χ2 Distribution

Pr[χ2 > x2] = α

↓

χ2

Pr[χ2 > x2] = α

↓
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13.8 Exercises

I. A cancer researcher performs what is called a prospective be selecting a large group of individuals
at random and following their progress for a long period of time. At the end of the study period
each individual is classified according to whether or not lung cancer was present and according to
whether the individual has been exposed to an identifiable source of airborne asbestos. The result
of this classification yielded the following table:

Exposure Status Totals
Exposed Unexposed

Yes 10 40 50
Cancer

No 490 4460 4950
Totals 500 4500 5000

Do these data suggest an association of exposure to airborne asbestos and cancer development ?
Use both an hypothesis testing approach ( with� = 0.10) and a significance testing approach ie,
determine ap-value to make your decision.

II. A problem that sometimes occurs during surgical operations is the occurrence of infections during
blood transfusions. An experiment was conducted to determine whether the injection of antibodies
reduced the probability of infection. An examination of the records of 138 patients produced the
data shown in the accompanying table. Do the data provide sufficient evidence to indicate that
injections of antibodies affect the likelihood of transfusional infections? Use both an hypothesis
testing approach ( with� = 0.01) and a significance testing approach ie, determine ap-value to
make your decision.

Infection No Infection
Antibody 4 78

No antibody 11 45
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III. A recent study claims that an increasing proportion of engineering firms are purchasing liability
insurance. This claim is based on a survey of 753 engineering firms. The status of each firm is
recorded for the current and for the previous year. The data upon which the claim is based are shown
in the table below. Do the data support the claim? Explain, based on thep-value of McNemar’s test.

This year
Last year Insured Uninsured
Insured 650 5 655
Uninsured 28 70 98

678 75 753

IV. The following table shows the categorization of 204 men awaiting bypass heart surgeryaccording
to the relative degree of each man’s coronary artery obstruction and according to his perceived level
of discomfort due to angina pectoris (Jenkins et al., 1983). Do the data present sufficient evidence
to indicate that the level of angina is dependent on the level of coroners artery obstruction? The
authors report thep-value for a chi-square test to bep = 0.01.

(a) Compute the value of�2 for the data.

(b) Find thep-value for the test and compare with the authors’ valuep = 0.01.

(c) What conclusions would you reach based on your analysis ?

Arteries Obstructed 75% or More
Level of Angina 0 or 1 2 3 to 6 Total
None 3 21 20 44
Mild 2 12 9 23
Moderate 26 20 31 77
Moderate/severe 13 10 18 41
Severe 7 5 7 19
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Case Study: Marketing the Library

Case Study: Marketing the Library Can a Marketing Approach Improve Library Services?

Carol Day and Del Loewenthal (1992) studied the responses of young adults in their evaluation of library
services. Of the n = 200 young adults involved in the study, n1 = 152 were students, and n2 = 48 were non-
students. The following table presents the number of favorable responses for each group to seven questions in
which the atmosphere, staff, and the design of the library were examined. The entry in the last column labeled

Table 7: Favoroble Responses to Attitude Questions for Students and Nonstudents
% Student % Nonstudent

Question Question Favorablen1 = 152 Favorable n2 = 48 P
�
�2
�

3 Libraries are friendly 79.6 121 56.2 27 < .01
4 Libraries are dull 77 117 58.3 28 < .05
5 Library staff are helpful 91.4 139 87.5 42 N. S.
6 Library staff are less 60.5 92 45.8 22 < .01

helpful to teenagers
7 Libraries are so quiet 75.6 115 52.05 25 < .01

they feel uncomfortable
11 Libraries should be 29 44 18.8 9 N.S.

more brightly decorated
13 Libraries are badly 45.4 69 43.8 21 N. S.

signposted

P
�
�2
�

is thep-value for testing the hypothesis of no difference in the proportion of students and nonstudents
answering each questionfavorably. Hence. each question gives rise to a 2� 2 contingency table.

1. Perform a test of homogeneity for each question and verify the reportedp-value of the rest.

2. Questions 3, 4, and 7, are concerned with the atmosphere of the library; questions 5 and 6 are concerned
with the library staff; and questions 11 and 13 are concerned with the library design. How would you
summarize the results of your analyses regarding the seven questions concerning the image of the library ?

3. With the information given. is it possible to do any further testing concerning the proportion favorable
versus unfavorable responses for two or more questions simultaneously?
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14 Important Formulas and Concepts in Regression Analysis(Chapt. 4 LSM)

14.1 Strategy

Datainvestigation, modelspecification, parameterestimation, modelassessment, variableselection.

14.2 Simple Linear regression and the principle of Least Squares

Linear model

yi = �0 + �1xi + �i

where (xi; yi) is theith data point and

1. xi is a realization of the “independent” or predictor random variable X.

2. yi is a realization of the “dependent” or prediction random variable Y.

3. �0 is they-intercept parameter, generally unknown.

4. �1 is the slope orrate of change, generally unknown.

5. �i i = 1; 2; : : : ; n are unobservable “noise” or “error” random variables with mean zero and constant
variance�2.

6. �0 + �1 x is called the true unknown “regression function” of y on X. ie, E[Y]=�0 + �1x.

One can fit any number of models using least squares

1. linear models

yi = �0 + �1xi

2. polynomials

yi = �0 + �1xi + �2x
2
i + � � �+ �px

p
i

3. Other functions that are linear in the parameters to be estimated

yi = �0 + �1x1i + �2x
3
2
1i +

�3
ln j x1i j

yi = �0 + �1e
�2x1i + �2sin (x1ix2i) + �3x1iln

�
x22i

�
tan (x3i)

4. nonlinear models that have been “linearized”.
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Suppose we let

�i = yi � (�0 + �1xi)

then

�2i = [yi � (�0 + �1xi)]
2 :

Let Q be the sum of these squared differences:

Q =
nX
i=1

[yi � (�0 + �1xi)]
2 :

We wish to find estimates of�0 and�1, call themc�0 andc�1, that would minimize Q.

@Q

@�0
= �2

nX
i=1

(yi � �0 � �1xi)

and

@Q

@�1
= �2

nX
i=1

xi (yi � �0 � �1xi) :

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve
the following equations:

nX
i=1

yi = nc�0 +c�1 nX
i=1

xi

and
nX
i=1

xiyi = c�0 nX
i=1

xi +c�1 nX
i=1

x2i :

Solving first forc�1 and them forc�0 we have the following estimates:

c�1 =
n
Pn

i=1 xiyi � (
Pn

i=1 xi) (
Pn

i=1 yi)

n
Pn

i=1 x
2
i � (

Pn
i=1 xi)

2

and

c�0 =

Pn
i=1 yi �c�1Pn

i=1 xi
n

= y � c�1x:
We can simplify the expression for�1 to:

c�1 =
Sxy
Sxx

where

Sxy =
nX
i=1

(xi � x) (yi � y) =
nX
i=1

xiyi � (
Pn

i=1 xi) (
Pn

i=1 yi)

n
=

nX
i=1

xiyi � nxy

Sxx =
nX
i=1

(xi � x)2 =
nX
i=1

x2i �
(
Pn

i=1 xi)
2

n
=

nX
i=1

x2i � nx2

and also

Syy =
nX
i=1

(yi � y)2 =
nX
i=1

y2i �
(
Pn

i=1 yi)
2

n
=

nX
i=1

y2i � ny2:
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14.3 The fitted regression line(Chapt. 4 LSM)

The fitted regression line is given by after finding estimates for�0 and�1

byi = c�0 +c�1xi:
Define a residual as:

ei = b�i = yi � byi
that is the actual (original) value of the response minus the fitted (predicted) value. After gettingc�0 andc�1 we
can substitute these values back into Q to find this minimum.

bQ =
nX
i=1

h
yi �

�c�0 +c�1xi�i2 =
nX
i=1

[yi � byi]2 =
nX
i=1

b�i2:
This sum which can be re-written as

Syy � c�1Sxy = SSE

is called the residual or error sum of squares (SSE). An unbiased estimate of�2 is given by

c�2 =
SSE
n� 2

= MSE

= S2

which is referred to as the mean square error ( or literally the mean of the squared errors).

15 Parsimony in Modeling(Chapt. 4 LSM)

The simplest useful model we can fit to data is a constant function. With this model, the dependent variabley
does not change as the independent variablex changes. While different constants could be chosen (for example,
any measure of center), the meany is the most commonly chosen constant. If all the data actually has the same y
coordinate, then the data has no variation and a constant function explains the data completely. If, however, the
y values are not constant, then, clearly, there is some variation in the data about the mean. One way to measure
this variation is called the total sum of squares, orSSTot, which is defined

SSTot =
NX
i=1

(yi � y)

Notice thatSSTot/(n-1) can be called the sample variance, reinforcing the idea thatSSTot is a measure of
the variance in the data.

If we are building a model to explain the variation seen in the data, we need to use a model more complicated
than a constant function; we call ity = f(x). If the data lie on this function exactly, then it explains all the
variation. Usually, however, there is some noise to the data causing it to lie about a model function. Sometimes
this noise is due to randomness. Sometimes there is curve which is a better model. Using a line, for instance,
to model perfectly parabolic data, results in data points not lying on the model curve even in the absence of any
random effects. In any case, there are two types of variations in the data: variation explained by the model and
variation not explained by the model. The deviations between the predicted and actualy values(yi � by) are
calledresiduals. The variation not explained by the model is called the residual sum of squares orSSRes. This
is formally defined as
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SSRes =
NX
i=1

(yi � by)
One common form of data fitting is called regression. Because of this, the variation explained by the model
(regression function) is called the regression sum of squares orSSReg. This is defined by

SSReg =
NX
i=1

(byi � y)

Again this is the deviation from the mean explained by the model.

15.1 Understanding Variation(Chapt. 5 LSM)

Figure 6: Total Variation: Explained and Unexplained

It is easy to show algebraically that

SSTot = SSReg + SSRes

Intuitively this means that the total variation in the data is the sum of the variation explained by the model
as well as the variation not explained by the model. Thus the ratio

SSReg
SSTot

is the fraction (or percentage if multiplied by 100%) of the variation in the data explained by the model. This
ratio is calledR2. Thus

R2 =
SSReg
SSTot

Some books callR2 thecoefficient of determination. If the data is almost completely random, then almost
none of the variance in the data is explained by the model. In this case,SSReg � 0 and henceR2 � 0.
On the other hand if the data has almost no noise and lies very nearly on the model or regression curve, then
SSRes � 0, soSSTot � SSReg and henceR2 � 1.

The observant reader may notice that there are some similarities between this discussion and the discussion
of correlation. Indeed the notationR2 comes from the fact that if we fit a line to data which minimizes the
unexplained variance, the statisticR2 is exactly the correlationr squared. For this reason, in simple linear
regression,R2 is denoted byr2.
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15.2 Correlation and Coefficient of Determination(Chapt. 5 LSM)

We can define the Pearson product moment correlation coefficient (r) as an estimate of the true population
coefficient�.

r =

�Pn
i=1 xiyi � (

Pn

i=1
xi)(

Pn

i=1
yi)

n

�
s�Pn

i=1 x
2
i � (

Pn

i=1
xi)

2

n

��Pn
i=1 y

2
i � (

Pn

i=1
yi)

2

n

�
=

Sxyp
SxxSyy

= c�1
s
Sxx
Syy

:

The correlation is a measure of thestrength and directionof the linear relationship betweenx andy. Note
that it does not imply thatx causesy or influencesy. It just measures the strength of the relationship. The
coefficient of determination

R2 =

�Pn
i=1 xiyi � (

Pn

i=1
xi)(

Pn

i=1
yi)

n

�2
�Pn

i=1 x
2
i �

(
Pn

i=1
xi)

2

n

��Pn
i=1 y

2
i �

(
Pn

i=1
yi)

2

n

�
=

SSR
Syy

= 1
SSE
Syy

can be defined as the proportion of variability in the responsesy that can be explained by or accounted for by
the predictorX .
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15.3 Inferences on the population correlation coefficient�(Chapt. 5 LSM)

Null Hypothesis Assumptions Test Statistic Alternative Hypothesis Rejection Region
� = 0 Error assumptions � > 0 T � tn�2;�

(n> 2)

T = R
p
n�2p

1�R2 � 6= 0 j T j� tn�2;�=2

= b�1�0q
MSE
Sxx

� < 0 T � �tn�2;�
When X and Y have a bivariate normal distribution:

Null Hypothesis Assumptions Test Statistic Alternative Hypothesis Rejection Region
� = �0 Error assumpt. � > �0 Z � z�

(n > 2)

Z =
p
n�3
2 ln

h
(1+R)(1��0)
(1�R)(1+�0)

i
� 6= �0 j Z j� z�=2

� < �0 Z � �z�

15.4 Is the regression significant ?(Chapt. 4 LSM)

One of the first question we need to answer is “Is the regression significant”. In the linear case we are
basically asking do we have a linear relationship. Is there statistical evidence to conclude that the slope of the
true regression line is different from zero ?

Null Hypothesis Assumptions Test Statistic Alternative Hypothesis Rejection Region
�1 = 0 Error assumptions �1 > 0 T � tn�2;�

(n > 2) T =
b�1�0
S b�1

= b�1�0
s

q
1

Sxx

�1 6= 0 j T j� tn�2;�=2

�1 < 0 T � �tn�2;�

If the null hypothesis is rejected then the regression is generally considered “significant”
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Table 8: Analysis of Variance for Regression
Source df Sum of Squares Mean Square F-test

Regression 1 SSR=�̂1Sxy MSR= �̂1Sxy
1

MSR
MSE

= F � � F1;n�2

Error n-2 SSE=Syy � �̂1Sxy MSE =SSE
n�2

Total n-1 Syy

Of lesser significance is the test for the intercept term�0 = 0. It should be noted that the linear model can

Null Hypothesis Assumptions Test Statistic Alternative Hypothesis Rejection Region
�0 = 0 Error assumptions �0 > 0 T � tn�2;�

(n> 2) T = b�0�0
S b�0

�0 6= 0 j T j� tn�2;�=2

=
c�0 � 0

s

vuuut nX
i=1

x2i

nSxx

�0 < 0 T � �tn�2;�

be re-written so that the intercept term is zero.
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15.5 Distributional properties of c�0 and c�1(Chapt. 5 LSM)

The method of least squares along with the Gauss-Markov theorem that the estimatesc�0 andc�1 are the “best
linear unbiased estimators” for�0 and�1. But what is the distribution of these estimates? Without going into
the derivation of the variances of these estimates and following the assumptions made on the error and response
random variables, we have that

c�0 � N

0BBBB@�0;
�2

nX
i=1

x2i

nSxx

1CCCCA :

Similarly, it can be shown for slope parameter estimate,c�1,
c�1 � N

�
�1;

�2

Sxx

�
:

15.6 Inferences on the parametersc�0 and c�1(Chapt. 5 LSM)

c�0 � �0
S b�0 � tn�2

andc�1 � �1
S b�1 � tn�2:

15.6.1 Confidence Interval for�0 and �1.(Chapt. 5 LSM)

Using the above a (1-�) (100 %) confidence interval for�0 is given by

c�0 � tn�2;�=2S b�0
� tn�2;�=2s

vuuuut
nX
i=1

x2i

nSxx
:

Using the above a (1-�) (100 %) confidence interval for�1 is given by

c�1 � tn�2;�=2S b�1
� tn�2;�=2s

s
1

Sxx
:
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15.7 Prediction and Estimation(Chapt. 5 LSM)

15.7.1 Inferences about the estimated regression, E(y)(�0)

Suppose we wish to use our regression function to find the mean response, E(y), your text uses(�0), for
a single measurement at a pointx0. Then we can use the fitted regression function as an estimate of the mean
response,

dE (y) = byx0 = c�0 +c�1x0
to get this value. Note that it is important that this new pointx0 be within the range of the currentx values. If
we wish to get a confidence interval for the mean reponse, E(y), at the “new” valuex0 we would have:

byx0 � t�=2;n�2

vuutMSE

 
1

n
+

(x0 x)2

Sxx

!
:

Predicting a response at a point x0, y0

Suppose we wish to use our regression to “predict” a response for some future point, sayx0, of the current values
then the best predictor is obviously,

byx0 = c�0 +c�1x0
If we wish to get a confidence interval for the future value we would have:

byxp � t�=2;n�2

vuutMSE

 
1 +

1

n
+

(xp x)2

Sxx

!
:

Predicting a mean response of m future measurements at a point xp

Suppose we wish to use our regression to “predict”m responses at some future point, sayx0. Then best estimate
of the the mean of the responsesy of the current values then the best predictor is obviously,

byx0 = c�0 +c�1x0
If we wish to get a confidence interval for the future value we would have:

byx0 � t�=2;n�2

vuutMSE

 
1

m
+

1

n
+

(x0 x)2

Sxx

!
:
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15.8 Introductory Residual Analysis(Chapt. 6 LSM)

Residuals

ei = yi � byi
= yi � c�0 � c�1xi

Residual Mean

ei =

nX
i=1

ei

n
= 0

Residual Variance

MSE =

nX
i=1

(ei � ei)
2

n� 2

=
SSE

n� 2
= c�2

Standardized Residuals(semi-studentized)

di =
eip
MSE

Studentized Residuals

d�i =
eivuutMSE

"
1�

 
1
n
+ (xi�x)

2

Sxx

!#
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15.9 Departures from Model to Be Studied by Residuals(Chapt. 6 LSM)

We shall consider the use of residuals for examining six important types of departures from the simple linear
regression model with normal errors:

1. The regression function is not linear.

2. The error terms do not have constant variance.

3. The error terms are not independent.

4. The model fits all but one or a few outlier observations.

5. The error terms are not normally distributed.

6. One or several important predictor variables have been omitted from the model.

15.10 Diagnostics for Residuals

We take up now some informal diagnostic plots of residuals to provide information on whether any of the six
types of departures from the simple linear regression model just mentioned are present. The following plots of
residuals (or semistudentized residuals) will be utilized here for this purpose:

1. Plot of residuals against predictor variable.

2. Plot of absolute or squared residuals against predictor variable.

3. Plot of residuals against fitted values.

4. Plot of residuals against time or other sequence.

5. Plots of residuals against omitted predictor variables.

6. Box plot of residuals.

7. Normal probability plot of residuals.
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15.11 Comparable Normal probability plots(Chapt. 6 LSM)
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Figure 7: Ideal normal plot - signifying data is normally distributed
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Figure 8: Figure on left - heavy tailed distribution, figure on right light - tailed
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Figure 9: Figure on left - positive skew (skewed right) , figure on right negative skew (skewed left)
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16 Transformations to Linearity(Chapt. 6 (13) LSM)

In certain situations, a transformation on X or Y (or both) might “straighten out” the plot so that a linear
relationship would be appropriate for the transformed variables. Polynomial regression may also be employed.

But first consider the following transformations:

Relationship of�2 to E(y) Transformation
�2 / constant y0 = y (no transformation)
�2 / E(y) y0 =

p
y (square root; Poisson data)

�2 / E(y)[1� E(y)] y0 = sin�1
�p

y
�

(arcsin; binomial proportions 0� yi � 1
�2 / [E(y)]2 y0 = ln (y) (log)
�2 / [E(y)]3 y0 = y1=2 (reciprocal square root)
�2 / [E(y)]4 y0 = y�1 (reciprocal)

Table 9: Linearizable functions and corresponding linear form
Linearizable Linear

Figure Function Transformation Form
3.13a,b y = �0x

�1 y0 = log y ; x0 = logx y0 = log�0 + �1x
0

3.13c,d y = �0e
�1x y0 = lny y0 = ln�0 + �1x

3.13e,f y = �0 + �1log x x0 = logx y0 = �0 + �1x
0

313g,h y = x
�0x��1 y0 = 1

y ; x0 = 1
x y = �0 � �1x

0
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16.1 Lack of Fit and Introduction to Polynomial Regression(Chapt. 8 LSM)

Assumeni observations at eachxi, i = 1; 2; : : : ; k andni > 1 at for at least one value ofi. Let n =
Pk

i=1 ni
denote the total number of observations. Then

SSyy =
kX
i=1

niX
j=1

(Yij � Y )2

and

SSR =
kX
i=1

ni(Ŷi � Y i)
2

where SSE =SSyy - SSR thus

SSPE =
kX
i=1

S2
i

where

S2
i =

niX
j=1

(Yij � Y i)
2

SSLF = SSE � SSPE.

Table 10: Analysis of Variance for Regression Including Partition for Lack of Fit
Source df Sum of Squares Mean Square F-test

Regression 1 SSR=�̂1Sxy MSR= �̂1Sxy
1

MSR
MSE � ��� � F1;n�2

Error n-2 SSE=Syy � �̂1Sxy MSE=SSE
n�2

lack of fit k-2 SSLF MSLF=SSLF
k�2 F �=MSLF

MSPE � �� �� Fk�2;n�k

pure error n-k SSPE MSPE=SSPE
n�k

Total n-1 SSyy

RejectH0: Regression is linear, ifF � > F�;k�2;n�k . If the null hypothesis is rejected assumption of a
linear fit is inappropriate. In this situation, a transformation on X or Y (or both) might “straighten out” the plot
so that a linear relationship would be appropriate for the transformed variables. Polynomial regression may also
be employed.

The following are the breaking strengths of six bolts at each of five different diameters. Also see exercise

Table 11: Example of Testing for Lack of Fit
Diameter

.1 .2 .3 .4 .5
1.62 1.71 1.86 2.14 2.45
1.73 1.78 1.86 2.07 2.42
1.70 1.79 1.90 2.11 2.33
1.66 1.86 1.95 2.18 2.36
1.74 1.70 1.96 2.17 2.38
1.72 1.84 2.00 2.07 2.31

4.10 from text.
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17 Polynomial models(Chapt. 8 LSM)

We begin with a simple quadratic model:

yi = �0 + �1xi + �2x
2
i + �i:

Using the technique of least squares:

Q =
nX
i=1

h
yi �

�
�0 + �1xi + �2x

2
i

�i2
:

We wish to find estimates of�0, �1 , and�2, call themc�0, c�1 andc�2, that would minimize Q.

@Q

@�0
= �2

nX
i=1

�
yi � �0 � �1xi � �2x

2
i

�
@Q

@�1
= �2

nX
i=1

xi
�
yi � �0 � �1xi � �2x

2
i

�
and

@Q

@�2
= �2

nX
i=1

x2i

�
yi � �0 � �1xi � �2x

2
i

�
:

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve
the following equations:

nX
i=1

yi = nc�0 +c�1 nX
i=1

xi + c�2 nX
i=1

x2i

nX
i=1

xiyi = c�0 nX
i=1

xi +c�1 nX
i=1

x2i +
c�2 nX

i=1

x3i

and

nX
i=1

x2i yi = c�0 nX
i=1

x2i +
c�1 nX

i=1

x3i +
c�2 nX

i=1

x4i :
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Case Study: Climatology

Mathematical Sciences 405/605
Case Study: Climatology

Table 1 gives the values of normal average January minimum temperature (y) in degree fahrenheit, latitude (x1),
and longitude (x2) for 56 cities in the United States. It may be of interest to investigate how January temperature
relates to latitude and longitude. For this purpose, it is reasonable to assume an approximate linear relationship
between January temperature and latitude. In addition, some studies have found that, after adjusting for latitude,
a cubic polynomial in longitude accurately predicts normal average January temperatures in the contiguous
United States.

Table 12: Normal Average January Minimum Temperature (y), Latitude (x1), and Longitude (x2) for 56 Loca-
tions in the Contiguous United States

Location y x1 x2 Location y x1 x2
Mobile, AL 44 31.2 88.5 Omaha, NB 13 41.9 96.1
Montgomery, AL 38 32.9 86.8 Concord, NH 11 43.5 71.9
Phoenix, AZ 35 33.6 112.5 Atlantic City, NJ 27 39.8 75.3
Little Rock, AR 31 35.4 92.8 Albuquerque, NM 24 35.1 106.7
Los Angeles, CA 47 34.3 118.7 Albany, NY 14 42.6 73.7
San Francisco, CA 42 38.4 123.0 New York, NY 27 40.8 74.6
Denver, CO 15 40.7 105.3 Charlotte, NC 34 35.9 81.5
New Haven, CT 22 41.7 73.4 Raleigh, NC 31 36.4 78.9
Wilmington, DE 26 40.5 76.3 Bismarck, ND 0 47.1 101.0
Washington, DC 30 39.7 77.5 Cincinnati, OH 26 39.2 85.0
Jacksonville, FL 45 31.0 82.3 Cleveland, OH 21 42.3 82.5
Key West, FL 65 25.0 82.0 Oklahoma City, OK 28 35.9 97.5
Miami, FL 58 26.3 80.7 Portland, OR 33 45.6 123.2
Atlanta, GA 37 33.9 85.0 Harrisburg, PA 24 40.9 77.8
Boise, ID 22 43.7 117.1 Philadelphia, PA 24 40.9 75.5
Chicago, IL 19 42.3 88.0 Charleston, SC 38 33.3 80.8
Indianapolis, IN 21 39.8 86.9 Nashville, TN 31 36.7 87.6
Des Moines, IA 11 41.8 93.6 Amarillo, TX 24 35.6 101.9
Wichita KS 22 38.1 97.6 Galveston, TX 49 29.4 95.5
Louisvilie, KY 27 39.0 86.5 Houston, TX 44 30.1 95.9
New Orleans, LA 45 30.8 90.2 Salt Lake City, UT 18 41.1 112.3
Portland, ME 12 44.2 70.5 Burlington, VT 7 45.0 73.9
Baltimore, MD 25 39.7 77.3 Norfolk, VA 32 37.0 76.6
Boston, MA 23 42.7 71.4 Seattle, WA 33 48.1 122.5
Detroit, Ml 21 43.1 83.9 Spokane, WA 19 48.1 117.9
Minneapolis, MN 2 45.9 93.9 Madison, Wl 9 43.4 90.2
St. Louis, MO 24 39.3 90.5 Milwaukee, Wl 13 43.3 88.1
Helena, MT 8 47.1 112.4 Cheyenne, WY 14 41.2 104.9

NOTE: The average minimum temperature for any month is obtained by adding the daily minimum tem-
peratures during that month and dividing by the number of days in that month. The normal average January
minimum temperature (y) was obtained by adding the average minimums for January 1931, January 1932, and
so on, through January 1960 and dividing the total by 30. The variablesx1 andx2 are latitude and longitude in
degrees. Source: Long (1972)y.

yLong, L. H. (ed.) (1972), The 1972 World Almanac and Book of Facts New York: Newspaper Enterprise Association.
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18 Multiple Linear Regression(Chapt. 8 LSM)

Generally when we wish to determine whether or not certain relationships exist between a response and certain
“condition(s)”, it is not unusual to have two or more variables that can influence a specific outcome. These
variables or “conditions” act synergistically on predicting or estimating an outcome.

Here we will assume on a linear relationship between these variables, but others could also exist.
The multiple linear regression model expresses the response as a function ofk distinct independent predictor

variables.

yi = �0 + �1x1i + �2x2i + � � �+ �kxki + �i:

Using the technique of least squares:

Q =
nX
i=1

[yi � (�0 + �1x1i + �2x2i + � � �+ �kxki)]
2 :

We wish to find estimates of�0, �1, �2, : : :, �k call themc�0, c�1, c�2, : : :, c�k that would minimize Q.

@Q

@�0
= �2

nX
i=1

(yi � �0 � �1x1i � �2x2i � � � � � �kxki)

@Q

@�1
= �2

nX
i=1

x1i (yi � �0 � �1x1i � �2x2i � � � � � �kxki)

@Q

@�2
= �2

nX
i=1

x2i (yi � �0 � �1x1i � �2x2i � � � � � �kxki)

... =
...

and

@Q

@�k
= �2

nX
i=1

xki (yi � �0 � �1x1i � �2x2i � � � � � �kxki) :

After taking derivatives and setting equal to zero, and passing through the summation operator, we can solve
the following equations:

nX
i=1

yi = nc�0 +c�1 nX
i=1

x1i +c�2 nX
i=1

x2i + � � �+ c�k nX
i=1

xki

nX
i=1

x1iyi = c�0 nX
i=1

x1i + c�1 nX
i=1

x21i +
c�2 nX

i=1

x1ix2i + � � �+ c�k nX
i=1

x1ixki

... =
...

and

nX
i=1

xkiyi = c�0 nX
i=1

xki +c�1 nX
i=1

xkix1i + c�2 nX
i=1

xkix2i + � � �+ c�k nX
i=1

x2ki:
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18.1 The fitted regression line(Chapt. 8 LSM)

(See Chapter 8 of LSM)

18.2 Is the multiple regression significant ?(Chapt. 8 LSM)

(See Chapter 8 of LSM)

18.3 Inferences on the fitted partial regression coefficients, thec�i’s.(Chapt. 8 LSM)

(See Chapter 8 of LSM)
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Case Study: Computer Science

Mathematical Sciences 405/605
Case Study: Computer Science

The waiting timey that elapses between the time a computing job is submitted to a large computer and the
time at which the job is initiated (computing commences) is a function of many variables, including the priority
assigned to the job, the number and sizes of the jobs already on the computer, the size of the job being submitted,
and so on. A study was initiated to investigate the relationship between waiting time y (in hours) for a job and
x1, the estimated CPU time (in seconds) for the job, andx2, the CPU utilization factor. The estimated CPU time
x1 is an estimate of the amount of time that a job will occupy a portion of the computer’s central processing
unit’s memory. The CPU utilization factorx2 is the percentage of the memory bank of the central processing
unit that is occupied at the time the job is submitted. We would expect the waiting timey to increase as the size
of the job x, increases and as the CPU utilization factorx2 increases. To conduct the study,15 jobs of varying
sizes were submitted to the computer at randomly assigned times throughout the day. The job waiting timey,
estimated CPU timex1 and CPU utilization factorx2 were recorded for each job. The datay are shown below.

Job x1 x2 y
1 2.0000 45.0000 0.0010
2 9.3000 80.0000 1.1400
3 5.6000 23.0000 0.0300
4 3.7000 25.0000 0.0010
5 12.4000 67.0000 0.7800
6 18.1000 30.0000 0.3000
7 13.5000 55.0000 0.6000
8 26.6000 21.0000 0.2000
9 34.2000 79.0000 2.2400
10 38.8000 40.0000 0.4400
11 56.1000 22.0000 0.0010
12 60.3000 37.0000 0.3200
13 4.4000 50.0000 0.1600
14 2.6000 66.0000 0.2900
15 20.9000 42.0000 0.4900

A second-order model, E(y) =�0 + �1x1 + �2x2 + �3x1x2 + �4x
2
1 + �5x

2
2 was selected to model mean

waiting time E(y).

i) Find the values of SSE andc�2.
ii) Find the prediction equation.

iii) Find R2 and interpret its value.

iv) Do the data provide sufficient evidence to indicate that the model contributes information for the
prediction ofy ? Test using� = 0.10.

yWaiting time data frequently violate the assumptions required for significance tests and confidence intervals in a regression analysis.
The probability distribution for waiting times is often skewed, and its variance increases as the mean waiting time increases. Methods
are available for coping with this problem, but we will ignore it for the purposes of this introductory discussion.
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MODELS WITH TWO INDEPENDENT VARIABLES

No interaction model

E(y) = �0 + �1x1 + �2x2

Comments on model parameters:

� �0: y-intercept, the value of E(y) when x1 = x2 = 0

� �1: Change in E(y) for a 1 unit increase in x1, when x2 is held fixed.

� �2: Change in E(y) for a 1 unit increase in x2, when x1 is held fixed.

General comments: In particular, a first-order model relating E(y) to two independent quantitative vari-
ables, x1 and x2, graphs as a plane in three-dimensional space. The plane traces the value of E(y) for every
combination of values (x1, x2) that correspond to points in the x1, x2 plane. Most response surfaces in the real
world are well behaved (smooth), and they have curvature. Consequently, a first-order model is appropriate only
if the response surface is fairly flat over the x1, x2 region that is of interest to you.

Interaction model

E(y) = �0 + �1x1 + �2x2 + �3x1x2

The assumption that a first-order model will adequately characterize the relationship between E(y) and the
variables x1 and x2 is equivalent to assuming that x1 and x2 do not interact; that is, you assume that the effect on
E(y) of a change in x1 (for a fixed value of x2) is the same regardless of the value of x2 (and vice-versa). Thus,
no interaction implies that the effect of changes in one variable (say x1) on E(y) is independent of the value of
the second variable (say x2).

Two variablesinteract if the change in E(y) for 1-unit increase (decrease) in x1(when x2 is held fixed) is
dependent on the values of x2. In which case the lines in the previous plot would cross.

Interaction terms clearly allow more opportunity for individual predictor variables to exhibit joint effects
with other predictor variables. Several interaction terms involving two or more predictor variables can be in-
cluded in regression models but they should not be inserted routinely for several reasons. First the number
of possible interaction terms can be large for regression models with several predictor variables. With only
5 predictor variables there are 10 possible two-variable interaction terms, 10 three-variable interaction terms,
5 four-variable interaction terms, and 1 five-variable interaction term. Use of all predictor variables and their
interactions could result in a complicated model with 32 terms in it.
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18.4 Indicator and Dummy Variables in Multiple regression(Chapt. 12 LSM)



18 MULTIPLE LINEAR REGRESSION(CHAPT. 8 LSM) 57

Case Study: Industrial

Mathematical Sciences 405/605
Case Study: The Petroleum Industry

In the oil industry, water mixes with crude oil during production and transportation. The organic properties of
oil prevent it from dissolving in an inorganic medium; rather, tiny oil particles are suspended within the water.
This water and oil (w/o) suspension is called an emulsion.

Chemists have found that the oil can be extracted from the w/o emulsion electrically. In a high electric field,
the (lighter) emulsified droplets are enlarged while the (heavier) water settles out of the mix gravitationally.
Researchers at the University of Bergen (Norway) conducted a series of experiments to study the factors that
influence the voltage required to separate the water from the oil in w/o emulsions (Journal of Colloid and
Interface Science. Aug. 1995). The seven independent variables investigated in the study are described below.
Each variable was measured at two levels a “low” level and a “high” level.

� x1: Volume fraction of disperse phase (as a percentage of weight); Low = 40%, High = 80%

� x2: Salinity of emulsion (as a percentage of weight); Low = 1%, High = 4%

� x3: Temperature of emulsion (in C); Low = 40Æ, High = 23Æ

� x4: Time delay after emulsification (in hours); Low = 0.25 hour(15minutes), High = 24 hours

� x5: Concentration of surface-active agent, or ”surfactant” (as a percentage of weight); Low = 2%, High = 4%

� x6: Ratio of two chemicals (Span and Triton) used as surfactants; Low = .25, High = .75

� x7: Amount of solid particles added (as a percentage of weight); Low = .5%, High = 2%

Sixteen w/o emulsions were prepared using different combinations of the independent variables listed above;
then each emulsion was exposed to a high electric field. In addition, three w/o emulsions were tested when all
independent variables were set to 0. For all 19 emulsions, the amount of voltage (kilovolts per centimeter) where
the first sign of macroscopic activity is observed was measured; this value represents the dependent variable,y.
The data for the study are given in Table 1.

1. Propose a model for y as a function of all seven independent variables. Assume that a linear relationship
exists betweeny andxi, i = 1, 2, . . . , 7.

2. Use a statistical software package to fit the model to the data in Table 1.

3. Fully interpret the results of the regression. Part of the analysis should include an interpretation of the�
estimates.

4. According to the researchers, the model predicts a negative value for the voltagey for experiment #14.
Verify this result.

5. The researchers state that the result, part 4, “is physically not acceptable, and a model with interaction
terms must be proposed.” The model the researchers selected is
E(y) = �0 + �1x1 + �2x2 + �3x5 +�4x1x2 + �5x1x5. Note that the model includes interact)¡ between
disperse phase volume(x1) and salinity(x2) as well as interaction between disperse phase volume(x5)
and surfactant concentration(x5). Discuss how these interaction terms affect the hypothetical relationship
betweeny andx1. Draw a sketch to support your answer.

6. Fit the interaction model, part 5, to the data. Do the model appear to fit the data better than the model in
part 1? Explain.

7. Interpret the� estimates of the interaction model from part 5.
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8. The researchers concluded that “in order to break; an emulsion with the lowest possible voltage, the
volume fraction of the disperse phase(x1) should high, while the salinity(x2) and the amount of surfactant
(x5) should be low.” Use this information and the interaction model to find a 95% prediction interaction
for this ”low” voltagey. Interpret the interval.
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Disperse Phase Time Surfactant S:T Solid
Experiment Voltage Volume Salinity Temperature Delay Concentration Ratio Particles

(y) (x1) (x2) (x3) (x4) (x5) (x6) (x7)

1 .64 40 1 4 .25 2 .25 .5
2 .80 80 1 4 .25 4 .25 2
3 3.20 40 4 4 .25 4 .75 .5
4 .48 80 4 4 .25 2 .75 2
5 1.72 40 1 23 .25 4 .75 2
6 .32 80 1 23 .25 2 .75 .5
7 .64 40 4 23 .25 2 .25 2
8 .68 80 4 23 .25 4 .25 .5
9 .12 40 1 4 24 2 .75 2
10 .88 80 1 4 24 4 .75 .5
11 2.32 40 4 4 24 4 .25 2
12 .40 80 4 4 24 2 .25 .5
13 1.04 40 1 23 24 4 .25 .5
14 .12 80 1 23 24 2 .25 2
15 1.28 40 4 23 24 2 .75 .5
16 .72 80 4 23 24 4 .75 2
17 1.08 0 0 0 0 0 0 0
18 1.08 0 0 0 0 0 0 0
19 1.04 0 0 0 0 0 0 0
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Collinearity Diagnostics (Chapt. 10 LSM)

When a regressor,xi, is nearly a linear combination of other regressors in the model the affected estimates
are unstable and have high standard errors. This problem is calledcollinearity or multicollinearity . It is a good
idea to find out which variables are nearly collinear with which other variables. The approach inPROC REG
follows that of Belsley, Kuh, and Welsch (1980).REG provides several methods for detecting collinearity with
theCOLLIN , COLLINOINT , TOL , andVIF options

TheCOLLIN option in the MODEL statement requests that a collinearity analysis be done. First,X0X is
scaled to have1s on the diagonal. IfCOLLINOINT is specified, the intercept variable is adjusted out first.
Then the eigenvalues and eigenvectors are extracted. The analysis inREG is reported with eigenvalues ofX0X
rather than values from the singular decomposition ofX. The singular values ofX are the square roots of the
eigenvalues ofX0X.

The condition indices are the square roots of the ratio of the largest eigenvalue toeach individual eigenvalue.
The largest condition index is the condition number of the scaledX matrix. When this number is large, the data
are said to be ill-conditioned. When this number is extremely large, the estimates may have a fair amount of
numerical error (although the statistical standard error almost always is much greater than the numerical error).

For each variable,REG prints the proportion of the accounted for by each principal component. A collinear-
ity problem occurs when a component associated with a high condition index contributes strongly to the variance
of two or more variables.

TheVIF option in theMODEL statement provides the variance inflation factors. These factors measure
the inflation in the variances of the parameter estimates due to collinearities that exist among the regressor
(dependent) variables. There are no formal criteria for deciding if aVIF is large enough to affect the predicted
values. But, there are informal criteria that work quite well in practice. A liberal criteria is any VIFs over 10
suggest multicollinearity. A more conservative criteria would suggest multicollinearity if there are any VIFs
greater than the number of parameters in the model.

TheTOL option requests the tolerance values for the parameter estimates.
For a complete discussion of the methods discussed above, see Belsley, Kuh, and Welsch (1980). For a more

detailed explanation of using the methods withPROC REG, see Freund and Littell (1986).
Here is an example using theCOLLIN option on the oxidation data given in a class handout and reproduced

at the end of this handout.

proc reg data=oxidata;
model oxidant=windspd temp humid insolate / tol vif collin;
run;

Influence Diagnostics

The INFLUENCE option requests the statistics proposed by Belsley, Kuh, and Welsch (1980) to measure the
influenceof each observation on the estimates. Influential observations are those that, according to various
criteria, appear to have a largeinfluenceon the parameter estimates. Let��(i) be the parameter estimates after
deleting theith observation; let s2�(i) be the variance estimate after deleting theith observation; letX�(i) be the
X matrix without theith observation(case); letby�(i) be theith value predicted without using theith observation;
let ri = yi - by be theith residual; and let hi be theith diagonal of the projection matrix for the predictor space,
also called the hat matrix:

hi = xi
�
X
0
X
��1

x
0
i

Belsley, Kuh, and Welsch propose a cutoff of2*p/n, wheren is the number of observations used to fit the
model, andp is the number of parameters in the model. Observations with hi values above this cutoff should be
investigated.

For each observation,REG first prints the residual, the studentized residual, and the hi. The studentized
residual differs slightly from that in the previous section since the error variance is estimated by s2

�(i) without
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the ith observation, not by s2, for example,

RSTUDENT =
riq

s2�(i) (1� hi)

Observations withRSTUDENT larger than 2 in absolute value may need some attention.
TheCOVRATIO statistic measures the change in the determinant of the covariance matrix of the estimates

by deleting theith observation:

COVRATIO =
j s2�(i)X0

�(i)X�(i) j
j s2(X0X)�1 j

Belsley, Kuh, and Welsch suggest observations with

jCOVRATIO� 1j � 3p

n

wherep is the number of parameters in the model, andn is the number of observations used to fit the model, are
worth investigation.

TheDFFITS statistic is a scaled measure of the change in the predicted value for theith observation and is
calculated by deleting theith observation. A large value indicates that the observation is very influential in its
neighborhood of theX space.

DFFITS =
byi � by�(i)q
s2�(i)hi

Large values ofDFFITS indicate influential observations. A general cutoff to consider is 2; a size-adjusted

cutoff recommended by Belsley, Kuh, and Welsch is 2
q

p
n , wheren andp are as defined above.DFFITS is very

similar toCook’s Distance.
Cook’s D, for short, is also a scaled measure. Cases for which Di is large have substantial influence onb� and on the fitted values, and deletion of them may result in important changes in conclusions. Typically the

case with the largest Di, or in large data setsthe cases with the largest few Di, will be of interest. A proposed
cut-off, see Weisberg (1985), is if Di is substantially less than 1, deletion of a case will not change the estimate
� by much. To investigate the influence of a case more closely, the analyst should delete the large Di case and
recompute the analysis to see exactly what aspects of it have changed.

The simplest form for Di is

Di =
1

p
RSTUDENT

2
i

�
hi

1� hi

�
If p is fixed, the size of Di will be determined by two different sources: the size ofRSTUDENTi, a random

variable reflecting lack of fit of the model at thei th case, and the potential hi, reflecting the location ofxi relative
to x. A large value of Di may be due to largeRSTUDENTi, large hi, or both.

DFBETAS are the scaled measures of the change in each parameter estimate and are calculated by deleting
the ith observation:

DFBETASj =
b�j � b�j�(i)q
s2�(i)(X

0X)�1jj

where
(X0X)�1jj is the(j,j)th element of (X0X)�1 .
In general, large values ofDFBETAS indicate observations that are influential in estimating a given param-

eter. Belsley, Kuh, and Welsch recommend 2 as a general cutoff value to indicate influential observations and
2/
p
n as a size-adjusted cutoff.
The output below shows the portion of output produced by theINFLUENCE option for the oxidation

example. See the subsequent output for the fitted regression equation.
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proc reg data=oxidata;
model oxidant=windspd temp humid insolate / influence;
run;

Table 13: Influence Diagnostics for Ozone Data
Criteria Criteria Cutoff Size Adjusted Suspect Cases
h (Hat) 0.33 22,23,30
RSTUDENT 2 11
COVRATIO 0.5 8,11,24

25,29,30
DFFITS 2 0.82 4,22,23
DFBETAS 2 0.37 Parameters

Intercept WINDSPD TEMP HUMID INSOLATE
4,22 4,22,23 4,21 4,28 22,23

ThePARTIAL option producesPARTIAL regression leverage plots. One plot is printed for each regressor
in the full, current model. For example, plots are produced for regressors included by using ADD statements;
plots are not produced for interim models in the various model-selection methods but only for the full model.
If you use a model-selection method and the final model contains only a subset of the original regressors, the
PARTIAL option still produces plots for all regressors in the full model.

For a given regressor, thePARTIAL regression leverage plot is the plot of the dependent variable and the
regressor after they have been made orthogonal to the other regressors in the model. These can be obtained
by plotting the residuals for the dependent variable against the residuals for the selected regressor, where the
residuals for the dependent variable are calculated with the selected regressor omitted, and the residuals for
the selected regressor are calculated from a model where the selected regressor is regressed on the remaining
regressors. A line fit to the points has a slope equal to the parameter estimate in the full model.

On the plot, points are marked by the number of replicates appearing at one print position. The symbol ’*’
is used if there are ten or more replicates. if an ID statement is specified, the left-most nonblank character in the
value of the ID variable is used as the plotting symbol.

The following statements use the oxidation data.

proc reg data=oxidata;
model oxidant=windspd temp humid insolate / partial;
run;

References
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[2] Freund and Littell (1986). “SAS System for Regression”,SAS Institute
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Case Study: Toxicity

Mathematical Sciences 405/605
Case Study:Toxicity

100 points

I. The Data: It is known that in mammals the toxicity of various drugs, pesticides, and chemical
carcinogens can be altered by inducing liver enzyme activity. A study to investigate this sort of phe-
nomena in a vertabrate model similar to that of humans is reported in an article in theAmerican Jour-
nal of Veterinary Research. Regression analysis was used to study the relationship between induced
enzyme activity and detoxification on the insecticide malathion. Butylated hydroxytaluene(BHT)
and 3-methylcholanthrene (MC) were used to induce enzyme activity. Each observation represents
the percentage of activity relative to a control, an untreated lab animal. The response variable is the
percentage of detoxification of malathion. Five enzyme activities were measured and serve as the
predictor variables.

Table 14: Detoxification Data
Inducer Detoxification Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5

x1 y x2 x3 x4 x5 x5
BHT 146.1040 348.4750 337.5000 108.1220 106.6670 107.6920
BHT 152.5970 233.2200 260.4170 82.2340 80.0000 88.8890
BHT 168.8310 287.4580 273.9580 74.6190 66.6670 87.1790
BHT 178.5710 152.5420 310.4170 86.8020 73.3330 96.5810
BHT 191.5580 276.2710 818.7500 122.8430 86.6670 97.4360
BHT 113.6360 78.6440 156.2500 112.6900 93.3330 94.8720
BHT 188.3120 196.9490 260.4170 79.1880 80.0000 106.8380
BHT 94.1560 101.6950 112.5000 127.9190 93.3330 80.3420
BHT 159.0910 194.5760 280.2080 239.5940 106.6670 91.4530
BHT 142.8570 325.4240 326.0420 173.0960 113.3330 100.0000
MC 56.2500 106.3290 90.7560 94.6500 162.7910 114.7370
MC 75.0000 144.7260 203.3610 131.6870 255.8140 112.6320
MC 115.6250 136.2870 672.2690 123.4570 191.8600 153.6840
MC 68.7500 154.4300 183.1930 113.1690 133.7210 116.8420
MC 96.8750 385.2320 140.3360 117.2840 174.4190 87.3680
MC 168.7500 583.5440 146.2180 152.2630 273.7560 94.7370
MC 84.3750 489.4510 184.8740 121.3990 255.8140 95.7890
MC 171.8750 445.9920 537.8150 150.2060 552.3260 113.6840
MC 109.3750 270.8860 309.2440 185.1850 534.8840 108.4210
MC 103.1250 163.2910 190.7560 139.9180 360.4650 106.3160

(i) Fit a multiple linear regression that models detoxification as a function of the five en-
zymes for each of the two types of inducers.

(ii) Using the methods described in your handout on collinearity and influence, determine if
multicollinearityexists foreach of the models and whether or not there are any influential
cases.

(iii) Using the variable selection methods described in class determine the variables that are
“best” in predicting the percentage of detoxification of malathion when looking at BHT
as the inducer and the variables that are “best” in predicting the percentage of detoxifi-
cation of malathion when considering MC as the inducer.
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19 Model-Selection Methods(Chapt. 11 LSM)

Introduction

The nine methods of model selection implemented inPROC REG are specified with theSELECTION=
option in theMODEL statement. Each method is discussed below.

Full Model Fitted (NONE)

This method is the default and provides no model selection capability. The complete model specified in the
MODEL statement is used to fit the model. For many regression analyses, this may be the only method you
need.

Forward Selection (FORWARD)

The forward-selection technique begins with no variables in the model. For each of the independent variables,
FORWARD calculatesF statistics that reflect the variable’s contribution to the model if it is included. The
p-values for theseF statistics are compared to theSLENTRY= value that is specified in theMODEL statement
(or to 0.50 if theSLENTRY= option is omitted). If noF statistic has a significance level greater than the
SLENTRY= value,FORWARD stops. Otherwise,FORWARD adds the variable that has the largestF statistic
to the model.FORWARD then calculatesF statistics again for the variables still remaining out side the model,
and the evaluation process is repeated. Thus, variables are added one by one to the model until no remaining
variable produces a significantF statistic. Once a variable is in the model, it stays.

Backward Elimination (BACKWARD)

The backward-elimination technique begins by calculating statistics for a model, including all of the inde-
pendent variables. Then the variables are deleted from the model one by one until all the variables remaining in
the model produceF statistics significant at theSLSTAY= level specified in theMODEL statement (or at the
0.10 level if theSLSTAY= option is omitted). Ateach step, the variable showing the smallest contribution to
the model is deleted.

Stepwise (STEPWISE)

The stepwise method is a modification of the forward-selection technique and differs in that variables already
in the model do not necessarily stay there. As in the forward-selection method, variables are added one by one
to the model, and theF statistic for a variable to be added must be significant at theSLENTRY= level. After
a variable is added, however, the stepwise method looks at all the variables already included in the model and
deletes any variable that does not produce anF statistic significant at theSLSTAY= level. Only after this check
is made and the necessary deletions accomplished can another variable be added to the model. The stepwise
process ends when none of the variables outside the model has anF statistic significant at theSLENTRY= level
and every variable in the model is significant at theSLSTAY= level, or when the variable to be added to the
model is the one just deleted from it.
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Maximum R2 Improvement (MAXR)

The maximumR2 improvement technique does not settle on a single model Instead, it tries to find the ”best”
one-variable model, the ”best” two-variable model, and so forth, although it is not guaranteed to find the model
with the largestR2 for each size. TheMAXR method begins by finding the one-variable model producing the
highestR2. Then another variable, the one that yields the greatest increase inR2, is added. Once the two-
variable model is obtained, each of the variables in the model is compared to each variable not in the model. For
each comparison,MAXR deter mines if removing one variable and replacing it with the other variable increases
R2. After comparing all possible switches,MAXR makes the switch that produces the largest increase inR2.
Comparisons begin again, and the process continues untilMAXR finds that no switch could increaseR2. Thus,
the two-variable model achieved is considered the ”best” two-variable model the technique can find. Another
variable is then added to the model, and the comparing-and-switchingprocess is repeated to find the ”best” three-
variable model, and so forth. The difference between the STEPWISE method and theMAXR method is that all
switches are evaluated before any switch is made inMAXR . In the STEPWISE method, the “worst” variable
can be removed without considering what adding the best” remaining variable might accomplish.MAXR may
require much more computer time than STEPWISE.

Minimum R2 Improvement (MINR)

The MINR method closely resemblesMAXR , but the switch chosen is the one that produces the smallest
increase inR2. For a given number of variables in the model,MAXR andMINR usually produce the same
“best” model, butMINR considers more models of each size.

R2 Selection (RSQUARE)

TheRSQUARE method finds subsets of independent variables that best predict a dependent variable by linear
regression in the given sample. You can specify the largest and smallest number of independent variables
to appear in a subset and the number of subsets of each size to be selected. TheRSQUARE method can
efficiently perform all possible subset regressions and print the models in decreasing order ofR2 magnitude
within each subset size. Other statistics are available for comparing subsets of different sizes. These statistics,
as well as estimated regression coefficients, can be printed or output to a SAS data set. The subset models
selected byRSQUARE are optimal in terms ofR2 for the given sample, but they are not necessarily optimal
for the population from which the sample was drawn or for any other sample for which you may want to make
predictions. If a subset model is selected on the basis of a largeR2 value or any other criterion commonly used
for model selection, then all regression statistics computed for that model under the assumption that the model
is given a priori, including all statistics computed byREG, are biased. While theRSQUARE method is a useful
tool for exploratory model building, no statistical method can be relied on to identify the ”true” model. Effective
model building requires substantive theory to suggest relevant predictors and plausible functional forms for the
model. TheRSQUARE method differs from the other selection methods in thatRSQUARE always identifies
the model with the largestR2 for each number of variables considered . The other selection methods are not
guaranteed to find the model with the largestR2. RSQUARE requires much more computer time than the other
selection methods, so a different selection method such asSTEPWISE is a good choice when there are many
independent variables to consider.

Adjusted R2 Selection (ADJRSQ)

This method is similar toRSQUARE, except that the adjustedR2 statistic is used as the criterion for select-
ing models, and the method finds the models with the highest adjustedR2 within the range of sizes.
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Mallows’ C p Selection (Cp)

This method is similar toADJRSQ, except that Mallow’s Cp statistic is used as the criterion for model selection.

Additional Information on Model-Selection Methods

If the RSQUARE or STEPWISE procedure (as documented in SAS User’s Guide: Statistics, Version 5 Edi-
tion) is requested,PROC REG with the appropriate model-selection method is actually used. Reviews of
model-selection methods by Hocking (1976) and Judge et al. (1980) describe these and other variable-selection
methods.
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20 The Analysis of Variance(Chapt. 14 LSM)

20.1 The Completely Randomized Design

Given the common hypothesis:

H0: �1 = �2 = . . .�r

Ha: �i 6= �j fi 6= jg � r,

there are a number of techniques for comparing means from several populations or processes. One particularly
interesting method is called theAnalysis of Variance. Although it seems a misnomer, we will see how the
analysis of variance is used for testing the inequality of means from several populations. For experiments
involving r means a model of the form:

yij = �i + �ij i = 1; 2; : : : ; r j = 1; 2; : : : ; n;

can be used. This model is equivalent to the one-factor model used to analyze data resulting from designed
experiments. The simplest of these is the completely randomized design. The analysis of variance (ANOVA) is
especially suited for comparing means of populations when it can be assumed that the population variances are
equal.

Let’s assume that the observations from ther different processes are independent. The sample sizesni need
not be the same but we will keep things simple by making that assumption here. Assume further that the errors
are normally distributed with mean 0 and common variance�2, (recall we must make this assumption as stated
above).

The purpose of the ANOVA is to assess whether the means in the model given above are significantly
different from each other. Note that this is different from the analysis of means(ANOM), which compares the
means to an overall mean. Given that H0 is true, ther sample means,yi provide an unbiased estimate of the
population mean� and each of the sample variances,s2i provides an unbiased estimate of the population variance
�2y . Thus, we are taking, in effect,r repeated random samples, each of sizen, from the same population. Recall
from Chapter 3, that the variance of the sample mean, denoted by�2y is equal to the population variance�2y
divided by the sample sizen:

�2y =
�2y
n
:

Thus, if the null hypothesis is true, the population variance�2y should be equal ton times the variance of the
sample means,�2y , ie.,�2y = n �2y . If the null hypothesis is not true, then the equation�2y = n �2y will not hold;
indeed,n�2y will be greater than�2y due to the fact that the population means corresponding to ther populations
are different. This relationship may be seen in the figure below.
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If the r treatment effects are equal, we are drawing the random samples from one distribution with variance
�2y . If the r treatments effects are not equal, then the total amount of variability in theY population must be
greater than�2y as illustrated on the right side of the figure above. The repeated samples of sizen would then be
drawn from a “composite” population, indicated in the figure by the shaded area. Then,n times the variability
of the sample average statisticY in repeated samples must be larger than�2y , because these samples are being
drawn from a population in which the variability is greater than the one in which the population means are equal.
Therefore, the hypotheses:

H0: �1 = �2 = . . .�r

Ha: �i 6= �j fi 6= jg � r

are equivalent to the hypotheses:
H0: n �2y = �2y

Ha: n �2y > �2y .

That is, we can test the equality of population mean effects by comparing estimates of�2y , the population
variance, and�2y , the variance of the sample mean statistic. The analysis of variance procedure does, in fact,
analyze variances to compare means.

The analysis of variance procedure compares an estimate of�2y ,denoted byb�2y , with an estimate of�y
denoted byb�y . If b�2y is “much less” thann �2y then there is reason to suspect that the null hypothesis is not true.
To determine whetherb�2y is significantly less thann b�2y , we compute, the probability that the differencen b�2y - b�2y
could arise by chance, (sampling error) ifb�2y = b�2y . To illustrate the testing process, consider data from a polish
cannons exercise:

[Example:]. Bauer. Dirks, Palkovic and Wittmer fired tennis balls out of “Polish cannons” inclined
at an angle of 45Æ using three different Propellants and two different Charge Sizes of propellant.
They observed the distances traveled in the air by the tennis balls. Their data are given in the
accompanying table. (Five trials were made for each Propellant/Charge Size combination and
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the values given are in feet.)

Propellant
Lighter Carburetor
Fluid Gasoline Fluid

58 76 90
50 79 86

2.5 ml 53 84 79
49 73 82
59 71 86

Charge Size
65 96 107
59 101 102

5.0 ml 61 94 91
68 91 95
67 87 97

For the moment let’s just consider the three types of propellant. And we want to determine if the population
means for the three types of propellant differ. The means model:

yij = �i + �ij i = 1; 2; : : : ; 3 j = 1; 2; : : : ; 10

Propellant
Lighter Carburetor
Fluid Gasoline Fluid Overall Mean

Propellant means y1:=58.9 y2:=85.2 y3:=91.5 y::=78.53

Since the three sample means are quite dissimilar(y1: = 58.9; y2: = 85.2; andy3: = 91.5) we might expect the
analysis of variance procedure to suggest that the null hypothesis should be rejected.

20.2 Estimate of the population variance�2y

To calculate a sample estimate of�2y , we will use the sample variancess21, s22, ands23. The variance for theith
sample is given by:

s2i =

n=10X
i=1

(yij � yi:)
2

n� 1

=

n=10X
i=1

y2ij �

 
n=10X
i=1

yij

!2

n

n� 1
:

Thus,

s2i =
(58)2 + (50)2 + (53)2 + � � � (67)2 � (58+50+53+���+67)2

10

9

=
35095� (589)2

10

9
= 44:7667:
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Similarly, s22 = 106.1778 ands23 = 78.0556. A critical assumption of analysis of variance is that the popu-
lation variances corresponding to ther=3 treatments are equal, regardless of whether or not the null-hypothesis
is true (that is, whether or not ther population means are equal). Thus, any differences in the sample variances
must always be attributable to sampling error. The three sample variances appear to be reasonably similar in this
example. But let’s apply the Fmax test.

F =
maxfs2i g
minfs2i g

=
106:1778

44:667
= 2:3718;

which is less than 5.34,�=0.05 and obviously less than 8.5, with�=0.01. So the assumption is appropriate.
Sinces21, s

2
2, ands23 each estimate the polulation variance�2y , we can produce an improved estimate of�2y

over each sample variance taken individually by pooling the three estimates ( recall the pooled estimate of the
population variance in the denominator of thet-statistic used to compare two population means).

The pooled estimate of�2y is given by:

s2p =
rX
i=1

s2i
r

=
44:7667+ 106:1778+ 78:0556

3
= 76:3333:

20.3 Estimate of the variance the sample mean�2y

The three sample means are(y1: = 58.9; y2: = 85.2; andy3: = 91.5). To compute the estimateb�2y of the three
sample means we used the variance formula:

s2y =

r=3X
i=1

(yi: � y::)
2

r � 1

In our example,y::=78.53. Then

s2y =

r=3X
i=1

(yi: � y::)
2

r � 1

=
(58:9� 78:53)2 + (85:2� 78:53)2 + (91:5� 78:53)2

2
= 299:0234:

If the null hypothesis is true,n b�2y should be an unbiased estimate of the population variance,�2y . Its value is:

nb�2y = (10)(299:0234) = 2990:234:

Sincen b�2y > b�2y (2990.234> 76.333), the sample means appear to be much too variable to have been drawn
from the same common population with mean�. But is the difference betweenn b�2y andb�2y statistically signifi-
cant ? We have developed two procedures for testing the equivalence of two population variances. The common
F-test and Hartley’s Fmax which we recently used. For the usual F-test,

f =
2990:234

76:3333
= 39:1734:
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To determine whether the calculated value off is significantly different from 1, we look for the critical value off
based on the numerator degrees of freedom�1 = r - 1 = 2, the denominator degrees of freedom�2 = r(n-1)= 3(9)
= 27, and a selected value of�, say�=0.05. From the table in the appendix, we get F2;24;0:05=3.40 and F2;30;0:05=
3.32. Since the calculated value of the statisticF(f = 39.1734) is greater that the critical value(s) (39.1734>
3.40), we reject the null hypothesis H0: �1 = �2 = �3 at the�=0.05 significance level. Thus we conclude that
there appears to be strong evidence that the three propellants do produce different mean distances. It is possible
to calculate the observed level of significance, but the closest tabled value yields ap-value< 0.0005. Thus it is
very likely that the three propellants produce different distances.

20.4 The Analysis of Variance table

A convenient computational format for calculating the statistics necessary to determine whether the null hy-
pothesis should be rejected is provided by the analysis of variance table. Its form is presented in the table
below.

Degrees of Sum of
Source of Variation freedom squares Mean Square F-ratio
Among treatments r - 1 SStr MStr MStr

MSE
Experimental error r(n - 1) SSE MSE
Total rn - 1 SST

The first row of the table, “among treatments,” produces the estimate of the variancen �2y it is denoted by
MStr (mean square for factor levels) in the table. The second row of the table, “experimental error” produces
the pooled estimate of the population variance�2y it is denoted by MSE (mean square for error) in the table. The
F-statistic is the ratio of the mean square for treatments, MStr , and the mean square for error, MSE .

The formula for MStr is:

MSTr = nb�2y =
n
Pr

i=1 (yi: � y::)
2

r � 1

The numerator of MStr is called the sum of squares among treatments and is denoted by SStr in the table.
The formula for MSE is:

MStr = b�2y =
(n� 1)

Pr
i=1 s

2
i

r(n� 1)

=
(n� 1)

Pr
i=1

Pn
j=1

�
yij � yi:

�2
r(n� 1)

The numerator of MSE is called the error sum of squares and is denoted by SSE in the table. The “Degree of
freedom” column in the table gives the appropriate divisors of the sums of squares to produce the mean squares.

The last row in the table gives the “Total degrees of freedom”(tn - 1) = (t - 1) + t(n - 1) - and the total sum
of squares given by:

SST =
rX
i=1

nX
j=1

�
yij � y::

�2
Hence, the analysis of variance table can also be given as:

Degrees of Sum of
Source of Variation freedom squares Mean Square F-ratio

Among treatments r - 1 n
Pr

i=1 (yi: � y::)
2 MStr=

(n�1)
Pr

i=1
s2i

r(n�1)
MStr
MSE

Experimental error r(n - 1) SSE MSE
Total rn - 1 SST
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Notice that SST gives the sum of the squared deviations of each observationyij about the grand mean of the
datay:: Thus, this quantity is a measure of the total variability in the dependent variable.

An important relationship given in the analysis of variance table is:

SST = SSTr + SSE

That is, the total sum of squares can be partitioned into the sum of squares due to treatments plus the error
sum of squares. So, for the polish cannon data we have the following analysis of variance table:

Degrees of Sum of
Source of Variation freedom squares Mean Square F-ratio
Among propellants 3 - 1 [2] 5980.467 2990.233 39.173
Experimental error 3(10 - 1) [27] 2061.000 76.333
Total 3(10)-1 [29] 8041.467

Or in Statistix we would get the following:

STUDENT EDITION OF STATISTIX
ONE-WAY AOV FOR DISTANCE BY PROP

SOURCE DF SS MS F P
------- ---- --------- --------- ------ ------
BETWEEN 2 5980.47 2990.23 39.17 0.0000
WITHIN 27 2061.00 76.3333
TOTAL 29 8041.47

CHI-SQ DF P
BARTLETT’S TEST OF ------ ------ ------

EQUAL VARIANCES 1.56 2 0.4595

COCHRAN’S Q 0.4637
LARGEST VAR / SMALLEST VAR 2.3718

COMPONENT OF VARIANCE FOR BETWEEN GROUPS 291.390
EFFECTIVE CELL SIZE 10.0

SAMPLE GROUP
PROP MEAN SIZE STD DEV

--------- ---------- ------ ----------
1 58.900 10 6.6908
2 85.200 10 10.304
3 91.500 10 8.8349

TOTAL 78.533 30 8.7369
CASES INCLUDED 30 MISSING CASES 0
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Suppose we wanted to do the same thing for the Charge size in our example. Then we can let a similar model as
that posed before for the propellant, represent the mean charge.

yij = �i + �ij i = 1; 2: j = 1; 2; : : : ; 15:

Similarly for Charge type alone we would get:

STUDENT EDITION OF STATISTIX
ONE-WAY AOV FOR DISTANCE BY CHARGE

SOURCE DF SS MS F P
------- ---- --------- --------- ------ ------
BETWEEN 1 1414.53 1414.53 5.98 0.0210
WITHIN 28 6626.93 236.676
TOTAL 29 8041.47

CHI-SQ DF P
BARTLETT’S TEST OF ------ ------ ------

EQUAL VARIANCES 0.31 1 0.5767

COCHRAN’S Q 0.5755
LARGEST VAR / SMALLEST VAR 1.3555

COMPONENT OF VARIANCE FOR BETWEEN GROUPS 78.5238
EFFECTIVE CELL SIZE 15.0

SAMPLE GROUP
CHARGE MEAN SIZE STD DEV

--------- ---------- ------ ----------
1 71.667 15 14.176
2 85.400 15 16.505

TOTAL 78.533 30 15.384

CASES INCLUDED 30 MISSING CASES 0

Here’s a third example of comparing several means and the completely randomized design. The production
manager of a company which manufactures filters for liquids, for use in the pharmaceutical and food industries,
wishes to compare the burst strength of four types of membrane. The first (A) is the company’s own standard
membrane material, the second (B) is a new material the company has developed, and C and D are membrane

Table 15: Burst strength of filter membranes (kPa)
Type A 95.5 103.2 93.1 89.3 90.4 92.1 93.1 91.9 95.3
Type B 90 5 98.1 97.8 97.0 98.0 95.2 95.3 97.1 90.5
Type C 86.3 84.0 86.2 80.2 83.7 93.4 77.1 86.8 83.7
Type D 89.5 93.4 87.5 89.4 87.9 86.2 89.9 89.5 90.0

materials from other manufacturers. The manager has tested five filter cartridges from ten different batches of
each material. The mean burst strengths for each set of five cartridges are given in above. The data can be
analysed by setting up a multiple regression model. We letY be the average burst strength for each set of five
cartridges andx1,x2,x3 be indicator variables coded as: The coefficients then represent the differences between
the company’s standard membrane and the others. This sets up four of the six possible comparisons. If we fit
the model

y = �0 + �1x1 = +�2x2 + �3x3
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x1 x2 x3
Type A 0 0 0
Type B 1 0 0
Type C 0 1 0
Type D 0 0 1

we obtain the following results

y = 92:84 + 3:24x1 � 8:21x2 � 2:95x3

with s= 3.901 and the table of coefficients below:

Predictor Coef Stdev t-ratio p-value
Constant 92.84 1.234 75.27 0.000
Type B 3.24 1.744 1.86 0.071
Type C 8.21 1.744 -4.71 0.000
Type D 2.95 1.744 -1.69 0.099
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20.5 Paired Comparisons for Analysis of Variance

I. Bonferroni’s Procedure:

i) Equal Sample Sizes: Letn =ni, i = 1,. . . ,k, the set of confidence intervals with endpoints:

(�yi: � �yj:)� t(N�k);�0

s
2MSE

n

Each confidence interval that does not include zero suggests�i 6= �j at�.

ii) Unequal Sample Sizes:

(�yi: � �yj:)� t(N�k);�0

s
MSE(

1

ni
+

1

nj
)

Each confidence interval that does not include zero suggests�i 6= �j at�. Notice here
that�0 = �

k(k�1) :

II. Tukey’s Procedure:

i) Equal Sample Sizes: Letni = n, i = 1,. . . ,k and letQ�;�1;�2 be a critical value of the
Studentized Range Distribution. The set of cofidence intervals with end points

(�yi: � �yj:)�Q�;k;N�k

s
MSE

n
for all i and j, i 6= j

is a collection of simultaneous100(1 � �)% confidence intervals for the differences
between the true treatment means,�i��j . Each confidence interval that does not include
zero suggests�i 6= �j at�.

ii) Unequal Sample sizes: The set of confidence intervals with endpoints

(�yi: � �yj:)� 1p
2
Q�;k;N�k

s
MSE(

1

ni
+

1

nj
)for all i and j, i 6= j

is a collection of simultaneous100(1 � �)% confidence intervals for the differences
between the true treatment means,�i � �j . Similarly, each confidence interval that does
not include zero suggests�i 6= �j at�.

III. Duncan’s Multiple Range Procedure:
Let n=ni, i

i) Linearly order the k sample means (smallest to largest).

ii) Find the value of the least significant studentized rangerp,for p = 2,3,. . . ,k. Table XI,
denotes the number of degrees of freedom associated with the MSE.

iii) For eachp = 2; 3; : : : ; k find the shortest significant range,SSRp. This value is given
by

(a) Equal sample sizes:

SSRp = rp

s
MSE

n

(b) Unequal sample sizes:
SSRp == rp

p
MSE
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iv) Consider any subset ofp adjacent sample means. Letj�yi: � �yj:j denote the range of the
means in this subgroup. Hence�i 6= �j if

(a) Equal sample sizes:
j�yi: � �yj:j > SSRp

(b) Unequal sample sizes:

j�yi: � �yj:j
s

2ninj
ni + nj

> SSRp

v) Summaring your results by underlining any subset of adjacent samples means that are
not considered significantly different.

IV. Dunnett’s Procedure:
Let n = ni, i = 1,. . . ,k and letd�;�1;�2 be a critical value for Dunnett’s procedure and let treatment
O be the control group. Dunnett’s procedure for determining significant differences between each
treatment and control at the joint significance level� is given by:
H0: �0 = �i i = 1,. . . ,k

Ha : �0 > �i
�0 < �i i = 1,. . . ,k
�0 6= �i

Test statistic:Di =
�Yi���Y0�p
2�̂2=n

i = 1,. . . ,k

Rejection Region:

Di � d�;k;k(n�1)
Di � �d�;k;k(n�1) i = 1,. . . ,k
j Di j� d�;k;k(n�1)
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20.6 The Randomized Complete Block Design
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20.7 Factorial Designs

And finally, we can combine the two factors and create a two-factor model

yijk = �i + �j + �ijk i = 1; 2; : : : ; r1; j = 1; 2; : : : ; r2; k = 1; 2; : : : ; n

More specifically, for our example this would be:

yijk = �i + �j + �ijk i = 1; 2; : : : ; 3; j = 1; 2; k = 1; 2; : : : ; 5

Notice that 2�3�5 represents the 30 observations. Finally, we can form the interaction model:

yijk = �i + �j + �ij + �ijk i = 1; 2; : : : ; 3; j = 1; 2; k = 1; 2; : : : ; 5

For our example recall interactions were of interest. The usual form of the interaction model is:

yijk = �+ �i + �j + ��ij + �ijk i = 1; 2; : : : ; a; j = 1; 2; : : : ; b; k = 1; 2; : : : ; n

where the� corresponds to an overall mean,� corresponds to the “effect” of the first factor, call it Factor A,
measured ata levels,� is the “effect” of the second factor, factor B, measured atb levels, and�� corresponds
to the interaction term. The general form the analysis of variance table in this two-factor interaction model is
given below.

Degrees of Sum of
Source of Variation freedom squares Mean Square F-ratio

Factor A a - 1 SSA=bn
aX
i=1

(yi:: � y:::)
2 MSA=SSA

a�1 f = MSA
MSE

Factor B b - 1 SSB=an
bX

j=1

�
y:j: � y:::

�2
MSB=SSB

b�1 f = MSB
MSE

AB interaction (a-1)(b-1) SSAB=n
aX
i=1

bX
j=1

�
yij: � yi:: � y:j: + y:::

�2
MSAB= SSAB

(a�1)(b�1) f = MSAB
MSE

Experimental Error ab(n-1) SSE=
aX
i=1

bX
j=1

nX
k=1

�
yijk � yij:

�2
MSE= SSE

ab(n�1)

Total rn - 1 SST=
aX
i=1

bX
j=1

nX
k=1

�
yijk � y:::

�2

STUDENT EDITION OF STATISTIX

ANALYSIS OF VARIANCE TABLE FOR DISTANCE

SOURCE DF SS MS F P
------------- ---- ---------- ---------- ------- ------
PROP (A) 2 5980.47 2990.23 122.63 0.0000
CHARGE (B) 1 1414.53 1414.53 58.01 0.0000
A*B 2 61.2667 30.6333 1.26 0.3028
RESIDUAL 24 585.200 24.3833
------------- ---- ----------
TOTAL 29 8041.47
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21 Tables

21.1 Cumulative Standard Normal Distribution tables

z
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Standard Normal Distribution

Pr[Z < z] = γ

→

PrfZ � zg
Table entry for z is the probability

lying below z (ie. cumulative probabilities)

Table 16: Cumulative Standard Normal distribution probabilities
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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z
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Standard Normal Distribution

Pr[Z < z] = γ

←

PrfZ � zg
Table entry for z is the probability

lying below z (ie. cumulative probabilities)

Table 16: Standard Normal distribution probabilities continued
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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PrfZ � zg - Table entry is the critical valuez below which probability p lies under the curvey

Table 17: Standard Normal Distribution Quantiles
p 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.50 0.000 0.003 0.005 0.008 0.010 0.013 0.015 0.018 0.020 0.023
0.51 0.025 0.028 0.030 0.033 0.035 0.038 0.040 0.043 0.045 0.048
0.52 0.050 0.053 0.055 0.058 0.060 0.063 0.065 0.068 0.070 0.073
0.53 0.075 0.078 0.080 0.083 0.085 0.088 0.090 0.093 0.095 0.098
0.54 0.100 0.103 0.105 0.108 0.111 0.113 0.116 0.118 0.121 0.123
0.55 0.126 0.128 0.131 0.133 0.136 0.138 0.141 0.143 0.146 0.148
0.56 0.151 0.154 0.156 0.159 0.161 0.164 0.166 0.169 0.171 0.174
0.57 0.176 0.179 0.181 0.184 0.187 0.189 0.192 0.194 0.197 0.199
0.58 0.202 0.204 0.207 0.210 0.212 0.215 0.217 0.220 0.222 0.225
0.59 0.228 0.230 0.233 0.235 0.238 0.240 0.243 0.246 0.248 0.251
0.60 0.253 0.256 0.259 0.261 0.264 0.266 0.269 0.272 0.274 0.277
0.61 0.279 0.282 0.285 0.287 0.290 0.292 0.295 0.298 0.300 0.303
0.62 0.305 0.308 0.311 0.313 0.316 0.319 0.321 0.324 0.327 0.329
0.63 0.332 0.335 0.337 0.340 0.342 0.345 0.348 0.350 0.353 0.356
0.64 0.358 0.361 0.364 0.366 0.369 0.372 0.375 0.377 0.380 0.383
0.65 0.385 0.388 0.391 0.393 0.396 0.399 0.402 0.404 0.407 0.410
0.66 0.412 0.415 0.418 0.421 0.423 0.426 0.429 0.432 0.434 0.437
0.67 0.440 0.443 0.445 0.448 0.451 0.454 0.457 0.459 0.462 0.465
0.68 0.468 0.470 0.473 0.476 0.479 0.482 0.485 0.487 0.490 0.493
0.69 0.496 0.499 0.502 0.504 0.507 0.510 0.513 0.516 0.519 0.522
0.70 0.524 0.527 0.530 0.533 0.536 0.539 0.542 0.545 0.548 0.550
0.71 0.553 0.556 0.559 0.562 0.565 0.568 0.571 0.574 0.577 0.580
0.72 0.583 0.586 0.589 0.592 0.595 0.598 0.601 0.604 0.607 0.610
0.73 0.613 0.616 0.619 0.622 0.625 0.628 0.631 0.634 0.637 0.640
0.74 0.643 0.646 0.650 0.653 0.656 0.659 0.662 0.665 0.668 0.671
0.75 0.674 0.678 0.681 0.684 0.687 0.690 0.693 0.697 0.700 0.703
0.76 0.706 0.710 0.713 0.716 0.719 0.722 0.726 0.729 0.732 0.736
0.77 0.739 0.742 0.745 0.749 0.752 0.755 0.759 0.762 0.765 0.769
0.78 0.772 0.776 0.779 0.782 0.786 0.789 0.793 0.796 0.800 0.803
0.79 0.806 0.810 0.813 0.817 0.820 0.824 0.827 0.831 0.834 0.838
0.80 0.842 0.845 0.849 0.852 0.856 0.860 0.863 0.867 0.871 0.874
0.81 0.878 0.882 0.885 0.889 0.893 0.896 0.900 0.904 0.908 0.912
0.82 0.915 0.919 0.923 0.927 0.931 0.935 0.938 0.942 0.946 0.950
0.83 0.954 0.958 0.962 0.966 0.970 0.974 0.978 0.982 0.986 0.990
0.84 0.994 0.999 1.003 1.007 1.011 1.015 1.019 1.024 1.028 1.032
0.85 1.036 1.041 1.045 1.049 1.054 1.058 1.063 1.067 1.071 1.076
0.86 1.080 1.085 1.089 1.094 1.098 1.103 1.108 1.112 1.117 1.122
0.87 1.126 1.131 1.136 1.141 1.146 1.150 1.155 1.160 1.165 1.170
0.88 1.175 1.180 1.185 1.190 1.195 1.200 1.206 1.211 1.216 1.221
0.89 1.227 1.232 1.237 1.243 1.248 1.254 1.259 1.265 1.270 1.276
0.90 1.282 1.287 1.293 1.299 1.305 1.311 1.317 1.323 1.329 1.335
0.91 1.341 1.347 1.353 1.359 1.366 1.372 1.379 1.385 1.392 1.398
0.92 1.405 1.412 1.419 1.426 1.433 1.440 1.447 1.454 1.461 1.468
0.93 1.476 1.483 1.491 1.499 1.506 1.514 1.522 1.530 1.538 1.546
0.94 1.555 1.563 1.572 1.580 1.589 1.598 1.607 1.616 1.626 1.635
0.95 1.645 1.655 1.665 1.675 1.685 1.695 1.706 1.717 1.728 1.739
0.96 1.751 1.762 1.774 1.787 1.799 1.812 1.825 1.838 1.852 1.866
0.97 1.881 1.896 1.911 1.927 1.943 1.960 1.977 1.995 2.014 2.034
0.98 2.054 2.075 2.097 2.120 2.144 2.170 2.197 2.226 2.257 2.290
0.99 2.326 2.366 2.409 2.457 2.512 2.576 2.652 2.748 2.878 3.090
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Table 18: Standard Normal Critical Values
� Z�

0.1 1.2816
0.05 1.6449

0.025 1.96
0.01 2.3263

0.005 2.5758
0.001 3.0902

0.0005 3.2905
0.0001 3.719

0.00009 3.7455
0.00008 3.775
0.00007 3.8082
0.00006 3.8461
0.00005 3.8906
0.00004 3.9444
0.00003 4.0128
0.00002 4.1075
0.00001 4.2649
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21.2 t-distribution tables

-6 -4 -2 0 2 4 6
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t - distribution

t

PrfT � t�g
Table entry is the critical valuet�

above which probability�
lies under the curve

Table 19: t-distribution critical values
�

df 0.4 0.3 0.25 0.2 0.15 0.1 0.05 0.025
1 0.325 0.727 1.000 1.376 1.963 3.078 6.314 12.706
2 0.289 0.617 0.816 1.061 1.386 1.886 2.920 4.303
3 0.277 0.584 0.765 0.978 1.250 1.638 2.353 3.182
4 0.271 0.569 0.741 0.941 1.190 1.533 2.132 2.776
5 0.267 0.559 0.727 0.920 1.156 1.476 2.015 2.571
6 0.265 0.553 0.718 0.906 1.134 1.440 1.943 2.447
7 0.263 0.549 0.711 0.896 1.119 1.415 1.895 2.365
8 0.262 0.546 0.706 0.889 1.108 1.397 1.860 2.306
9 0.261 0.543 0.703 0.883 1.100 1.383 1.833 2.262

10 0.260 0.542 0.700 0.879 1.093 1.372 1.812 2.228
11 0.260 0.540 0.697 0.876 1.088 1.363 1.796 2.201
12 0.259 0.539 0.695 0.873 1.083 1.356 1.782 2.179
13 0.259 0.538 0.694 0.870 1.079 1.350 1.771 2.160
14 0.258 0.537 0.692 0.868 1.076 1.345 1.761 2.145
15 0.258 0.536 0.691 0.866 1.074 1.341 1.753 2.131
16 0.258 0.535 0.690 0.865 1.071 1.337 1.746 2.120
17 0.257 0.534 0.689 0.863 1.069 1.333 1.740 2.110
18 0.257 0.534 0.688 0.862 1.067 1.330 1.734 2.101
19 0.257 0.533 0.688 0.861 1.066 1.328 1.729 2.093
20 0.257 0.533 0.687 0.860 1.064 1.325 1.725 2.086
21 0.257 0.532 0.686 0.859 1.063 1.323 1.721 2.080
22 0.256 0.532 0.686 0.858 1.061 1.321 1.717 2.074
23 0.256 0.532 0.685 0.858 1.060 1.319 1.714 2.069
24 0.256 0.531 0.685 0.857 1.059 1.318 1.711 2.064
25 0.256 0.531 0.684 0.856 1.058 1.316 1.708 2.060
26 0.256 0.531 0.684 0.856 1.058 1.315 1.706 2.056
27 0.256 0.531 0.684 0.855 1.057 1.314 1.703 2.052
28 0.256 0.530 0.683 0.855 1.056 1.313 1.701 2.048
29 0.256 0.530 0.683 0.854 1.055 1.311 1.699 2.045
30 0.256 0.530 0.683 0.854 1.055 1.310 1.697 2.042
35 0.255 0.529 0.682 0.852 1.052 1.306 1.690 2.030
40 0.255 0.529 0.681 0.851 1.050 1.303 1.684 2.021
45 0.255 0.528 0.680 0.850 1.049 1.301 1.679 2.014
50 0.255 0.528 0.679 0.849 1.047 1.299 1.676 2.009
55 0.255 0.527 0.679 0.848 1.046 1.297 1.673 2.004
60 0.254 0.527 0.679 0.848 1.046 1.296 1.671 2.000
65 0.254 0.527 0.678 0.847 1.045 1.295 1.669 1.997
70 0.254 0.527 0.678 0.847 1.044 1.294 1.667 1.994
75 0.254 0.527 0.678 0.846 1.044 1.293 1.665 1.992
80 0.254 0.526 0.678 0.846 1.043 1.292 1.664 1.990
85 0.254 0.526 0.677 0.846 1.043 1.292 1.663 1.988
90 0.254 0.526 0.677 0.846 1.042 1.291 1.662 1.987
95 0.254 0.526 0.677 0.845 1.042 1.291 1.661 1.985

100 0.254 0.526 0.677 0.845 1.042 1.290 1.660 1.984
105 0.254 0.526 0.677 0.845 1.042 1.290 1.659 1.983
110 0.254 0.526 0.677 0.845 1.041 1.289 1.659 1.982
115 0.254 0.526 0.677 0.845 1.041 1.289 1.658 1.981
120 0.254 0.526 0.677 0.845 1.041 1.289 1.658 1.980

1000 0.253 0.525 0.675 0.842 1.037 1.282 1.646 1.960
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Table 19: t-distribution critical values continued
�

df 0.02 0.01 0.005 0.0025 0.001 0.0005 0.0001
1 15.890 31.821 63.657 127.300 318.309 636.600 3183.099
2 4.849 6.965 9.925 14.090 22.327 31.600 70.700
3 3.482 4.541 5.841 7.453 10.215 12.920 22.204
4 2.999 3.747 4.604 5.598 7.173 8.610 13.034
5 2.757 3.365 4.032 4.773 5.893 6.869 9.678
6 2.612 3.143 3.707 4.317 5.208 5.959 8.025
7 2.517 2.998 3.499 4.029 4.785 5.408 7.063
8 2.449 2.896 3.355 3.833 4.501 5.041 6.442
9 2.398 2.821 3.250 3.690 4.297 4.781 6.010

10 2.359 2.764 3.169 3.581 4.144 4.587 5.694
11 2.328 2.718 3.106 3.497 4.025 4.437 5.453
12 2.303 2.681 3.055 3.428 3.930 4.318 5.263
13 2.282 2.650 3.012 3.372 3.852 4.221 5.111
14 2.264 2.624 2.977 3.326 3.787 4.140 4.985
15 2.249 2.602 2.947 3.286 3.733 4.073 4.880
16 2.235 2.583 2.921 3.252 3.686 4.015 4.791
17 2.224 2.567 2.898 3.222 3.646 3.965 4.714
18 2.214 2.552 2.878 3.197 3.610 3.922 4.648
19 2.205 2.539 2.861 3.174 3.579 3.883 4.590
20 2.197 2.528 2.845 3.153 3.552 3.850 4.539
21 2.189 2.518 2.831 3.135 3.527 3.819 4.493
22 2.183 2.508 2.819 3.119 3.505 3.792 4.452
23 2.177 2.500 2.807 3.104 3.485 3.768 4.415
24 2.172 2.492 2.797 3.091 3.467 3.745 4.382
25 2.167 2.485 2.787 3.078 3.450 3.725 4.352
26 2.162 2.479 2.779 3.067 3.435 3.707 4.324
27 2.158 2.473 2.771 3.057 3.421 3.690 4.299
28 2.154 2.467 2.763 3.047 3.408 3.674 4.275
29 2.150 2.462 2.756 3.038 3.396 3.659 4.254
30 2.147 2.457 2.750 3.030 3.385 3.646 4.234
35 2.133 2.438 2.724 2.996 3.340 3.591 4.153
40 2.123 2.423 2.704 2.971 3.307 3.551 4.094
45 2.115 2.412 2.690 2.952 3.281 3.520 4.049
50 2.109 2.403 2.678 2.937 3.261 3.496 4.014
55 2.104 2.396 2.668 2.925 3.245 3.476 3.986
60 2.099 2.390 2.660 2.915 3.232 3.460 3.962
65 2.096 2.385 2.654 2.906 3.220 3.447 3.942
70 2.093 2.381 2.648 2.899 3.211 3.435 3.926
75 2.090 2.377 2.643 2.892 3.202 3.425 3.911
80 2.088 2.374 2.639 2.887 3.195 3.416 3.899
85 2.086 2.371 2.635 2.882 3.189 3.409 3.888
90 2.084 2.368 2.632 2.878 3.183 3.402 3.878
95 2.082 2.366 2.629 2.874 3.178 3.396 3.869

100 2.081 2.364 2.626 2.871 3.174 3.391 3.862
105 2.080 2.362 2.623 2.868 3.170 3.386 3.855
110 2.078 2.361 2.621 2.865 3.166 3.381 3.848
115 2.077 2.359 2.619 2.862 3.163 3.377 3.843
120 2.076 2.358 2.617 2.860 3.160 3.374 3.837

1000 2.056 2.330 2.581 2.813 3.098 3.300 3.733
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21.3 Tables of the�2-distribution

Prf�2 � x2g - Table entry is the critical valuex2 above which probability� lies under the curve
(upper tail probabilities)

Table 20: Quantiles of the�2� - distribution
�

� .9999 .9995 .999 .995 .99 .975 .95 .90
1 1.57E-08 3.93E-07 1.57E-06 3.93E-05 0.0002 0.0010 0.0039 0.0158
2 0.0002 0.0010 0.0020 0.0100 0.0201 0.0506 0.1026 0.2107
3 0.0052 0.0153 0.0243 0.0717 0.1148 0.2158 0.3518 0.5844
4 0.0284 0.0639 0.0908 0.2070 0.2971 0.4844 0.7107 1.0636
5 0.0822 0.1581 0.2102 0.4117 0.5543 0.8312 1.1455 1.6103
6 0.1724 0.2994 0.3811 0.6757 0.8721 1.2373 1.6354 2.2041
7 0.3000 0.4849 0.5985 0.9893 1.2390 1.6899 2.1673 2.8331
8 0.4636 0.7104 0.8571 1.3444 1.6465 2.1797 2.7326 3.4895
9 0.6608 0.9717 1.1519 1.7349 2.0879 2.7004 3.3251 4.1682

10 0.8889 1.2650 1.4787 2.1559 2.5582 3.2470 3.9403 4.8652
11 1.1453 1.5868 1.8339 2.6032 3.0535 3.8157 4.5748 5.5778
12 1.4275 1.9344 2.2142 3.0738 3.5706 4.4038 5.2260 6.3038
13 1.7333 2.3051 2.6172 3.5650 4.1069 5.0088 5.8919 7.0415
14 2.0608 2.6967 3.0407 4.0747 4.6604 5.6287 6.5706 7.7895
15 2.4082 3.1075 3.4827 4.6009 5.2293 6.2621 7.2609 8.5468
16 2.7739 3.5358 3.9416 5.1422 5.8122 6.9077 7.9616 9.3122
17 3.1567 3.9802 4.4161 5.6972 6.4078 7.5642 8.6718 10.0852
18 3.5552 4.4394 4.9048 6.2648 7.0149 8.2307 9.3905 10.8649
19 3.9683 4.9123 5.4068 6.8440 7.6327 8.9065 10.1170 11.6509
20 4.3952 5.3981 5.9210 7.4338 8.2604 9.5908 10.8508 12.4426
21 4.8348 5.8957 6.4467 8.0337 8.8972 10.2829 11.5913 13.2396
22 5.2865 6.4045 6.9830 8.6427 9.5425 10.9823 12.3380 14.0415
23 5.7494 6.9237 7.5292 9.2604 10.1957 11.6886 13.0905 14.8480
24 6.2230 7.4527 8.0849 9.8862 10.8564 12.4012 13.8484 15.6587
25 6.7066 7.9910 8.6493 10.5197 11.5240 13.1197 14.6114 16.4734
26 7.1998 8.5379 9.2221 11.1602 12.1981 13.8439 15.3792 17.2919
27 7.7019 9.0932 9.8028 11.8076 12.8785 14.5734 16.1514 18.1139
28 8.2126 9.6563 10.3909 12.4613 13.5647 15.3079 16.9279 18.9392
29 8.7315 10.2268 10.9861 13.1211 14.2565 16.0471 17.7084 19.7677
30 9.2581 10.8044 11.5880 13.7867 14.9535 16.7908 18.4927 20.5992
35 11.9957 13.7875 14.6878 17.1918 18.5089 20.5694 22.4650 24.7967
40 14.8831 16.9062 17.9164 20.7065 22.1643 24.4330 26.5093 29.0505
45 17.8940 20.1366 21.2507 24.3110 25.9013 28.3662 30.6123 33.3504
50 21.0093 23.4610 24.6739 27.9907 29.7067 32.3574 34.7643 37.6886
55 24.2141 26.8658 28.1731 31.7348 33.5705 36.3981 38.9580 42.0596
60 27.4969 30.3405 31.7383 35.5345 37.4849 40.4817 43.1880 46.4589
65 30.8483 33.8767 35.3616 39.3831 41.4436 44.6030 47.4496 50.8829
70 34.2607 37.4674 39.0364 43.2752 45.4417 48.7576 51.7393 55.3289
75 37.7279 41.1072 42.7573 47.2060 49.4750 52.9419 56.0541 59.7946
80 41.2445 44.7910 46.5199 51.1719 53.5401 57.1532 60.3915 64.2778
85 44.8060 48.5151 50.3203 55.1696 57.6339 61.3888 64.7494 68.7772
90 48.4087 52.2758 54.1552 59.1963 61.7541 65.6466 69.1260 73.2911
95 52.0492 56.0702 58.0220 63.2496 65.8984 69.9249 73.5198 77.8184

100 55.7246 59.8957 61.9179 67.3276 70.0649 74.2219 77.9295 82.3581
105 59.4323 63.7499 65.8411 71.4282 74.2520 78.5364 82.3537 86.9093
110 63.1701 67.6310 69.7894 75.5500 78.4583 82.8671 86.7916 91.4710
115 66.9360 71.5371 73.7613 79.6916 82.6824 87.2128 91.2422 96.0427
120 70.7281 75.4665 77.7551 83.8516 86.9233 91.5726 95.7046 100.6236
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Prf�2 � x2g - Table entry is the critical valuex2 above which probability� lies under the curve
(upper tail probabilities)

Table 20: Quantiles of the�2� - distribution continued
�

� .10 .05 .025 .01 .005 .001 .0005 .0001
1 2.7055 3.8415 5.0239 6.6349 7.8794 10.8276 12.1157 15.1367
2 4.6052 5.9915 7.3778 9.2103 10.5966 13.8155 15.2018 18.4207
3 6.2514 7.8147 9.3484 11.3449 12.8382 16.2662 17.7300 21.1075
4 7.7794 9.4877 11.1433 13.2767 14.8603 18.4668 19.9974 23.5127
5 9.2364 11.0705 12.8325 15.0863 16.7496 20.5150 22.1053 25.7448
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.4577 24.1028 27.8563
7 12.0170 14.0671 16.0128 18.4753 20.2777 24.3219 26.0178 29.8775
8 13.3616 15.5073 17.5345 20.0902 21.9550 26.1245 27.8680 31.8276
9 14.6837 16.9190 19.0228 21.6660 23.5894 27.8772 29.6658 33.7199

10 15.9872 18.3070 20.4832 23.2093 25.1882 29.5883 31.4198 35.5640
11 17.2750 19.6751 21.9200 24.7250 26.7568 31.2641 33.1366 37.3670
12 18.5493 21.0261 23.3367 26.2170 28.2995 32.9095 34.8213 39.1344
13 19.8119 22.3620 24.7356 27.6882 29.8195 34.5282 36.4778 40.8707
14 21.0641 23.6848 26.1189 29.1412 31.3193 36.1233 38.1094 42.5793
15 22.3071 24.9958 27.4884 30.5779 32.8013 37.6973 39.7188 44.2632
16 23.5418 26.2962 28.8454 31.9999 34.2672 39.2524 41.3081 45.9249
17 24.7690 27.5871 30.1910 33.4087 35.7185 40.7902 42.8792 47.5664
18 25.9894 28.8693 31.5264 34.8053 37.1565 42.3124 44.4338 49.1894
19 27.2036 30.1435 32.8523 36.1909 38.5823 43.8202 45.9731 50.7955
20 28.4120 31.4104 34.1696 37.5662 39.9968 45.3147 47.4985 52.3860
21 29.6151 32.6706 35.4789 38.9322 41.4011 46.7970 49.0108 53.9620
22 30.8133 33.9244 36.7807 40.2894 42.7957 48.2679 50.5111 55.5246
23 32.0069 35.1725 38.0756 41.6384 44.1813 49.7282 52.0002 57.0746
24 33.1962 36.4150 39.3641 42.9798 45.5585 51.1786 53.4788 58.6130
25 34.3816 37.6525 40.6465 44.3141 46.9279 52.6197 54.9475 60.1403
26 35.5632 38.8851 41.9232 45.6417 48.2899 54.0520 56.4069 61.6573
27 36.7412 40.1133 43.1945 46.9629 49.6449 55.4760 57.8576 63.1645
28 37.9159 41.3371 44.4608 48.2782 50.9934 56.8923 59.3000 64.6624
29 39.0875 42.5570 45.7223 49.5879 52.3356 58.3012 60.7346 66.1517
30 40.2560 43.7730 46.9792 50.8922 53.6720 59.7031 62.1619 67.6326
35 46.0588 49.8018 53.2033 57.3421 60.2748 66.6188 69.1986 74.9262
40 51.8051 55.7585 59.3417 63.6907 66.7660 73.4020 76.0946 82.0623
45 57.5053 61.6562 65.4102 69.9568 73.1661 80.0767 82.8757 89.0695
50 63.1671 67.5048 71.4202 76.1539 79.4900 86.6608 89.5605 95.9687
55 68.7962 73.3115 77.3805 82.2921 85.7490 93.1675 96.1632 102.7758
60 74.3970 79.0819 83.2977 88.3794 91.9517 99.6072 102.6948 109.5029
65 79.9730 84.8206 89.1771 94.4221 98.1051 105.9881 109.1639 116.1599
70 85.5270 90.5312 95.0232 100.4252 104.2149 112.3169 115.5776 122.7547
75 91.0615 96.2167 100.8393 106.3929 110.2856 118.5991 121.9418 129.2937
80 96.5782 101.8795 106.6286 112.3288 116.3211 124.8392 128.2613 135.7825
85 102.0789 107.5217 112.3934 118.2357 122.3246 131.0412 134.5403 142.2257
90 107.5650 113.1453 118.1359 124.1163 128.2989 137.2084 140.7823 148.6273
95 113.0377 118.7516 123.8580 129.9727 134.2465 143.3435 146.9903 154.9906

100 118.4980 124.3421 129.5612 135.8067 140.1695 149.4493 153.1670 161.3187
105 123.9469 129.9180 135.2470 141.6201 146.0696 155.5277 159.3146 167.6140
110 129.3851 135.4802 140.9166 147.4143 151.9485 161.5807 165.4353 173.8791
115 134.8135 141.0297 146.5711 153.1906 157.8076 167.6102 171.5309 180.1158
120 140.2326 146.5674 152.2114 158.9502 163.6482 173.6174 177.6029 186.3260



21 TABLES 87

21.4 F-distribution tables

Table E: F-critical values
Degrees of freedom in the numerator

DFD p 1 2 3 4 5 6 7 8 9
0.1 39.86 49.5 53.59 55.83 57.24 58.2 58.91 59.44 59.86

0.05 161.45 199.5 215.71 224.58 230.16 233.99 236.77 238.88 240.54
1 0.025 647.79 799.5 864.16 899.58 921.85 937.11 948.22 956.66 963.28

0.01 4052.2 4999.5 5403.4 5624.6 5763.6 5859 5928.4 5981.1 6022.5
0.001 405284 500000 540379 562500 576405 585937 592873 598144 602284

0.1 8.53 9 9.16 9.24 9.29 9.33 9.35 9.37 9.38
0.05 18.51 19 19.16 19.25 19.3 19.33 19.35 19.37 19.38

2 0.025 38.51 39 39.17 39.25 39.3 39.33 39.36 39.37 39.39
0.01 98.5 99 99.17 99.25 99.3 99.33 99.36 99.37 99.39

0.001 998.5 999 999.17 999.25 999.3 999.33 999.36 999.37 999.39
0.1 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
3 0.025 17.44 16.04 15.44 15.1 14.88 14.73 14.62 14.54 14.47

0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
0.001 167.03 148.5 141.11 137.1 134.58 132.85 131.58 130.62 129.86

0.1 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

4 0.025 12.22 10.65 9.98 9.6 9.36 9.2 9.07 8.98 8.90
0.01 21.2 18 16.69 15.98 15.52 15.21 14.98 14.8 14.66

0.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49 48.47
0.1 4.06 3.78 3.62 3.52 3.45 3.4 3.37 3.34 3.32

0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
5 0.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68

0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
0.001 47.18 37.12 33.2 31.09 29.75 28.83 28.16 27.65 27.24

0.1 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

6 0.025 8.81 7.26 6.6 6.23 5.99 5.82 5.7 5.6 5.52
0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7.98

0.001 35.51 27 23.7 21.92 20.8 20.03 19.46 19.03 18.69
0.1 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72

0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
7 0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.9 4.82

0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
0.001 29.25 21.69 18.77 17.2 16.21 15.52 15.02 14.63 14.33

0.1 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56
0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.5 3.44 3.39

8 0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36
0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

0.001 25.41 18.49 15.83 14.39 13.48 12.86 12.4 12.05 11.77
0.1 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
9 0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.2 4.1 4.03

0.01 10.56 8.02 6.99 6.42 6.06 5.8 5.61 5.47 5.35
0.001 22.86 16.39 13.9 12.56 11.71 11.13 10.7 10.37 10.11

0.1 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35
0.05 4.96 4.1 3.71 3.48 3.33 3.22 3.14 3.07 3.02

10 0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78
0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.2 5.06 4.94

0.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.2 8.96
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Table E: F-critical values
Degrees of freedom in the numerator

DFD p 10 12 15 20 25 30 40 50 60 120 1000

0.1 60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79 63.06 63.30
0.05 241.88 243.91 245.95 248.01 249.26 250.1 251.14 251.77 252.2 253.25 254.19

1 0.025 968.63 976.71 984.87 993.1 998.08 1001.4 1005.6 1008.1 1009.8 1014 1017.7
0.01 6055.8 6106.3 6157.3 6208.7 6239.8 6260.6 6286.8 6302.5 6313 6339.4 6362.7

0.001 605621 610668 615764 620908 624017 626099 628712 630285 631337 633972 636301
0.1 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.49

0.05 19.4 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48 19.49 19.49
2 0.025 39.4 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.48 39.49 39.50

0.01 99.4 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48 99.49 99.50
0.001 999.4 999.42 999.43 999.45 999.46 999.47 999.47 999.48 999.48 999.49 999.50

0.1 5.23 5.22 5.2 5.18 5.17 5.17 5.16 5.15 5.15 5.14 5.13
0.05 8.79 8.74 8.7 8.66 8.63 8.62 8.59 8.58 8.57 8.55 8.53

3 0.025 14.42 14.34 14.25 14.17 14.12 14.08 14.04 14.01 13.99 13.95 13.91
0.01 27.23 27.05 26.87 26.69 26.58 26.5 26.41 26.35 26.32 26.22 26.14

0.001 129.25 128.32 127.37 126.42 125.84 125.45 124.96 124.66 124.47 123.97 123.53
0.1 3.92 3.9 3.87 3.84 3.83 3.82 3.8 3.8 3.79 3.78 3.76

0.05 5.96 5.91 5.86 5.8 5.77 5.75 5.72 5.7 5.69 5.66 5.63
4 0.025 8.84 8.75 8.66 8.56 8.5 8.46 8.41 8.38 8.36 8.31 8.26

0.01 14.55 14.37 14.2 14.02 13.91 13.84 13.75 13.69 13.65 13.56 13.47
0.001 48.05 47.41 46.76 46.1 45.7 45.43 45.09 44.88 44.75 44.4 44.09

0.1 3.3 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.12 3.11
0.05 4.74 4.68 4.62 4.56 4.52 4.5 4.46 4.44 4.43 4.4 4.37

5 0.025 6.62 6.52 6.43 6.33 6.27 6.23 6.18 6.14 6.12 6.07 6.02
0.01 10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.2 9.11 9.03

0.001 26.92 26.42 25.91 25.39 25.08 24.87 24.6 24.44 24.33 24.06 23.82
0.1 2.94 2.9 2.87 2.84 2.81 2.8 2.78 2.77 2.76 2.74 2.72

0.05 4.06 4 3.94 3.87 3.83 3.81 3.77 3.75 3.74 3.7 3.67
6 0.025 5.46 5.37 5.27 5.17 5.11 5.07 5.01 4.98 4.96 4.9 4.86

0.01 7.87 7.72 7.56 7.4 7.3 7.23 7.14 7.09 7.06 6.97 6.89
0.001 18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21 15.98 15.77

0.1 2.7 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51 2.49 2.47
0.05 3.64 3.57 3.51 3.44 3.4 3.38 3.34 3.32 3.3 3.27 3.23

7 0.025 4.76 4.67 4.57 4.47 4.4 4.36 4.31 4.28 4.25 4.2 4.15
0.01 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82 5.74 5.66

0.001 14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.2 12.12 11.91 11.72
0.1 2.54 2.5 2.46 2.42 2.4 2.38 2.36 2.35 2.34 2.32 2.30

0.05 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01 2.97 2.93
8 0.025 4.3 4.2 4.1 4 3.94 3.89 3.84 3.81 3.78 3.73 3.68

0.01 5.81 5.67 5.52 5.36 5.26 5.2 5.12 5.07 5.03 4.95 4.87
0.001 11.54 11.19 10.84 10.48 10.26 10.11 9.92 9.8 9.73 9.53 9.36

0.1 2.42 2.38 2.34 2.3 2.27 2.25 2.23 2.22 2.21 2.18 2.16
0.05 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.8 2.79 2.75 2.71

9 0.025 3.96 3.87 3.77 3.67 3.6 3.56 3.51 3.47 3.45 3.39 3.34
0.01 5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.52 4.48 4.4 4.32

0.001 9.89 9.57 9.24 8.9 8.69 8.55 8.37 8.26 8.19 8 7.84
0.1 2.32 2.28 2.24 2.2 2.17 2.16 2.13 2.12 2.11 2.08 2.06

0.05 2.98 2.91 2.85 2.77 2.73 2.7 2.66 2.64 2.62 2.58 2.54
10 0.025 3.72 3.62 3.52 3.42 3.35 3.31 3.26 3.22 3.2 3.14 3.09

0.01 4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.12 4.08 4 3.92
0.001 8.75 8.45 8.13 7.8 7.6 7.47 7.3 7.19 7.12 6.94 6.78
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Table E: F-critical values
Degrees of freedom in the numerator

DFD p 1 2 3 4 5 6 7 8 9
0.1 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.3 2.27

0.05 4.84 3.98 3.59 3.36 3.2 3.09 3.01 2.95 2.90
11 0.025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59

0.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
0.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12

0.1 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21
0.05 4.75 3.89 3.49 3.26 3.11 3 2.91 2.85 2.80

12 0.025 6.55 5.1 4.47 4.12 3.89 3.73 3.61 3.51 3.44
0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5 4.39

0.001 18.64 12.97 10.8 9.63 8.89 8.38 8 7.71 7.48
0.1 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.2 2.16

0.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
13 0.025 6.41 4.97 4.35 4 3.77 3.6 3.48 3.39 3.31

0.01 9.07 6.7 5.74 5.21 4.86 4.62 4.44 4.3 4.19
0.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98

0.1 3.1 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12
0.05 4.6 3.74 3.34 3.11 2.96 2.85 2.76 2.7 2.65

14 0.025 6.3 4.86 4.24 3.89 3.66 3.5 3.38 3.29 3.21
0.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

0.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.8 6.58
0.1 3.07 2.7 2.49 2.36 2.27 2.21 2.16 2.12 2.09

0.05 4.54 3.68 3.29 3.06 2.9 2.79 2.71 2.64 2.59
15 0.025 6.2 4.77 4.15 3.8 3.58 3.41 3.29 3.2 3.12

0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4 3.89
0.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26

0.1 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06
0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

16 0.025 6.12 4.69 4.08 3.73 3.5 3.34 3.22 3.12 3.05
0.01 8.53 6.23 5.29 4.77 4.44 4.2 4.03 3.89 3.78

0.001 16.12 10.97 9.01 7.94 7.27 6.8 6.46 6.19 5.98
0.1 3.03 2.64 2.44 2.31 2.22 2.15 2.1 2.06 2.03

0.05 4.45 3.59 3.2 2.96 2.81 2.7 2.61 2.55 2.49
17 0.025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98

0.01 8.4 6.11 5.19 4.67 4.34 4.1 3.93 3.79 3.68
0.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75

0.1 3.01 2.62 2.42 2.29 2.2 2.13 2.08 2.04 2.00
0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

18 0.025 5.98 4.56 3.95 3.61 3.38 3.22 3.1 3.01 2.93
0.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

0.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56
0.1 2.99 2.61 2.4 2.27 2.18 2.11 2.06 2.02 1.98

0.05 4.38 3.52 3.13 2.9 2.74 2.63 2.54 2.48 2.42
19 0.025 5.92 4.51 3.9 3.56 3.33 3.17 3.05 2.96 2.88

0.01 8.18 5.93 5.01 4.5 4.17 3.94 3.77 3.63 3.52
0.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39

0.1 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2 1.96
0.05 4.35 3.49 3.1 2.87 2.71 2.6 2.51 2.45 2.39

20 0.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84
0.01 8.1 5.85 4.94 4.43 4.1 3.87 3.7 3.56 3.46

0.001 14.82 9.95 8.1 7.1 6.46 6.02 5.69 5.44 5.24
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Table E: F-critical values
Degrees of freedom in the numerator

DFD p 10 12 15 20 25 30 40 50 60 120 1000
0.1 2.25 2.21 2.17 2.12 2.1 2.08 2.05 2.04 2.03 2 1.98

0.05 2.85 2.79 2.72 2.65 2.6 2.57 2.53 2.51 2.49 2.45 2.41
11 0.025 3.53 3.43 3.33 3.23 3.16 3.12 3.06 3.03 3 2.94 2.89

0.01 4.54 4.4 4.25 4.1 4.01 3.94 3.86 3.81 3.78 3.69 3.61
0.001 7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.42 6.35 6.18 6.02

0.1 2.19 2.15 2.1 2.06 2.03 2.01 1.99 1.97 1.96 1.93 1.91
0.05 2.75 2.69 2.62 2.54 2.5 2.47 2.43 2.4 2.38 2.34 2.30

12 0.025 3.37 3.28 3.18 3.07 3.01 2.96 2.91 2.87 2.85 2.79 2.73
0.01 4.3 4.16 4.01 3.86 3.76 3.7 3.62 3.57 3.54 3.45 3.37

0.001 7.29 7 6.71 6.4 6.22 6.09 5.93 5.83 5.76 5.59 5.44
0.1 2.14 2.1 2.05 2.01 1.98 1.96 1.93 1.92 1.9 1.88 1.85

0.05 2.67 2.6 2.53 2.46 2.41 2.38 2.34 2.31 2.3 2.25 2.21
13 0.025 3.25 3.15 3.05 2.95 2.88 2.84 2.78 2.74 2.72 2.66 2.60

0.01 4.1 3.96 3.82 3.66 3.57 3.51 3.43 3.38 3.34 3.25 3.18
0.001 6.8 6.52 6.23 5.93 5.75 5.63 5.47 5.37 5.3 5.14 4.99

0.1 2.1 2.05 2.01 1.96 1.93 1.91 1.89 1.87 1.86 1.83 1.80
0.05 2.6 2.53 2.46 2.39 2.34 2.31 2.27 2.24 2.22 2.18 2.14

14 0.025 3.15 3.05 2.95 2.84 2.78 2.73 2.67 2.64 2.61 2.55 2.50
0.01 3.94 3.8 3.66 3.51 3.41 3.35 3.27 3.22 3.18 3.09 3.02

0.001 6.4 6.13 5.85 5.56 5.38 5.25 5.1 5 4.94 4.77 4.62
0.1 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.83 1.82 1.79 1.76

0.05 2.54 2.48 2.4 2.33 2.28 2.25 2.2 2.18 2.16 2.11 2.07
15 0.025 3.06 2.96 2.86 2.76 2.69 2.64 2.59 2.55 2.52 2.46 2.40

0.01 3.8 3.67 3.52 3.37 3.28 3.21 3.13 3.08 3.05 2.96 2.88
0.001 6.08 5.81 5.54 5.25 5.07 4.95 4.8 4.7 4.64 4.47 4.33

0.1 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.79 1.78 1.75 1.72
0.05 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.12 2.11 2.06 2.02

16 0.025 2.99 2.89 2.79 2.68 2.61 2.57 2.51 2.47 2.45 2.38 2.32
0.01 3.69 3.55 3.41 3.26 3.16 3.1 3.02 2.97 2.93 2.84 2.76

0.001 5.81 5.55 5.27 4.99 4.82 4.7 4.54 4.45 4.39 4.23 4.08
0.1 2 1.96 1.91 1.86 1.83 1.81 1.78 1.76 1.75 1.72 1.69

0.05 2.45 2.38 2.31 2.23 2.18 2.15 2.1 2.08 2.06 2.01 1.97
17 0.025 2.92 2.82 2.72 2.62 2.55 2.5 2.44 2.41 2.38 2.32 2.26

0.01 3.59 3.46 3.31 3.16 3.07 3 2.92 2.87 2.83 2.75 2.66
0.001 5.58 5.32 5.05 4.78 4.6 4.48 4.33 4.24 4.18 4.02 3.87

0.1 1.98 1.93 1.89 1.84 1.8 1.78 1.75 1.74 1.72 1.69 1.66
0.05 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.04 2.02 1.97 1.92

18 0.025 2.87 2.77 2.67 2.56 2.49 2.44 2.38 2.35 2.32 2.26 2.20
0.01 3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.78 2.75 2.66 2.58

0.001 5.39 5.13 4.87 4.59 4.42 4.3 4.15 4.06 4 3.84 3.69
0.1 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.7 1.67 1.64

0.05 2.38 2.31 2.23 2.16 2.11 2.07 2.03 2 1.98 1.93 1.88
19 0.025 2.82 2.72 2.62 2.51 2.44 2.39 2.33 2.3 2.27 2.2 2.14

0.01 3.43 3.3 3.15 3 2.91 2.84 2.76 2.71 2.67 2.58 2.50
0.001 5.22 4.97 4.7 4.43 4.26 4.14 3.99 3.9 3.84 3.68 3.53

0.1 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.69 1.68 1.64 1.61
0.05 2.35 2.28 2.2 2.12 2.07 2.04 1.99 1.97 1.95 1.9 1.85

20 0.025 2.77 2.68 2.57 2.46 2.4 2.35 2.29 2.25 2.22 2.16 2.09
0.01 3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.64 2.61 2.52 2.43

0.001 5.08 4.82 4.56 4.29 4.12 4 3.86 3.77 3.7 3.54 3.40
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Table E: F-critical values
Degrees of freedom in the numerator

DFD p 1 2 3 4 5 6 7 8 9
0.1 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95

0.05 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
21 0.025 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80

0.01 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
0.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11

0.1 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93
0.05 4.3 3.44 3.05 2.82 2.66 2.55 2.46 2.4 2.34

22 0.025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76
0.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35

0.001 14.38 9.61 7.8 6.81 6.19 5.76 5.44 5.19 4.99
0.1 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92

0.05 4.28 3.42 3.03 2.8 2.64 2.53 2.44 2.37 2.32
23 0.025 5.75 4.35 3.75 3.41 3.18 3.02 2.9 2.81 2.73

0.01 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
0.001 14.2 9.47 7.67 6.7 6.08 5.65 5.33 5.09 4.89

0.1 2.93 2.54 2.33 2.19 2.1 2.04 1.98 1.94 1.91
0.05 4.26 3.4 3.01 2.78 2.62 2.51 2.42 2.36 2.30

24 0.025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70
0.01 7.82 5.61 4.72 4.22 3.9 3.67 3.5 3.36 3.26

0.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80
0.1 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89

0.05 4.24 3.39 2.99 2.76 2.6 2.49 2.4 2.34 2.28
25 0.025 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68

0.01 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
0.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71

0.1 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88
0.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

26 0.025 5.66 4.27 3.67 3.33 3.1 2.94 2.82 2.73 2.65
0.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18

0.001 13.74 9.12 7.36 6.41 5.8 5.38 5.07 4.83 4.64
0.1 2.9 2.51 2.3 2.17 2.07 2 1.95 1.91 1.87

0.05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
27 0.025 5.63 4.24 3.65 3.31 3.08 2.92 2.8 2.71 2.63

0.01 7.68 5.49 4.6 4.11 3.78 3.56 3.39 3.26 3.15
0.001 13.61 9.02 7.27 6.33 5.73 5.31 5 4.76 4.57

0.1 2.89 2.5 2.29 2.16 2.06 2 1.94 1.9 1.87
0.05 4.2 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

28 0.025 5.61 4.22 3.63 3.29 3.06 2.9 2.78 2.69 2.61
0.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12

0.001 13.5 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50
0.1 2.89 2.5 2.28 2.15 2.06 1.99 1.93 1.89 1.86

0.05 4.18 3.33 2.93 2.7 2.55 2.43 2.35 2.28 2.22
29 0.025 5.59 4.2 3.61 3.27 3.04 2.88 2.76 2.67 2.59

0.01 7.6 5.42 4.54 4.04 3.73 3.5 3.33 3.2 3.09
0.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45

0.1 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85
0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

30 0.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57
0.01 7.56 5.39 4.51 4.02 3.7 3.47 3.3 3.17 3.07

0.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39
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Table E: F-critical values
Degrees of freedom in the numerator

DFD p 10 12 15 20 25 30 40 50 60 120 1000
0.1 1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.67 1.66 1.62 1.59

0.05 2.32 2.25 2.18 2.1 2.05 2.01 1.96 1.94 1.92 1.87 1.82
21 0.025 2.73 2.64 2.53 2.42 2.36 2.31 2.25 2.21 2.18 2.11 2.05

0.01 3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.58 2.55 2.46 2.37
0.001 4.95 4.7 4.44 4.17 4 3.88 3.74 3.64 3.58 3.42 3.28

0.1 1.9 1.86 1.81 1.76 1.73 1.7 1.67 1.65 1.64 1.6 1.57
0.05 2.3 2.23 2.15 2.07 2.02 1.98 1.94 1.91 1.89 1.84 1.79

22 0.025 2.7 2.6 2.5 2.39 2.32 2.27 2.21 2.17 2.14 2.08 2.01
0.01 3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.53 2.5 2.4 2.32

0.001 4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.54 3.48 3.32 3.17
0.1 1.89 1.84 1.8 1.74 1.71 1.69 1.66 1.64 1.62 1.59 1.55

0.05 2.27 2.2 2.13 2.05 2 1.96 1.91 1.88 1.86 1.81 1.76
23 0.025 2.67 2.57 2.47 2.36 2.29 2.24 2.18 2.14 2.11 2.04 1.98

0.01 3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.48 2.45 2.35 2.27
0.001 4.73 4.48 4.23 3.96 3.79 3.68 3.53 3.44 3.38 3.22 3.08

0.1 1.88 1.83 1.78 1.73 1.7 1.67 1.64 1.62 1.61 1.57 1.54
0.05 2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.86 1.84 1.79 1.74

24 0.025 2.64 2.54 2.44 2.33 2.26 2.21 2.15 2.11 2.08 2.01 1.94
0.01 3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.44 2.4 2.31 2.22

0.001 4.64 4.39 4.14 3.87 3.71 3.59 3.45 3.36 3.29 3.14 2.99
0.1 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.61 1.59 1.56 1.52

0.05 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82 1.77 1.72
25 0.025 2.61 2.51 2.41 2.3 2.23 2.18 2.12 2.08 2.05 1.98 1.91

0.01 3.13 2.99 2.85 2.7 2.6 2.54 2.45 2.4 2.36 2.27 2.18
0.001 4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.28 3.22 3.06 2.91

0.1 1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.59 1.58 1.54 1.51
0.05 2.22 2.15 2.07 1.99 1.94 1.9 1.85 1.82 1.8 1.75 1.70

26 0.025 2.59 2.49 2.39 2.28 2.21 2.16 2.09 2.05 2.03 1.95 1.89
0.01 3.09 2.96 2.81 2.66 2.57 2.5 2.42 2.36 2.33 2.23 2.14

0.001 4.48 4.24 3.99 3.72 3.56 3.44 3.3 3.21 3.15 2.99 2.84
0.1 1.85 1.8 1.75 1.7 1.66 1.64 1.6 1.58 1.57 1.53 1.50

0.05 2.2 2.13 2.06 1.97 1.92 1.88 1.84 1.81 1.79 1.73 1.68
27 0.025 2.57 2.47 2.36 2.25 2.18 2.13 2.07 2.03 2 1.93 1.86

0.01 3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.33 2.29 2.2 2.11
0.001 4.41 4.17 3.92 3.66 3.49 3.38 3.23 3.14 3.08 2.92 2.78

0.1 1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.57 1.56 1.52 1.48
0.05 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.71 1.66

28 0.025 2.55 2.45 2.34 2.23 2.16 2.11 2.05 2.01 1.98 1.91 1.84
0.01 3.03 2.9 2.75 2.6 2.51 2.44 2.35 2.3 2.26 2.17 2.08

0.001 4.35 4.11 3.86 3.6 3.43 3.32 3.18 3.09 3.02 2.86 2.72
0.1 1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.56 1.55 1.51 1.47

0.05 2.18 2.1 2.03 1.94 1.89 1.85 1.81 1.77 1.75 1.7 1.65
29 0.025 2.53 2.43 2.32 2.21 2.14 2.09 2.03 1.99 1.96 1.89 1.82

0.01 3 2.87 2.73 2.57 2.48 2.41 2.33 2.27 2.23 2.14 2.05
0.001 4.29 4.05 3.8 3.54 3.38 3.27 3.12 3.03 2.97 2.81 2.66

0.1 1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.55 1.54 1.5 1.46
0.05 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.76 1.74 1.68 1.63

30 0.025 2.51 2.41 2.31 2.2 2.12 2.07 2.01 1.97 1.94 1.87 1.80
0.01 2.98 2.84 2.7 2.55 2.45 2.39 2.3 2.25 2.21 2.11 2.02

0.001 4.24 4 3.75 3.49 3.33 3.22 3.07 2.98 2.92 2.76 2.61
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Table E: F-critical values
Degrees of freedom in the numerator

DFD p 1 2 3 4 5 6 7 8 9
0.1 2.84 2.44 2.23 2.09 2 1.93 1.87 1.83 1.79

0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
40 0.025 5.42 4.05 3.46 3.13 2.9 2.74 2.62 2.53 2.45

0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
0.001 12.61 8.25 6.59 5.7 5.13 4.73 4.44 4.21 4.02

0.1 2.81 2.41 2.2 2.06 1.97 1.9 1.84 1.8 1.76
0.05 4.03 3.18 2.79 2.56 2.4 2.29 2.2 2.13 2.07

50 0.025 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38
0.01 7.17 5.06 4.2 3.72 3.41 3.19 3.02 2.89 2.78

0.001 12.22 7.96 6.34 5.46 4.9 4.51 4.22 4 3.82
0.1 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

0.05 4 3.15 2.76 2.53 2.37 2.25 2.17 2.1 2.04
60 0.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33

0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
0.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69

0.1 2.76 2.36 2.14 2 1.91 1.83 1.78 1.73 1.69
0.05 3.94 3.09 2.7 2.46 2.31 2.19 2.1 2.03 1.97

100 0.025 5.18 3.83 3.25 2.92 2.7 2.54 2.42 2.32 2.24
0.01 6.9 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59

0.001 11.5 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44
0.1 2.73 2.33 2.11 1.97 1.88 1.8 1.75 1.7 1.66

0.05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93
200 0.025 5.1 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.18

0.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.6 2.50
0.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26

0.1 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64
0.05 3.85 3 2.61 2.38 2.22 2.11 2.02 1.95 1.89

1000 0.025 5.04 3.7 3.13 2.8 2.58 2.42 2.3 2.2 2.13
0.01 6.66 4.63 3.8 3.34 3.04 2.82 2.66 2.53 2.43

0.001 10.89 6.96 5.46 4.65 4.14 3.78 3.51 3.3 3.13
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Table E: F-critical values
Degrees of freedom in the numerator

DFD p 10 12 15 20 25 30 40 50 60 120 1000
0.1 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.42 1.38

0.05 2.08 2 1.92 1.84 1.78 1.74 1.69 1.66 1.64 1.58 1.52
40 0.025 2.39 2.29 2.18 2.07 1.99 1.94 1.88 1.83 1.8 1.72 1.65

0.01 2.8 2.66 2.52 2.37 2.27 2.2 2.11 2.06 2.02 1.92 1.82
0.001 3.87 3.64 3.4 3.14 2.98 2.87 2.73 2.64 2.57 2.41 2.25

0.1 1.73 1.68 1.63 1.57 1.53 1.5 1.46 1.44 1.42 1.38 1.33
0.05 2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.6 1.58 1.51 1.45

50 0.025 2.32 2.22 2.11 1.99 1.92 1.87 1.8 1.75 1.72 1.64 1.56
0.01 2.7 2.56 2.42 2.27 2.17 2.1 2.01 1.95 1.91 1.8 1.70

0.001 3.67 3.44 3.2 2.95 2.79 2.68 2.53 2.44 2.38 2.21 2.05
0.1 1.71 1.66 1.6 1.54 1.5 1.48 1.44 1.41 1.4 1.35 1.30

0.05 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.56 1.53 1.47 1.40
60 0.025 2.27 2.17 2.06 1.94 1.87 1.82 1.74 1.7 1.67 1.58 1.49

0.01 2.63 2.5 2.35 2.2 2.1 2.03 1.94 1.88 1.84 1.73 1.62
0.001 3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.32 2.25 2.08 1.92

0.1 1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.35 1.34 1.28 1.22
0.05 1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.48 1.45 1.38 1.30

100 0.025 2.18 2.08 1.97 1.85 1.77 1.71 1.64 1.59 1.56 1.46 1.36
0.01 2.5 2.37 2.22 2.07 1.97 1.89 1.8 1.74 1.69 1.57 1.45

0.001 3.3 3.07 2.84 2.59 2.43 2.32 2.17 2.08 2.01 1.83 1.64
0.1 1.63 1.58 1.52 1.46 1.41 1.38 1.34 1.31 1.29 1.23 1.16

0.05 1.88 1.8 1.72 1.62 1.56 1.52 1.46 1.41 1.39 1.3 1.21
200 0.025 2.11 2.01 1.9 1.78 1.7 1.64 1.56 1.51 1.47 1.37 1.25

0.01 2.41 2.27 2.13 1.97 1.87 1.79 1.69 1.63 1.58 1.45 1.30
0.001 3.12 2.9 2.67 2.42 2.26 2.15 2 1.9 1.83 1.64 1.43

0.1 1.61 1.55 1.49 1.43 1.38 1.35 1.3 1.27 1.25 1.18 1.08
0.05 1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.36 1.33 1.24 1.11

1000 0.025 2.06 1.96 1.85 1.72 1.64 1.58 1.5 1.45 1.41 1.29 1.13
0.01 2.34 2.2 2.06 1.9 1.79 1.72 1.61 1.54 1.5 1.35 1.16

0.001 2.99 2.77 2.54 2.3 2.14 2.02 1.87 1.77 1.69 1.49 1.22
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Table 21: Percentage Points of the Maximum F-Ratio
�=0.05

r
� 2 3 4 5 6 7 8 9 10 11 12
2 39.0 87.5 142 202 266 333 403 475 550 626 704
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124
4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.0

�=0.01
r

� 2 3 4 5 6 7 8 9 10 11 12
2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605
3 47.5 85 120 151 184 21(6) 24(9) 28(1) 31(0) 33(7) 36(1)
4 23.2 37 49 59 69 79 89 97 106 113 120
5 14.9 22 28 33 38 42 46 50 54 57 60
6 11.1 15.5 19.1 22 25 27 30 32 34 36 37
7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9
12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table entry for F is the probability� lying aboveF � (ie.
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Table 22: Critical values of the F - distribution -� = 0.05

�1

�2 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 1

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 245.95 248.01 250.10 251.14 252.20 253.25 254.25
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.50 4.46 4.43 4.40 4.37
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.70 2.66 2.62 2.58 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.72 2.65 2.57 2.53 2.49 2.45 2.41
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.62 2.54 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.53 2.46 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.46 2.39 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.25 2.20 2.16 2.11 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.35 2.28 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.31 2.23 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.27 2.19 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.23 2.16 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.04 1.99 1.95 1.90 1.85
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.18 2.10 2.01 1.96 1.92 1.87 1.82
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.15 2.07 1.98 1.94 1.89 1.84 1.79
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.13 2.05 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.11 2.03 1.94 1.89 1.84 1.79 1.74
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.09 2.01 1.92 1.87 1.82 1.77 1.71
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.84 1.79 1.74 1.68 1.63
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.92 1.84 1.74 1.69 1.64 1.58 1.51
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.69 1.63 1.58 1.51 1.44
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.84 1.75 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.75 1.66 1.55 1.50 1.43 1.35 1.26
1000 3.85 3.00 2.61 2.38 2.22 2.10 2.01 1.94 1.88 1.84 1.67 1.58 1.46 1.40 1.32 1.23 1.00
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Table entry for F is the probability� lying aboveF � (ie.
tail probabilities)

Table 22: Critical values of the F - distribution (continued) -� = 0.01

�1

�2 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 1

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.43 99.45 99.47 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 26.87 26.69 26.50 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.20 14.02 13.84 13.75 13.65 13.56 13.47
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.72 9.55 9.38 9.29 9.20 9.11 9.03
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.23 7.14 7.06 6.97 6.89
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.52 5.36 5.20 5.12 5.03 4.95 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.65 4.57 4.48 4.40 4.32

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.25 4.17 4.08 4.00 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.25 4.10 3.94 3.86 3.78 3.69 3.61
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.01 3.86 3.70 3.62 3.54 3.45 3.37
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.82 3.66 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.66 3.51 3.35 3.27 3.18 3.09 3.01
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.21 3.13 3.05 2.96 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.41 3.26 3.10 3.02 2.93 2.84 2.76
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.31 3.16 3.00 2.92 2.83 2.75 2.66
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.23 3.08 2.92 2.84 2.75 2.66 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.15 3.00 2.84 2.76 2.67 2.58 2.50
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.78 2.69 2.61 2.52 2.43
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.03 2.88 2.72 2.64 2.55 2.46 2.37
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 2.98 2.83 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 2.93 2.78 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 2.89 2.74 2.58 2.49 2.40 2.31 2.22
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.85 2.70 2.54 2.45 2.36 2.27 2.18
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.52 2.37 2.20 2.11 2.02 1.92 1.81
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.42 2.27 2.10 2.01 1.91 1.80 1.69
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.35 2.20 2.03 1.94 1.84 1.73 1.61

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.19 2.03 1.86 1.76 1.66 1.53 1.39
1000 6.65 4.62 3.79 3.33 3.03 2.81 2.65 2.52 2.42 2.33 2.05 1.89 1.71 1.60 1.48 1.34 1.00
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Table entry for F is the probability� lying aboveF � (ie.
tail probabilities)

Table 22: Critical values of the F - distribution(continued) -� = 0.001

�1

�2 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 1

2 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40 999.43 999.45 999.47 999.47 999.48 999.49 999.50
3 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 129.25 127.37 126.42 125.45 124.96 124.47 123.97 123.50
4 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 48.05 46.76 46.10 45.43 45.09 44.75 44.40 44.07
5 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24 26.92 25.91 25.39 24.87 24.60 24.33 24.06 23.80
6 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 18.41 17.56 17.12 16.67 16.44 16.21 15.98 15.76
7 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33 14.08 13.32 12.93 12.53 12.33 12.12 11.91 11.71
8 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 11.54 10.84 10.48 10.11 9.92 9.73 9.53 9.35
9 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 9.89 9.24 8.90 8.55 8.37 8.19 8.00 7.82

10 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 8.75 8.13 7.80 7.47 7.30 7.12 6.94 6.77
11 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 7.92 7.32 7.01 6.68 6.52 6.35 6.18 6.01
12 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 7.29 6.71 6.40 6.09 5.93 5.76 5.59 5.43
13 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98 6.80 6.23 5.93 5.63 5.47 5.30 5.14 4.98
14 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40 5.85 5.56 5.25 5.10 4.94 4.77 4.61
15 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.54 5.25 4.95 4.80 4.64 4.47 4.32
16 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81 5.27 4.99 4.70 4.54 4.39 4.23 4.07
17 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58 5.05 4.78 4.48 4.33 4.18 4.02 3.86
18 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39 4.87 4.59 4.30 4.15 4.00 3.84 3.68
19 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39 5.22 4.70 4.43 4.14 3.99 3.84 3.68 3.52
20 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.56 4.29 4.00 3.86 3.70 3.54 3.39
21 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11 4.95 4.44 4.17 3.88 3.74 3.58 3.42 3.27
22 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 4.83 4.33 4.06 3.78 3.63 3.48 3.32 3.16
23 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89 4.73 4.23 3.96 3.68 3.53 3.38 3.22 3.07
24 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64 4.14 3.87 3.59 3.45 3.29 3.14 2.98
25 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71 4.56 4.06 3.79 3.52 3.37 3.22 3.06 2.90
30 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 3.75 3.49 3.22 3.07 2.92 2.76 2.60
40 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02 3.87 3.40 3.14 2.87 2.73 2.57 2.41 2.24
50 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67 3.20 2.95 2.68 2.53 2.38 2.21 2.04
60 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54 3.08 2.83 2.55 2.41 2.25 2.08 1.90

120 11.38 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 3.24 2.78 2.53 2.26 2.11 1.95 1.77 1.56
1000 10.86 6.93 5.44 4.64 4.12 3.76 3.49 3.28 3.11 2.97 2.53 2.28 2.01 1.85 1.68 1.47 1.00
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1. Table 21.4 Reprinted from: Handbook of Tables for Probability and Statistics, Second Edition. Edited
by William H. Beyer, c The Chemical Rubber Co., 1968. Used by permission of CRC Press Inc., Boca
Raton, FL.


