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Analogous to the univariate context, we wish to determine whether
the mean vectors are comparable, more formally:

H0 : µ1 = µ2 (1)

Suppose we let y1i , i = 1, . . . n1 and y2i , i = 1, . . . n2 represent
independent samples from two p-variate normal distribution with
mean vectors µ1 and µ2 but with common covariance matrix Σ

unknown, provided Σ is positive definite and n > p, given sample
estimators for mean and covariance ȳ and S respectively.
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We can then define

W1 = (n1 − 1)S1 =

n1
∑

i=1

(y1i − ȳ1)(y1i − ȳ1)
′

W2 = (n2 − 1)S2 =

n2
∑

i=1

(y2i − ȳ2)(y2i − ȳ2)
′

since each are unbiased estimators of the common covariance
matrix, ie. E[(n1 − 1)S1] = (n1 − 1)Σ and
E[(n2 − 1)S2] = (n2 − 1)Σ
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The T2 statistic can be calculated as:

T 2 =

(

n1n2

n1 + n2

)(

n1n2

n1 + n2

)

(ȳ1 − ȳ2)
′
S−1 (ȳ1 − ȳ2) (2)

where S−1 is the inverse of the pooled correlation matrix given by:

S =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2

=
1

n1 + n2 − 2
(W1 + W2)

given the sample estimates for covariance, S1 and S2 in the two
samples.
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Again, there is a simple relationship between the test statistic, T 2,
and the F distribution:

Theorem

If y1i , i = 1, . . . n1 and y2i , i = 1, . . . n2 represent independent

samples from two p variate normal distribution with mean vectors

µ1 and µ2 but with common covariance matrix Σ, provided Σ is

positive definite and n > p, given sample estimators for mean and

covariance ȳ and S respectively, then:

F =
(n1 + n2 − p − 1)T 2

(n1 + n2 − 2)p

has an F distribution on p and (n1 + n2 − p − 1) degrees of

freedom.
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Essentially, we compute the test statistic, and see whether it
falls within the (1 − α) quantile of the F distribution on those
degrees of freedom.

Note again that to ensure non-singularity of S, we require that
n1 + n2 > p.
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Characteristic form

T 2 = (ȳ1 − ȳ2)
′

[(

1

n1

1

n2

)

Spl

]

−1

(ȳ1 − ȳ2) (3)
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What was all that stuff about likelihood ratio’s about? It turns out
that it is possible to show that:

Λ2/n =

(

|Σ̂|

|Σ̂0|

)

=

(

1 +
T 2

n − 1

)−1

(4)

It is also possible to obtain the T2 via union intersection methods.
This is nice because it tells us a lot about the properties of the test!
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Essentially, we wish to find a region of squared Mahalanobis
distance such that:

Pr
(

(ȳ − µ)′S−1(ȳ − µ)
)

≤ c2

and we can find c2 as follows:

c2 =

(

n − 1

n

)(

p

n − p

)

F(1−α),p,(n−p)

where F(1−α),p,(n−p) is the (1 − α) quantile of the F distribution
with p and n − p degrees of freedom, p represents the number of
variables and n the sample size.
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The centroid of the ellipse is at ȳ

The half length of the semi-major axis is given by:

√

λ1

√

p(n − 1)

n(n − p)
Fp,n−p(α)

where λ1 is the first eigenvalue of S

The half length of the semi-minor axis is given by:

√

λ2

√

p(n − 1)

n(n − p)
Fp,n−p(α)

where λ2 is the second eigenvalue of S

The ratio of these two eigenvalues gives you some idea of the
elongation of the ellipse
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In addition to the (joint) confidence ellipse, it is possible to
consider simultaneous confidence intervals - univariate
confidence intervals based on a linear combination which
could be considered as shadows of the confidence ellipse

It is also possible to carry out Bonferroni adjustments of these
simultaneous intervals
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T2 test is based upon Mahalanobis distance and can be used
for inference on mean vectors - this test can be derived via a
variety of routes

Difference between univariate and multivariate inference,
especially when considering confidence ellipses

Having determined that there is a significant difference
between mean vectors, you may wish to conduct a number of
follow up investigations and even carry out discriminant
analysis
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