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1 Description of Data

The data set is taken from Ryan, Joiner and Ryan (1985), in theliterature referred to as the Minitab blackcherry
data set. The purpose for collecting these data was to provide a way of predicting the volume of timber in
unfelled trees, from their height and diameter measurements, using a regression model. The initial model

volume = β0 + β1diameter + β2height + ǫ

The original data is given at the end of this report. Our first issues is to determine visually if the proposed
model is appropriate. We include in Figure 1 a pairwise scatterplot of the variables. Taking into consideration
specfically the visual relationship between the dependent variablevolume and the preditor variablesdiameter
andheight.
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Figure 1: Scatterplot matrix of dependent and predictor variables.

2 Analysis

We first describe the initial multiple linear model. The summary below is taken directly for R summary window.

Call: lm(formula = volume ˜ diameter + height, data =
blackcherry.dat)

Residuals:
Min 1Q Median 3Q Max

-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
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diameter 4.7082 0.2643 17.816 < 2e-16 ***
height 0.3393 0.1302 2.607 0.0145 *
---
Signif. codes: 0 ‘ *** ’ 0.001 ‘ ** ’ 0.01 ‘ * ’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-Squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: 0

This suggest a significant regression of the two variables diameter and height in predicting tree volume.
Further it suggests that 95% of the variation in the volume can be accounted for by the two variables diameter
and height.

As suggested, the next stage would be an examination of the residuals generated by the fitted model. A plot
of the residuals against each explanatory variable in the model. The presence of a curvilinear relationship, for
example, may suggest that a higher-order term, perhaps a quadratic in the explanatory variable, should be added
to the model. Figure 2 shows the standardized residuals plotted against values of explanatory variables. There
appears to be a slight curvature in the plot of the residuals vs. the diameter. This is considered later.
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Figure 2: Standardized residuals plotted against values ofexplanatory variables.

A plot of the residuals against predicted values of the response variable. If the variance of the response
appears to increase with predicted value, a transformationof the response may be in order. Figure 3 shows the
standardized residuals plotted against the fitted values ofthe response variables.

A normal probability plot of the residuals. After all the systematic variation has been removed from the data,
the residuals should look like a sample from the normal distribution. A plot of the ordered residuals against the
expected order statistics from a normal distribution provides a graphical check of this assumption. We show a
normal probability plot in figure 4.

The ordinary residuals given by residuals, however, have a distribution that is scale dependent since the
variance of eachǫi is a function of bothσ2 and the diagonal values of the so-called “hat” matrix,H, given by:

H = X(X′
X)−1

X
′

Consequently it is more useful to work with a standardized version of the residuals that does not depend on
either of these quantities. The standardized residuals arecalculated as
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Figure 3: Standardized residuals plotted against values offitted response.
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Figure 4: Normal probability plot of standardized residuals.
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Examination of the enhanced normal probability plot (see Figure 5), indicates that the residuals show little
departure from normality. Few lie outside the constructed confidence region.

The “hat” matrix is also helpful in identifying “strange” or“peculiar” data points, that is, those having an
unusually large potential effect on the regression. Such points are indicated by relatively high values in the
appropriate position in the diagonal ofH. (The maximum value of any diagonal element is one.) Technically
these points are referred to as having high leverage. As seenpreviously, the required diagonal values can be
found as one of the elements in the list returned by thelm.influencefunction. The values of the diagonal of the
hat matrix is given fromR below:

> diag(blackcherry.hat)
[1] 0.11582883 0.14720958 0.17686186 0.05919131 0.120664 68 0.15575111
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Figure 5: Enhanced normal probability plot of standardizedresiduals.

[7] 0.11480262 0.05148096 0.09200658 0.04797237 0.073825 12 0.04809206
[13] 0.04809206 0.07275901 0.03764563 0.03566543 0.13130 916 0.14346152
[19] 0.06665975 0.21123665 0.03580935 0.04541796 0.04994 875 0.11142518
[25] 0.06930648 0.08841762 0.09603041 0.10641665 0.10982 638 0.10982638
[31] 0.22705852
>

None of these values appear to be significantly influential inthe current model. In general, some form of index
plot of these values is preferable to presenting them in a table. One such plot is to show the deviation of each
component value ofh from the average of the values. This type of plot is shown in Figure 6.
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Figure 6: Index plot of leverage measures.

Here there seem to be no obvious problem points which might beunduly affecting the estimation process.
The leverage values are all relatively low.

Returning now to the evidence from the residual plots, a new model involving a quadratic term inDiameter
might now be considered. Such a model is fitted very simply using thelm function, although the extra term.
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Diameter*Diameterneeds to be enclosed in the identity function,I(), when specifying the model, to protect the
special character,*.

The summary on the quadratic model is given below:

Call:
lm(formula = volume ˜ diameter + I(diameter * diameter) + height)

Residuals:
Min 1Q Median 3Q Max

-4.2928 -1.6693 -0.1018 1.7851 4.3489

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.92041 10.07911 -0.984 0.333729
diameter -2.88508 1.30985 -2.203 0.036343 *
I(diameter * diameter) 0.26862 0.04590 5.852 3.13e-06 ***
height 0.37639 0.08823 4.266 0.000218 ***
---
Signif. codes: 0 ‘ *** ’ 0.001 ‘ ** ’ 0.01 ‘ * ’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.625 on 27 degrees of freedom
Multiple R-Squared: 0.9771, Adjusted R-squared: 0.9745
F-statistic: 383.2 on 3 and 27 DF, p-value: 0

Similarly, we give residual plots for the quadratic models and see no significant departures for this assumed
quadratic model.
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Figure 7: Standardized residuals plotted against values ofexplanatory variables model including quadratic terms
in diameter.

Although the results in the previous summaries indicate that the regression coefficients of both Height and
Diameter are significantly different from zero, it is often useful to explore a number of models in an attempt to
find the simplest that adequately describe the data. Essentially this involves adding or deleting terms from an
existing model and assessing the effect of the change. TwoR functions,add1 anddrop1, can be used to look
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Figure 8: Standardized residuals plotted against fitted values of explanatory variables model including quadratic
terms in diameter.
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Figure 9: Normal plot of standardized residuals with simulated confidence interval for model including quadratic
effect of diameter.

at the effects of adding or dropping single terms from a model. For example,blackcherry.fitinvolves a linear
regression model with two explanatory variablesDiameterandHeight. The two models that can be formed from
deleting either variable can each be examined by using:

> blackcherry.drop1 <-drop1(blackcherry.fit)

The information contained inblackcherry.droplis detailed in the summary below. Sums of squares due to
the deleted terms and residual sums of squares for the reduced model are given. Here their values indicate the
great importance of Diameter in the model. Also given are thevalues ofAIC (Akaike’s Criterion). In models
involving large numbers of explanatory variables, this statistic can be helpful in identifying important subsets.

> blackcherry.drop1
Single term deletions
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Model:
volume ˜ diameter + height

Df Sum of Sq RSS AIC
<none> 421.9 86.9
diameter 1 4783.0 5204.9 162.8
height 1 102.4 524.3 91.7

The opposite approach starts from a model and adds on terms. If, for example, the current model for the
data is one involving only an intercept:

> blackcherry0.fit

Call: lm(formula = volume ˜ 1, data = blackcherry.dat)

Coefficients:
(Intercept)

30.17

> summary(blackcherry0.fit)

Call: lm(formula = volume ˜ 1, data = blackcherry.dat)

Residuals:
Min 1Q Median 3Q Max

-19.971 -10.771 -5.971 7.129 46.829

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.171 2.952 10.22 2.75e-11 ***
---
Signif. codes: 0 ‘ *** ’ 0.001 ‘ ** ’ 0.01 ‘ * ’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.44 on 30 degrees of freedom

This function is slightly different from the S-Plus function add1. Theadd1 function inR assumed that the
variables being added or removed are categorical in nature.We show onlydrop1 here. To see what theadd1
function does in R, type ?add1 at the input cursor>.

The predicted values:

> predict(blackcherry1.fit,blackcherry1.dat,se.fit=T )
$fit

1 2 3 4 5 6
18.20203 20.11100 29.82670 42.04388 78.06641 97.81696

$se.fit
1 2 3 4 5 6

1.0041753 0.7772944 1.7471998 0.7039942 2.1687669 3.5557 485

$df
[1] 27

$residual.scale
[1] 2.624753
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Exercise

1. Several authors, including Sprent (1982) have commentedon that the shape of a tree trunk is rather like
that of a cone. Consequently, it might be sensible to consider models of the form

V = khd2

Aitkinson (1987) suggests two such models

(a) (Volume)1/3 on height and diameter.

(b) log(Volume) on log(height) and log(diameter)

Investigate both models.

Solution to Question 1

Question 1 arises from the discussion following the paper byAtkinson(1982).You should locate this and read it.
Sprent in the same volume noted the following:

Is there not then a danger that this very computational simplicity may make some users not
very discriminating in how they apply the approaches? Not every user of robust regression or
of diagnostic plots has the insight of an Andrews or an Atkinson. For example, do the users
of Andrews’ method always heed his warning about appropriate starting values? Least squares
estimators can be disastrous for this. Is there not room for more thought about specific models
when diagnostic plots suggest several that may be appropriate? Perhaps I can illustrate my
point by reference to the tree data discussed in Section 6. A forester or biologist will certainly
be attracted by the model of a tree as something very like a cone. This will be a very inexact
model; it may be distorted by the degree of branching of each tree, or by just how much of the
total superstructure is recorded as volume. Nevertheless amodel that says volume,v, height,h
and base diameter,d are related approximately by a formula

v = kd2h

where k is a constant seems a good starting point. Taking logarithms immediately gives a linear
relationship and would seem to provide a good basis for multiple regression exercises; but there
is still plenty of room for diagnostics, for goodness knows what sort of error structure we create
by taking logarithms, or even what it was before we took logarithms. Obviously some of Dr
Atkinson’s plots may help to sort this out as well as highlighting other difficulties. We would of
course also be worried about our model if the estimated coefficients of logd and logh differed
markedly from 2 and 1 respectively. Dr Atkinson does not tellus what his coefficients were
when he fitted this model. He does tell us though that his methods indicate that when the
explanatory variables are logged the transformation parameter for the response iŝλ = - 0 0672
implying that something like logging the response variableis the right thing to do. I would have
been happy starting off with the logged cone type of model andrefining it if need be in the light
of diagnostic checks even if this meant foregoing the excursion leading to regressions such as
that ofv1/3 onh andd. Despite its dimensional correctness this appeals to me neither physically
nor biologically. Perhaps when we get several models that are almost equally good statistically,
a choice might be aided by cross-validation techniques whenthere are no biological, physical
or other grounds to aid a choiceproviding we have sufficient data.

Below we give the summary and plots similar to those give previously for the model:

vol1/3 = β0 + β1diameter + β2height + ǫ
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Call: lm(formula = (volume)ˆ(1/3) ˜ diameter + height, data =
blackcherry.dat)

Residuals:
Min 1Q Median 3Q Max

-0.159602 -0.050200 -0.006827 0.069649 0.133981

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.085388 0.184315 -0.463 0.647
diameter 0.151516 0.005639 26.871 < 2e-16 ***
height 0.014472 0.002777 5.211 1.56e-05 ***
---
Signif. codes: 0 ‘ *** ’ 0.001 ‘ ** ’ 0.01 ‘ * ’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08283 on 28 degrees of freedom
Multiple R-Squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 612.5 on 2 and 28 DF, p-value: 0
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Figure 10: Standardized residuals plotted against values of explanatory variables model including model includ-
ing cube root effect on volume.

We further consider the model:

log(volume) = β0 + β1log(diameter) + β2log(height) + ǫ

Call: lm(formula = log(volume) ˜ log(diameter) + log(heigh t), data =
blackcherry.dat)

Residuals:
Min 1Q Median 3Q Max

-0.168561 -0.048488 0.002431 0.063637 0.129223

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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Figure 11: Standardized residuals plotted against fitted values of explanatory variables model including cube
root effect on volume.
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Figure 12: Normal plot of standardized residuals with simulated confidence interval for model including cube
root effect on volume.

(Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***
log(diameter) 1.98265 0.07501 26.432 < 2e-16 ***
log(height) 1.11712 0.20444 5.464 7.81e-06 ***
---
Signif. codes: 0 ‘ *** ’ 0.001 ‘ ** ’ 0.01 ‘ * ’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08139 on 28 degrees of freedom
Multiple R-Squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 613.2 on 2 and 28 DF, p-value: 0
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Figure 13: Normal plot of standardized residuals with simulated confidence interval for model including cube
root effect on volume.
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Figure 14: Normal plot of standardized residuals with simulated confidence interval for model including cube
root effect on volume.

Finally, we consider all four of the models proposed.
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Figure 15: Standardized residuals plotted against values of explanatory variables model including log transfor-
mations on both the response, volume, and the predictors diameter and height.
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Figure 16: Standardized residuals plotted against fitted values of explanatory variables model including log
transformations on both the response, volume, and the predictors diameter and height.
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Figure 17: Normal plot of standardized residuals with simulated confidence interval for model including log
transformations on both the response, volume, and the predictors diameter and height.
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Figure 18: Normal plot of standardized residuals with simulated confidence interval for model including log
transformations on both the response, volume, and the predictors diameter and height.
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Figure 19: Normal plot of standardized residuals with simulated confidence interval for model including log
transformations on both the response, volume, and the predictors diameter and height.

Model Estimate (Standard Errors) R2 Significance

Model 1: v =β0+β1d + β2h + ǫ

β0 = 57.9877(8.6382)
β1 = 4.7082(0.2643)
β2 = 0.3393(0.1302)

0.948 < 0.001

Model 2: v =β0+β1d +β2d2 + β3h + ǫ

β0 = −9.92041(10.07911)
β1 = −2.88508(1.30985)
β2 = 0.26862(0.04590)
β3 = 0.37639(0.08823)

0.9771 < 0.001

Model 3: v1/3 = β0+β1d + β2h + ǫ

β0 = −0.85388(0.184315)
β1 = 0.151516(0.005639)
β2 = 0.014472(.002777)

0.9777 < 0.001

Model 4: log(v) =β0+β1log(d) +β2log(h) +ǫ

β0 = −6.63162(0.79979)
β1 = 1.98265(0.07501)
β2 = 1.11712(0.20444)

0.9777 < 0.001

Table 1: Four models considered for the Black Cherry Data
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Table 2: Black Cherry Tree Data
diameter height volume

8.3 70 10.3
8.6 65 10.3
8.8 63 10.2
10.5 72 16.4
10.7 81 18.8
10.8 83 19.7
11.0 66 15.6
11.0 75 18.2
11.1 80 22.6
11.2 75 19.9
11.3 79 24.2
11.4 76 21.0
11.4 76 21.4
11.7 69 21.3
12.0 75 19.1
12.9 74 22.2
12.9 85 33.8
13.3 86 27.4
13.7 71 25.7
13.8 64 24.9
14.0 78 34.5
14.2 80 31.7
14.5 74 36.3
16.0 72 38.3
16.3 77 42.6
17.3 81 55.4
17.5 82 55.7
17.9 80 58.3
18.0 80 51.5
18.0 80 51.0
20.6 87 77.0
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