
Stratified Sampling

Sampling Theory and Methods

Spring 2008

C. L. Williams

Chapter 6 Stratified Sampling

Instructor: C. L. Williams MthSc 406



Stratified Sampling

Outline

1 Stratified Sampling

Instructor: C. L. Williams MthSc 406



Stratified Sampling

Chapter 6-Stratified Random Sampling

In the previous chapter we introduced the concept of stratification
and discussed the reasons why stratification is used as a strategy in
designing sample surveys. We also introduced notation commonly
used by statisticians in discussing population characteristics and
estimation procedures appropriate for stratified sampling. In this
chapter we will discuss one type of stratified sampling in
considerable detail, namely stratified random sampling.
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Stratified Sampling

Illustrative Example.

Consider the population of 14 families shown in Table 5.6. Suppose
we decide to take a sample of two families from stratum 1, two

families from stratum 2, and four families from stratum 3. Then
we have n1 = 2, n2 = 2, n3 = 4, N1, = 3, N2 = 5, N3 = 6, and
N = 14. Suppose we select elements X1,2 and X1,3 from stratum 1
(i.e., x1,1 = 3 and x1,2 = 4),X2,2 and X2,5 from stratum 2 (i.e.,
x2,1 = 6 and x2,2 = 8), and we select X3,1, X3,2, X3,5, and X3,6

from stratum 3 (i.e., x3,1 = 2, x3,2 = 3, x3,3 = 2, and x3,4 = 3).
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Stratified Sampling

Estimates of the total number of individuals in each block

t1 =
3 × (3 + 4)

2
= 10.5

t2 =
5 × (6 + 8)

2
= 35

t3 =
6 × (2 + 3 + 2 + 3)

4
= 15

so that tstr = t1 + t2 + t3

= 60.5
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Stratified Sampling

Estimates of the mean number of individuals in each block

x1 =
(3 + 4)

2
= 3.5

x2 =
(6 + 8)

2
= 7

x3 =
(2 + 3 + 2 + 3)

4
= 2.5

so that x str =
3 × 3.5

14
+

5 × 7

14
+

6 × 2.5

14
= 4.32
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Stratified Sampling

Estimates of the variances for family size in each block

s2
1,x =

(3 − 3.5)2 + (4 − 3.5)2

1
= 0.5

s2
2,x =

(6 − 7)2 + (8 − 7)2

1
= 2

and s2
3,x =

(2 − 2.5)2 + (3 − 2.5)2(2 − 2.5)2 + (3 − 2.5)2

3
= 0.33
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Stratified Sampling

For proportions, if we let

yh,i =

{
1 if family size is 4 or more
0 if family size is less than 4

p1,y =
(0 + 1)

2
= 0.5

p2,y =
(1 + 1)

2
= 1.0

p3,y =
(0 + 0 + 0 + 0)

4
= 0.0

Instructor: C. L. Williams MthSc 406



Stratified Sampling

Since a stratified random sample consists of L simple random
samples, which are drawn separately and independently within each
stratum, and since the estimated population mean, total, or
proportion is a linear combination of the estimated individual
stratum means, totals, or proportions obtained from the sample, it
follows that the mean of the sampling distribution of any of these
estimated values is equal to the corresponding linear combination
of population parameters. In other words, population totals,
means, and proportions, when estimated as indicated in relations
(5.6), (5.7), and (5.8), are, under stratified random sampling,
unbiased estimates of the corresponding population means,
totals, and proportions.
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Stratified Sampling

E (tstr ) =
L∑

h=1

E (th) =
L∑

h=1

Xh+ = X (population total)

SE (tstr ) = N[SE (x str )] =

√√√√
L∑

h=1

N2
hσ2

hx

nh

(
Nh − nh

Nh − 1

)

E (x str ) =

L∑

h=1

(Nh)E (xh)

N
=

L∑

h=1

(Nh)X h

N
= X (population mean)

SE (x str ) =

√√√√
L∑

h=1

(
Nh

N

)2 σ2
hx

nh

(
Nh − nh

Nh − 1

)
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Stratified Sampling

E (py ,str ) =

L∑

h=1

NhPhy

N
=

L∑

h=1

Yh+

N
= Py (population proportion)

SE (py ,str ) =

√√√√
L∑

h=1

(
Nh

N

)2 Phy (1 − Phy )

nh

(
Nh − nh

Nh − 1

)
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Stratified Sampling

Illustrative Example.

In the example used earlier, strata are three city blocks (Table 5.6),
the elementary units are families, and the variable is family size.
We took a stratified random sample of two families from stratum
1, two from stratum 2, and four from stratum 3. Thus, we have
n1 = 2, n2 = 1, n3 = 4, N1 = 3, N2 = 5, N3 = 6.

σ2
1,x =

(4 − 3.67)2 + (3 − 3.67)2 + (4 − 3.67)2

3
= 0.222

σ2
2,x =

2 × (4 − 5.8)2 + (6 − 5.8)2 + (7 − 5.8)2 + (8 − 5.8)2

5
= 2.56

σ2
3,x =

(2 − 2.33)2 + (3 − 2.33)2 + · · · + (3 − 2.33)2

6
= 0.222

P1 = 0.67, P2 = 1.00, and P3 = 0, where P , is the proportion of

families in the ith stratum with four or more persons.
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Stratified Sampling

SE (xstr ) =

√√√√
L∑

h=1

(
Nh

N

)2 σ2
hx

nh

(
Nh − nh

Nh − 1

)

=

[(
3

14

)2

×
(

0.222

2

)
×
(

3 − 2

3 − 1

)
+

(
5

14

)2

×
(

2.56

2

)
×
(

5 − 2

5 − 1

)
+

(
6

14

)2

×
(

0.222

4

)
×
(

6 − 4

6 − 1

)]1/2

= 0.359
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Stratified Sampling

SE (py ,str ) =

√√√√
L∑

h=1

(
Nh

N

)2 Phy (1 − Phy )

nh

(
Nh − nh

Nh − 1

)

[(
3

14

)2

×
(

(0.67)(0.33)

2

)
×
(

3 − 2

3 − 1

)
+

(
5

14

)2

×
(

(1)(0)

2

)
×
(

5 − 2

5 − 1

)
+

(
6

14

)2

×
(

(0)(1)

4

)
×
(

6 − 4

6 − 1

)]1/2

= 0.0504
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Stratified Sampling

σ2
hx =

(Nh − 1)s2
hx

Nh

s2
hx =

nh∑

i=1

(xh,i − xh)
2

nh − 1
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Stratified Sampling

Illustrative Example

Recall

x1 = 3.5 t1 = 10.5 s2
1,x = 0.5 σ̂2

1,x = 0.33

x2 = 7 t2 = 35 s2
2,x = 2 σ̂2

2,x = 1.6

x3 = 2.5 t3 = 15 s2
3,x = 0.33 σ̂2

3,x = 0.275

tstr = 10.5 + 35 + 15 = 60.5
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Stratified Sampling

ŜE (tstr ) =

√√√√
L∑

h=1

(
Nh

N

)2 σ2
hx

nh

(
Nh − nh

Nh − 1

)

[
(3)2 ×

(
.5

2

)
×
(

3 − 2

3

)
+

(5)2 ×
(

2

2

)
×
(

5 − 2

5

)
+

(6)2 ×
(

0.33

4

)
×
(

6 − 4

6

)]1/2

= 4.09

so that

tstr − 1.96 × SE (tstr ) ≤ X ≤ tstr + 1.96 × SE (tstr )

60.5 − 1.96 × 4.09 ≤ X ≤ 60.5 + 1.96 × 4.09

52.48 ≤ X ≤ 68.52
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Stratified Sampling

In Chapter 3, we showed that under simple random sampling,
estimated means, totals, and proportions for subgroups are
unbiased estimates of the corresponding population means, totals,
and proportions for the subgroups. This is not necessarily true in
stratified random sampling, as is shown in the next example.
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Stratified Sampling

Illustrative Example.

Let us consider the data given in Table 6.1. If we let X I denote the
average price among the five independent,I pharmacies in the
combined two communities, we see that X I = 11.60. Suppose we
take a stratified random sample of six pharmacies from stratum I
and three pharmacies from stratum 2 for purposes of estimating
X I . Suppose also that we do not know before the sampling
whether a given pharmacy is an independent or an affiliate of a
chain. Our estimate x I ,str of X I is given by

x I ,str =

2∑

h=1

Nhx I ,str

N
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Stratified Sampling

where x I ,str , is the estimated mean for the independent pharmacies
obtained from the sample taken in stratum h. There are seven
possible samples of six pharmacies that can be taken in stratum 1,
and there are four possible samples of three pharmacies that can
be taken in stratum 2. These samples and the estimated mean for
each sample are listed in Table 6.2.
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Table: 6.1 Retail Prices of 20 Capsules of a Tranquilizer in All
Pharmacies in Two Communities (Strata)

Community Pharmacy Type* Price of Drug ($)
1 1 C 10.00

2 I 9.00
3 I 12.00
4 I 11.00
5 C 9.00
6 C 9.50
7 C 9.90

2 1 I 13.50
2 I 12.50
3 C 12.00
4 C 11.00

*I = independent; C = chain.

Instructor: C. L. Williams MthSc 406



Stratified Sampling

Table: 6.2 Possible Samples for the Stratified Random Sample

Stratum 1 Stratum 2

Pharmacies in x I ,1 Pharmacies in x I ,2

Sample ($) Sample ($)

1,2,3,4,5,6 10.67 1,2,3 13.00
1,2,3,4,5,7 10.67 1,2,4 13.00
1,2,3,4,6,7 10.67 1,3,4 13.50
1,2,3,5,6,7 10.50 2,3,4 12.50
1,2,4,5,6,7 10.00
1,3,4,5,6,7 11.50
2,3,4,5,6,7 10.67
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Stratified Sampling

There are

(
7
6

)
×
(

4
3

)
= 28 possible values of

x I ,str = (7x I1+4x I1)
11 . The sampling distribution of x I ,str is shown in

Table 6.3. The mean E(x I ,str ) of the distribution of x I ,str over the
28 samples is equal to $11.52, which is not equal to $11.60, the
value of X I , the mean price over the five independent pharmacies
in the two communities.
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Stratified Sampling

Table: Sampling Distribution of x I ,str

x I ,str x I ,str

($) f ($) f

11.510 8 12.046 2
11.692 4 11.590 1
11.330 4 11.228 1
11.410 2 11.272 1
11.090 2 12.228 1
10.910 1 11.864 1

Total 28
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Stratified Sampling

Once we decide to use stratified sampling, and once we specify the
strata and the total number, n, of sample elements, the next
important decision we must make is that of allocation or
specification of how many elements are to be taken from each
stratum under the constraint that a total of n elements is to be
taken over all strata. As we will see in this section, the standard
errors of the estimated population parameters may be reduced
considerably if careful thought is given to allocation.
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Stratified Sampling

In equal allocation, the same number of elements are sampled from
each stratum. In other words, for each stratum, h, the sample size
is given by

nh =
n

L

Equal allocation would be the allocation of choice if the primary
objective of the sample survey is to test hypotheses about
differences among the strata with respect to levels of variables of
interest, under the assumption that within stratum variances were
equal. If this assumption could not be made, then the allocation of
choice for testing such hypotheses would be given by

nh =
σhx

L∑

h=1

σhx

× n
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Stratified Sampling

Self-Weighting Samples

In proportional allocation, the sampling fraction nh/Nh, is specified
to be the same for each stratum, which implies also that the
overall sampling fraction n/N is the fraction taken from each
stratum. In other words, the number of elements n1, taken from
each stratum is given by

nh = Nh ×
n

N

xstr =

L∑

h=1

nh∑

i=1

xh,i

n
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Stratified Sampling

Illustrative Example.

Number of general hospitals located in four strata, where a
stratum is composed of one or more geographical regions within
Illinois. We wish to take a stratified random sample of 51 hospitals
from among the 255 hospitals, and we wish to use proportional
allocation. Then letting N = 255 and n = 51, we have from
relation (6.9),

n1 = (44)

(
51

255

)
= 8.8 ≈ 9

n2 = (116)

(
51

255

)
= 23.2 ≈ 23

n3 = (48)

(
51

255

)
= 9.6 ≈ 10

n4 = (47)

(
51

255

)
= 9.4 ≈ 9
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Stratified Sampling

Table 6.4

Table: General Hospitals in Illinois by Geographical Stratum,1971

No. of General
Stratum Hospitals

1 44
2 116
3 48
4 47

Total 255

So take 9 elements (hospitals) from stratum 1; 23 from stratum 2;
10 from stratum 3; and 9 from stratum 4.
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Stratified Sampling

The sampling fractions within each stratum are

n1

N1
=

9

44
= 0.2045

n2

N2
=

23

116
= 0.1983

n3

N3
=

10

48
= 0.2083

n4

N4
=

9

47
= 0.1915

and as it should be
4∑

h=1

nh = n.
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Stratified Sampling

The slight differences in sampling fractions among the strata are
due to the fact that the required allocation given by relation (6.9)
does not necessarily yield integer values. Thus, the nh’s, taken are
those specified by Equation (6.9), but rounded up or down to the
nearest integer. These minor differences among sampling fractions
are generally ignored in constructing the estimates, and the sample
is generally treated as if it were exactly a self-weighting sample.
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Stratified Sampling

In proportional allocation, the variance, Var(x str ), of an estimated
mean, xstr obtained from relation (6.10) with nh set equal to
Nh(n/N) becomes

Var(x str ) =

(
N − n

N2

) L∑

h=1

(
N2

h

Nh − 1

)(
σ2

hx

n

)
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Stratified Sampling

If all the Nh are reasonably large, the expression reduces to the
approximation given by

Var(x str ) ≈
(

N − n

N

)(
σ2

wx

n

)

where

σ2
wx =

L∑

h=1

Nhσ
2
hx

N
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Stratified Sampling

The sample estimate of Var(xstr ) is given by

V̂ar(x str ) =

(
N − n

N2

) L∑

h=1

Nh

(
s2
hx

n

)
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Stratified Sampling

Note that relation (6.12) has a form that is very similar to the
formula for the variance of an estimated mean under simple
random sampling. The formula for the standard error was given in
Box 3.1, and the square of this quantity, the variance, is given as

Var(x) =

(
N − n

N − 1

)(
σ2

x

n

)

Var(xstr ) ≈
(

N − n

N

)(
σ2

wx

n

)
(6.12)

where

σ2
wx =

L∑

h=1

Nhσ
2
hx

N
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Stratified Sampling

The difference between the two formulas is that for proportional
allocation in stratified random sampling, the population variance
σ2

x is replaced by σ2
wx , which is a weighted average of the

individual variances σ2
hx of the distribution of among elements

within each stratum. The weights in σ2
wx are proportional to Nh,

the number of elements in each stratum.
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Stratified Sampling

Comparison of relations (6.12) and (6.14) indicates that stratified
random sampling with proportional allocation will yield an
estimated mean having lower variance than that obtained from
simple random sampling whenever σ2

wx is less than σ2
x . But note

that, as in analysis of variance methodology, the population
variance σ2

x may be partitioned into the two components σ2
bx and

σ2
wx

σ2
x = σ2

bx + σ2
wx

where

σ2
bx =

L∑

h=1

Nh

(
X h − X

)2

N

and σ2
wx is as given in 6.13.
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Stratified Sampling

Thus the ratio of the variance of the estimated mean x under
simple random sampling to that of xstr , the estimated mean under
stratified random sampling with proportional allocation is given by,

Var(x)

Var(xstr )
=

σ2
bx + σ2

wx

σ2
wx

= 1 +
σ2

bx

σ2
wx
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Stratified Sampling

This ratio is always greater than or equal to unity, and the extent

to which it differs from unity depends on the size of the ratio
σ2

bx

σ2
wx

.

When this ratio is large, the estimated mean under stratified
random sampling with proportional allocation will have a smaller
variance than the corresponding estimate under simple random
sampling. The component σ2

bx represents the variance among the
stratum means, whereas the component and σ2

wx represents the
variance among the elements within the same stratum. If the
stratum means X h are of the same order of magnitude, then little
or nothing is gained by using stratified random sampling rather
than simple random sampling.
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Stratified Sampling

On the other hand, if the stratum means are very different, it is
likely that considerable reduction in the variance of an estimated
mean can be obtained by use of stratified random sampling rather
than simple random sampling. This makes sense intuitively
because the purpose of stratification is to group the elements, in
advance of the sampling, into strata on the basis of their similarity
with respect to the values of a variable or a set of variables. If the
elements within each stratum have very similar values of the
variable being measured, then it would be difficult to obtain a
“bad” sample, since each stratum is represented in the sample. A
reliable estimate could then be obtained by sampling a small
number of elements within each stratum. On the other hand, if the
stratum means are very similar, then there is no point to
stratification, and the extra effort required to take a stratified
sample would not result in an improved estimate.
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Stratified Sampling

Illustrative Example.

Let us suppose that we wish to estimate the average number of
hospital admissions for major trauma conditions per county among
82 counties in Illinois having general hospitals. A sample of
counties will be taken, and the admission records of all hospitals in
the sample counties will be reviewed for major trauma admissions.
If it is reasonable to assume that there may be a strong correlation
between the number of hospital beds among general hospitals
within a county and the total number of admissions for major
trauma conditions, then it would make sense to stratify by number
of hospital beds. So this is the sampling plan that is chosen.
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Stratified Sampling

In Table 6.5, counties in Illinois are grouped into two strata on the
basis of number of hospital beds. Stratum 1 consists of those
counties having 1-399 beds, and stratum 2 consists of those having
400 beds or more.

Instructor: C. L. Williams MthSc 406



Stratified Sampling

From Table 6.5 we calculate the following:Illustrative Example

X 1 = 123.91 σ̂2
1,x = 6, 131, 3 N1 = 65

X 2 = 871.59 σ̂2
2,x = 77, 287.92 N2 = 17

X = 278.92 σ̂2
x = 112, 751.93 N = 82

where X = the number of beds.
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Stratified Sampling

From relations (6.15) and (6.13) we have

σ2
bx =

65 × (123.91 − 278.92)2 + 17 × (871.59 − 278.92)2

82
= 91, 868.39

σ2
wx =

65 × (6, 131.63) + 17 × (77, 287.92)

82
= 20, 883.54
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Stratified Sampling

Var(x)

Var(x str )
= 1 +

91, 868.39

20, 883.54
= 5.4.
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Stratified Sampling

Therefore, we conclude that in terms of reduction of the variance
of an estimated mean, stratification is likely to be of great benefit
in this situation if, in fact, admissions for multiple trauma and
number of beds are related, since the variance under stratification
is less than 20% of the variance under simple random sampling.
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Stratified Sampling

Often proportional allocation is not the type of allocation that
would result in an estimated total, mean, or proportion having the
lowest variance among all Possible ways of allocating a total
sample of n elements among the L strata. It can be shown that the
allocation of n sample units into each stratum that will yield an
estimated total, mean, or proportion for a variable X having
minimum variance is given by

nh =




Nhσhx

L∑

h=1

Nhσhx




(n)
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Stratified Sampling

Illustrative Example

Using the Table 6.5 and assume a close relationship between
number of beds and number of admissions for major trauma. From
relation (6.17), the following allocation of 25 sample elements will
produce the estimated mean having the lowest variance:

n1 =

(
65
√

6131.63

65
√

6131.63 + 17
√

77, 287.92

)
× (25)

= 12.96 ≈ 13

n2 =

(
17
√

77, 287.92

65
√

6131.63 + 17
√

77, 287.92

)
× (25)

= 12.04 ≈ 12
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Stratified Sampling

Thus, the optimal allocation of the 25 sample elements is 13
elements from stratum 1 and 12 elements from stratum 2.
Proportional allocation would have specified that 20 elements be
taken from stratum 1 and 5 elements from stratum 2.
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Stratified Sampling

The standard error of an estimated mean under stratified random
sampling with optimal allocation is given by relation (6.2), which is
valid in general for any type of allocation under stratified random
sampling. For the data in Table 6.5, using number of beds as the
characteristic of interest, we have for optimal allocation from
Equation (6.1),

ŜE(x str ) =

√√√√
L∑

h=1

(
Nh

N

)2 σ2
hx

nh

(
Nh − nh

Nh − 1

)

=

[(
65

82

)2

×
(

6, 131.63

13

)
×
(

65 − 13

65 − 1

)
+

(
17

82

)2

×
(

77, 287.92

12

)
×
(

17 − 12

17 − 1

)]1/2

= 18.09
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Stratified Sampling

For proportional allocation we have, taking the square root of the
expression in Equation (6.11),

√
Var(x str ) =

√√√√
(

N − n

N2

) L∑

h=1

(
N2

h

Nh − 1

)(
σ2

hx

n

)

√
Var(x str ) =

[(
82 − 65

822

){(
652

64

)
×
(

6, 131.63

25

)
+

(
172

16

)
×
(

77, 287.92

25

)}]1/2

= 24.71

Thus we see that for these data the estimated mean under optimal
allocation has a standard error considerably lower than that under
proportional allocation.
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Stratified Sampling

Optimal Allocation and Economics

Suppose now that the cost of sampling an elementary unit is not
the same for each stratum. Then the total cost C, of taking a
sample of n1 elements from stratum 1, n2 elements from stratum
2, and so forth, is given by

C =

L∑

h=1

nhCh

where Ch is the cost of sampling an elementary unit in stratum h.
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Stratified Sampling

For a given sample size n, the allocation that will yield an estimate
having the lowest variance per unit cost is given by

nh =




Nhσhx/
√

Ch

L∑

h=1

Nhσhx/
√

Ch




(n)
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Stratified Sampling

Similarly, if the total cost of taking the sample is fixed at C, the
allocation that will yield the estimated mean having the lowest
standard error at fixed cost C is given by

nh =




Nhσhx/
√

Ch

L∑

h=1

Nhσhx

√
Ch




× (C )
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Illustrative Example.

Let us suppose that a corporation has 260,000 accident reports
available over a period of time and that a sample survey is being
contemplated for purposes of estimating the average number of
days of work lost per accident. Of the 260,000 accident reports,
150,000 are coded and 110,000 are uncoded. The coded forms
could be processed on the computer directly, whereas the uncoded
forms must first be coded before processing. Approximately
$10,000 is available for selecting the sample and coding and
processing the data. With this in mind, it is desired to find the
best way of allocating the sample elements among coded and
uncoded forms. In the terminology of stratified sampling we have

N1 = 150,000 coded forms (stratum 1)
N2 = 110,000 uncoded forms (stratum 2)
C = $10, 000
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Let us suppose that the cost of sampling and processing sample
forms is equal to C1 = $0.32 for a coded form and C2 = $0.98 for
an uncoded form; that is,

n1 =

150,000×( σ2x
2 )

√
0.32

150, 000 ×
(

σ2x
2

)
×

√
0.32 + 110, 000 × σ2x ×

√
0.98

× 10, 000

≈ 8, 762

n2 =

110,000×( σ2x
2 )

√
0.98

150, 000 ×
(

σ2x
2

)
×

√
0.32 + 110, 000 × σ2x ×

√
0.98

× 10, 000

≈ 7, 343.
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Thus we would take a sample of 8762 coded reports and 7343
uncoded reports. We can verify that the total cost of the sampling
is equal to $10,000 by substituting the values for C1, C2, n1, and n2

into the relation for C = 8762 × 0.32 + 7343 × 0.98 = $10,000.
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We note that in order to obtain the optimal allocation, it is not
necessary to know the actual values of the σhx . If we can express
each σhx in terms of one of them (e.g.,σrx as was done in the
example discussed above, then σrx appears as a common factor in
both the numerator and denominator and therefore can be
canceled.
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One problem often encountered in optimal allocation, either with
or without costs being taken into consideration, is that the optimal
sample size h may be greater than Nh, the total number of
elements in the stratum. When this occurs, we set h equal to Nh

for each stratum having optimal allocation greater than Nh. Then
we reallocate the remaining sample to other strata as specified by
the algorithm of obtaining optimal allocation.
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For example, let us consider the summary data from three strata:

Stratum Nh σhx

1 100 50
2 110 10
3 120 5

If we wish to allocate a total sample of 140 elements to each
stratum by using optimal allocation, we have, by relation (6.17),
n1 = 104, n2 = 23 and n3 = 13.
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We would then take n1 = N1 = 100 and allocate the four
remaining elements to strata 2 and 3 according to relation (6.17)
as follows:

n2 =

[
110 × 10

110 × 10 + 120 × 5

]
(4)

= 2.6 ≈ 3

n3 =

[
1200 × 5

110 × 10 + 120 × 5

]
(4)

= 1.4 ≈ 1

Thus the final optimum allocation is n1 = 100, n2 = 26 and
n3 = 14.
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In the planning of a sample survey for which stratified random
sampling sampling is indicated, it is often a good strategy to
calculate the optimal allocation for the most important variables in
the survey. If the allocation differs among the variables, some
compromise allocation might be considered (such as the mean of
the optimal h over all variables of importance). Also, proportional
allocation should be given some consideration. If the standard
errors anticipated under proportional allocation are not much
higher than those anticipated under optimal allocation, then the
simplicity and convenience of proportional allocation may offset the
small reduction in standard error under optimal allocation, and
proportional allocation may be the best choice.
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Illustrative Example: Case Study.

This example from a recent study of elderly twins illustrates the
use of optimal allocation in stratified random sampling. The
objective of this study was to test a method for identifying elderly
twins (65 years and older) from lists of living Medicare
beneficiaries. Studies on monozygotic and dizygotic twins are
extremely useful in providing insight into the relative contribution
of genetic and non-genetic influences on health and disease, and
twins so identified would be placed in a registry for possible
participation in future medical investigations.
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Since approximately 1 in every 100 deliveries results in a multiple
birth, any attempt at screening unselected lists of individuals for
identification of twins would be prohibitively expensive. The
following characteristics of twins, how- ever, might be used to
obtain modified lists that have a higher prevalence of twins:

Both members of a twin pair (with very rare exceptions) are
born in the same place and have the same date of birth.

They are also of the same race.

Both members of a male-male twin pair will have the same
last name and a different first name.

Members of a twin pair are very likely to have Social Security
numbers (SS#) that are very close to each other.
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From living male beneficiaries, pairs were constructed consisting of
individuals having the same date of birth, the same state of birth,
the same last name, and a different first name. The pairs so
obtained were then assigned a number representing the difference
in their SS#. This difference (called sequence difference) was
obtained by a complex algorithm [47]; the size of this sequence
difference being proportional to the length of time separating the
issuance dates of the SS card to each member of the pair.
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From living female beneficiaries, female-female pairs were
constructed from records that had the same date and state of birth
and the same first seven digits of the SS#. (Surnames could not
be used as was done with the males because of name change upon
marriage.) Male-female pairs were constructed by the same
algorithm used to construct female-female pairs. The data set
constructed as described above consisted of 255,848 paired records
categorized into six classes according to race (white/African-
American) and sex (M-M, M-F, F-F). Each of these six groups was
further subdivided into three classes based on the size of the
sequence difference in SS# (first quartile/second and third
quartiles/fourth quartile). Those pairs having sequence differences
in the first quartile represent SS#’s issued relatively close in time,
and so on.
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Table 6.6 indicates the number of pairs that were obtained in each
of the 18 “strata” defined above. A pilot survey of approximately
1000 pairs was to be conducted, having as its objective the
estimation in each of the six race-sex groups of the proportion of
pairs in this database that are truly twins. This was considered
important as a test of whether or not this methodology would
produce a database that has a high prevalence of twins. A sample
of pairs was to be taken, and each individual sampled was to be
queried on his/her twin status. The design of the sample for this
pilot survey was to be that of stratified random sampling with
optimal allocation applied separately to each of the six race-sex
groups.
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With this in mind, the formula for allocation of sample into the
three SS# sequence difference groups is given by Equation (6.17),
where σhx =

√
phX (1 − phX ), and phX is the proportion of twins

in stratum h (h = 1, 2, 3). The proportions, phX are not known,
and it is necessary to make some “educated” guesses concerning
their values. The overall prevalence rate of twins in the master file
of Medicare beneficiaries is likely to be about 1, the rate in the
population as a whole. We would then expect that the algorithms
used to construct the set of pairs would yield a very much higher
prevalence of twins-let us assume a 10-fold higher prevalence-which
would be a rate of 10. We further assume that the prevalence of
twins in the first sequence difference quartile is four times that in
the middle two quartiles and eight times that in the fourth quartile.
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3∑

h=1

Nhphx

3∑

h=1

Nh

where Nh is the total number of pairs in stratum h.
We can set p1x = 8p3x and p2x = 2p3x so that

8 × p3x × 39, 872 + 2 × p3x × 79, 727 + p3x × 39, 872

39, 872 + 79, 727 + 39, 872
= 0.10

or

p3x = 0.0308

It then follows p2x = 0.0615 and p1x = 0.2461.
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σ3x = [(0.0308)(1 − 0.0308)]0.5 = 0.1728

σ2x = [(0.0615)(1 − 0.0615)]0.5 = 0.2402

σ1x = [(0.2461)(1 − 0.2461)]0.5 = 0.4307
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n = 1000
6 = 167.

n1 =
39, 872 × 0.4307

39, 872 × 0.4307 + 79, 727 × 0.2402 + 39, 872 × 0.1728
× 167

≈ 66

n2 =
79, 727 × 0.2402

39, 872 × 0.4307 + 79, 727 × 0.2402 + 39, 872 × 0.1728
× 167

≈ 74

n3 =
39, 872 × 0.1728

39, 872 × 0.4307 + 79, 727 × 0.2402 + 39, 872 × 0.1728
× 167

≈ 27
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STRATIFICATION AFTER SAMPLING

A sample design in which the sampling plan is that of simple
random sampling but the estimation procedure is that appropriate
for stratified random sampling can sometimes produce estimates
having standard errors that are not much higher than those
obtained by stratified random sampling. The advantage of this
design is that it eliminates the inconvenience, or impossibility, of
grouping the elements into strata in advance of the sampling. It is
known as stratification after sampling or poststratification.
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For example, it may be of interest to estimate the proportion of
premature births in a given hospital during the past year. It is
known from past experience that the prematurity rate among
blacks is higher than the corresponding rate for whites. However,
to stratify the entire set of hospital records by racial group would
be impractical, since racial group is recorded in the records and all
records would have to be inspected to do such stratification prior
to the sampling. However, if the total number of blacks and the
total number of whites who have entered the hospital during the
year for deliveries is known (as it may well be by the hospital
administration), a simple random sample may be stratified after
the sampling to improve the precision of the estimate.
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Let xpstr and Var(xpstr ) represent the poststratification sample
mean sample mean and variance of its sampling distribution
respectively. Then

xpstr =

L∑

h=1

(
Nh

N

)
xh

and

Var (xpstr ) =

(
N − n

nN

) L∑

h=1

Nh

N
S2

hx +

(
1

n2

) L∑

h=1

Nh

N
S2

hx

(
N − nh

N

)

where

S2
hx =

Nh∑

i=1

(
Xh,i − X h

)2

Nh − 1
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The first term in Var(xpstr ) is approximately the variance of an
estimated mean under stratified sampling with proportional
allocation. The second term increases the variance and reflects the
fact that the n1, in the resulting sample are random variables. The
second term will generally be small when the sample size n is large.
Although S2

hx is not known, it can be estimated by s2
hx . [relation

(5.9)] and the sample estimate of Var(xpstr ) is given by

Var (xpstr ) =

(
N − n

nN

) L∑

h=1

Nh

N
s2
hx +

(
1

n2

) L∑

h=1

s2
hx

(
N − nh

N

)
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Expressions similar to relations (6.20) and (6.21) can be derived
for the variance of estimated poststratified totals and proportions,
as well as the estimated variances from the sample information.
Now let us look at an example of how poststratification can be
useful in reducing sampling error.
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Illustrative Example.

A veterinarian is interested in studying the annual veterinary costs
of his clientele (who own either dogs or cats). From a separate
record system, he knows that he sees 850 dogs and 450 cats
regularly in his practice (these are numbers of animals, not
numbers of visits). He knows that the information on type of
animal (i.e., dog or cat) is contained in the medical records, but
that it would take too much time to sort the records into strata
defined by animal type. So he decides to select a simple random
sample and then poststratify. He regards the poststratification
process as necessary since he knows that, on average, it costs more
to keep dogs healthy than to keep cats healthy.
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He samples 50 records, recording the total amount of money spent
(including medication) by the owners of the animals he saw over
the past two years. The sampling results are given in Table 6.8.
Now suppose that this sample of 50 animals is to be used to
estimate the average annual expense of owning a dog or a cat.
Then we have the following calculations (refer to Boxes 2.2 and
3.1):
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x =

50∑

i=1

xi

50

=
45.14 + 50.13 + · · · + 39.26

50
= 39.73

s2
x =

50∑

i=1

(xi − x)2

(50 − 1)

=
(45.14 − 39.73)2 + (50.13 − 39.73)2 + · · · + (39.26 − 39.73)2

49
= 256.68
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ŜE (x) =

[(
1300 − 50

1300

)(
256.68

50

)]1/2

√
4.936 = 2.2222

so that

x − 1.96 × SE (x) ≤ X ≤ x + 1.96 × SE (x)

39.73 − 1.96 × 2.222 ≤ X ≤ 39.73 + 1.96 × 2.222

35.38 ≤ X ≤ 44.08
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Now we can use the known stratum totals in a poststratification
process to obtain a more precise estimate of X . The veterinarian
knows that the number of dogs in his files is N1 = 850 and the
total number of cats is N2 = 450. Stratifying the 50 animals in the
sample given in Table 6.8 into dogs and cats yields n1 = 32 dogs
and n2 = 18 cats in the sample. Then we have (refer to Box 2.2):
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x1 =
45.14 + 50.13 + · · · + 39.26

32
= 49.86

x2 =
27.15 + 23.39 + · · · + 14.18

28
= 21.71

s2
x1

=

50∑

i=1

(xi − x)2

(50 − 1)

=
(45.14 − 49.86)2 + (50.13 − 49.86)2 + · · · + (39.26 − 49.86)2

31
= 70.22
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s2
x2

=

50∑

i=1

(xi − x)2

(50 − 1)

=
27.15 − 21.71)2 + (23.39 − 21.71)2 + · · · + (14.18 − 21.71)2

17
= 75.00
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xpstr =

(
850

1300

)
× 49.86 +

(
450

1300

)
× 21.71 = 40.12

V̂AR (xpstr ) =

(
1300 − 50

50 × 1300

)[(
850

1300

)
× 70.22 +

(
450

1300

)
× 75

]

+

(
1

502

)[(
1300 − 850

1300

)
× 70.22 +

(
1300 − 450

1300

)
× 75

= 1.439

ŜE (xpstr ) =
√

1.439 = 1.20

Hence the 95% confidence interval estimate of the population
mean, X , is given, by poststratification, as

xpstr − 1.96 × SE (xpstr ) ≤ X ≤ xpstr + 1.96 × SE (xpstr )

40.12 − 1.96 × 1.20 ≤ X ≤ 40.12 + 1.96 × 1.20

37.77 ≤ X ≤ 42.47
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HOW LARGE A SAMPLE IS NEEDED?

Suppose that we wish to determine the number of elements needed
to be 100 × (1 - α)% certain of obtaining from a stratified random
sampling, an estimated mean, x str that differs from the true mean
X by no more than 100 ×ǫ. This formulation is equivalent to that
discussed earlier for simple random sampling and systematic
sampling. The formula (valid for reasonably large Nh,) for the
required n is as follows:

n =

(
Z2

α/2

N2

)( L∑

h=1

N2
hσ2

hx

πhX
2

)

ǫ2 +

(
Z2

α/2

N2

)( L∑

h=1

N2
hσ2

hx

X
2

)
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where

πh =
nh

n

Relation (6.22) is valid for any type of allocation. It is also valid
for the estimation of a population total. The analogous sample
size formula for estimation of a population proportion Py , from
stratified random sampling is given by

n =

(
Z2

α/2

N2

)( L∑

h=1

N2
hPhy × (1 − Phy )

πhP2
y

)

ǫ2 +

(
Z2

α/2

N2

)( L∑

h=1

N2
hPhy × (1 − Phy )

P2
y

)
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We can see from relation (6.22) that its use requires more
knowledge about parameters of the distribution than is likely to be
available or than can be guessed with any degree of confidence.
For this reason, relation (6.22) is unlikely to be of much help in
actual practice. However, if one assumes proportional allocation,
then relation (6.22) reduces to the form

n =
NZ 2

(α/2)
σ2

wx

X
2
)

Nǫ2 + Z 2
(α/2)

σ2
wx

X
2
)
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We can see from relation (6.22) that its use requires more
knowledge about parameters of the distribution than is likely to be
available or than can be guessed with any degree of confidence.
For this reason, relation (6.22) is unlikely to be of much help in
actual practice. However, if one assumes proportional allocation,
then relation (6.22) reduces to the form

n ≈
Z 2

(α/2) ×
N

1+γ × V 2
x

Nǫ2 + Z 2
(α/2) ×

1
1+γ × V 2

x
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Illustrative Example.

Suppose that we are planning to take a sample of the members of
a health maintenance organization (HMO) for purposes of
estimating the average number of hospital episodes per person.
The sample will be selected from membership lists grouped
according to age (under 45 years; 45-64 years; 65 years and over).
Let us suppose that the distributions of hospital episodes are
available from national data (such as the National Health Interview
Survey) and are as given in Table 6.9. Suppose further that the
number of HMO members in each age group is as follows:

Age group 1: N1 = 600
Age group 2: N2 = 500
Age group 3: N3 = 400
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Table 6.9

Table: Distribution of Hospital Episodes per Person per Year

Average Variance of
Number of Distribution

Age Group Hospital Episodes of Hospital Episodes

1. Under 45 years 0.164 0.245
2. 45-64 years 0.166 0.296
3. 65 years and over 0.236 0.436
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X =
600 × 0.164 + 500 × 0.166 + 400.236

1500
= 0.184

σ2
bx =

600 × (0.164 − 0.184)2 + 500 × (0.166 − 0.184)2 + 400 × (0.236 − 0.184)

1500
= 0.0009891

σ2
wx =

600 × 0.245 + 500 × 0.296 + 400 × 0.436

1500
= 0.31293

Instructor: C. L. Williams MthSc 406



Stratified Sampling

σ2
x = 0.0009891 + 0.31293 = 0.31392

V 2
x =

0.31392

0.1842
= 9.27

γ =
0.0009891

0.31293
= 0.00316
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n =
[(9 × 1500)/(1+0.00316)] × 9.27

[(9 × 9.27)/(1 + 0.00316)] + 1500 × (0.20)2
= 872
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n1 = 600 ×
872

1500
= 349

n2 = 500 ×
872

1500
= 291

n3 = 400 ×
872

1500
= 232
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π1 =
600

√
0.245

600
√

0.245 + 500
√

0.296 + 400
√

0.436
= 0.356

π2 =
500

√
0.296

600
√

0.245 + 500
√

0.296 + 400
√

0.436
= 0.327

π3 =
400

√
0.436

600
√

0.245 + 500
√

0.296 + 400
√

0.436
= 0.317
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n ≈
[

9

(1500)2

] [
(600)2(0.245)

(0.356)(0.184)2
+ (500)2(0.296)

(0.327)(0.184)2
+ (400)2(0.436)

(0.317)(0.184)2

]

(0.2)2 +
[

9
(1500)2

] [
(600)(0.245)

(0.184)2
+ (500)(0.296)

(0.184)2
+ (400)(0.436)

(0.184)2

= 860
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n1 = n × π1 = 860 × 0.356 = 306

n2 = n × π2 = 860 × 0.356 = 281

n3 = n × π3 = 860 × 0.356 = 273
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n ≈

(
Z2

α/2

N

)( L∑

h=1

NhPhy × (1 − Phy )

πhP2
y

)

ǫ2 +

(
Z2

α/2

N2

)( L∑

h=1

NhPhy × (1 − Phy )

P2
y

)
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