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New Weighted Portmanteau Statistics for Time Series
Goodness of Fit Testing

Thomas J. FISHER and Colin M. GALLAGHER

We exploit ideas from high-dimensional data analysis to derive new portmanteau tests that are based on the trace of the square of the
mth order autocorrelation matrix. The resulting statistics are weighted sums of the squares of the sample autocorrelation coefficients that,
unlike many other tests appearing in the literature, are numerically stable even when the number of lags considered is relatively close to the
sample size. The statistics behave asymptotically as a linear combination of chi-squared random variables and their asymptotic distribution
can be approximated by a gamma distribution. The proposed tests are modified to check for nonlinearity and to check the adequacy of
a fitted nonlinear model. Simulation evidence indicates that the proposed goodness of fit tests tend to have higher power than other tests
appearing in the literature, particularly in detecting long-memory nonlinear models. The efficacy of the proposed methods is demonstrated
by investigating nonlinear effects in Apple, Inc., and Nikkei-300 daily returns during the 2006–2007 calendar years. The supplementary
materials for this article are available online.

KEY WORDS: ARMA model; GARCH model; Nonlinear test; Residual diagnostic test.

1. INTRODUCTION

In much of applied time series analysis, parametric models
are used to approximate the correlation structure of a stationary
process or of a function of that stationary process. Typically,
to model the correlation structure of a time series {Xt }, we
use a stationary and invertible autoregressive–moving average
(ARMA) process of the form

Xt =
p∑

i=1

φiXt−i −
q∑

j=1

θj εt−j + εt , (1)

where p is the AR order, q is the MA order, and {εt } is an inde-
pendent and identically distributed (iid) innovation sequence of
zero mean random variables with finite variance. For financial
time series, empirical evidence motivates modeling the corre-
lation structure of a nonlinear function of the process. Gener-
alized autoregressive conditional heteroscedasticity (GARCH)
processes model the correlation of the squares of the time se-
ries and stochastic volatility (SV) models model the correlation
structure of the logarithm of the series. Many other nonlinear
models have been proposed and typically have error terms that
are assumed to be iid. If the fit adequately models the underlying
correlation structure, the resulting residuals should be approxi-
mately uncorrelated.

To check the fit of an ARMA model, we typically use the
sample autocorrelation function of the residuals {ε̂t }:

r̂k =
∑n

k+1 ε̂t ε̂t−k∑n
t=1 ε̂2

t

k = 1, 2, . . . , m.

If we correctly identify the orders p and q, each of the above
correlation coefficients should be approximately equal to zero.
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However, if the fitted model underestimates the ARMA orders,
the values of the autocorrelations should significantly deviate
from zero. Most statistical software calculates the portmanteau
statistics

QBP = n

m∑
k=1

r̂2
k and Q̃ = n

m∑
k=1

n + 2

n − k
r̂2
k ,

from Box and Pierce (1970) and Ljung and Box (1978), re-
spectively. Each statistic is asymptotically distributed as a chi-
squared random variable with m − (p + q) degrees of freedom.
Ljung and Box (1978) demonstrated that the sampling distribu-
tion of Q̃ is closer to the asymptotic chi-squared distribution for
smaller sample sizes. Ljung (1986) showed that the distribution
of Q̃ is better approximated by a scaled chi-squared, or gamma,
at small m and that power decreases as m increases.

Monti (1994) proposed a test using the residual partial auto-
correlations:

M̃ = n(n + 2)
m∑

k=1

π̂2
k

n − k
, (2)

where π̂k is the residual partial autocorrelation at lag k. If the
model is adequately identified, the asymptotic distribution of M̃

is chi-squared with m − (p + q) degrees of freedom. Simula-
tions demonstrate that M̃ is more powerful than Q̃ when the
fitted model underestimates the order of the MA component.

Peña and Rodrı́guez (2002) proposed a statistic based on the
determinant of the Toeplitz matrix of sample autocorrelations

R̂m =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 r̂1 · · · r̂m

r̂1 1 · · · r̂m−1

... · · · . . .
...

r̂m · · · r̂1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)
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Their statistic is

D̂ = n
[
1 − |R̂m|1/m

]
,

where |R̂m| is the determinant of matrix R̂m. Asymptotically D̂

can be expressed as a linear combination of chi-squared random
variables and its distribution can be approximated by a gamma
distribution following the methodology of Satterthwaite (1941,
1946) and Box (1954). They recommended replacing R̂m with
R̃m, the autocorrelation matrix built by using the standardized
autocorrelation coefficients, which are the square roots of the
summands in Q̃. These tests have intuitive appeal, since under
the null hypothesis that the model has been correctly identi-
fied, the matrix of estimated correlations is close to the identity
matrix and checking for an adequately fitted model is equiv-
alent to testing if the determinant is close to unity. However,
the estimated matrices can be ill conditioned especially if m is
large relative to n. Peña and Rodrı́guez (2006) demonstrated that∑

ln (1 − π̂2
i ) has the same asymptotic distribution as D̂. Their

simulations show an improvement in small sample time series,
but the Type I error rates appear to be poor.

Recently Mahdi and McLeod (2012) generalized the results
of Peña and Rodrı́guez (2002, 2006) to the multivariate setting.
They suggested the log of the determinant of the Toeplitz matrix
of autocorrelations. In the univariate case, they recommended
the statistic

Dm = −3n

2m + 1
log |R̂m|. (4)

Using methodology similar to Peña and Rodrı́guez (2002, 2006)
and a key result of Box (1954), they found the asymptotic dis-
tribution of Dm as a linear combination of chi-squared random
variables. They demonstrated that the null distribution of Dm

is approximately chi-squared with (3/2)m(m + 1)/(2m + 1) −
(p + q) degrees of freedom. The degrees of freedom for the chi-
squared approximation allow Dm to have conservative Type I
errors in practice.

Several other statistics exist and many authors have studied
the performance of the stated statistics. Despite a plethora of
available methods, practitioners of time series typically rely
on the Ljung–Box statistic, as it is easy to understand and to
compute, and is included in most statistical software packages.

In this article, we introduce several portmanteau statistics
that are asymptotically similar to those in Peña and Rodrı́guez
(2002) but are just as easy to compute as the widely used
Ljung–Box statistic. In Section 2, we develop the statistics for
fitted ARMA processes. Section 3 addresses the problem of
checking for the presence of nonlinearity and the methodology
is applied to testing for the adequacy of a fitted autoregressive
conditional heteroscedasticity (ARCH) model. Section 4
supplies a computational study and data analysis demonstrating
the effectiveness of the proposed test statistics. Section 5
provides concluding remarks. Technical details and proofs
appear in the Appendix. Additional details and simulations are
provided in the supplementary documents.

2. TESTING THE ADEQUACY OF A FITTED
ARMA PROCESS

The statistics proposed in Peña and Rodrı́guez (2002, 2006)
and Mahdi and McLeod (2012) have an asymmetric structure

that helps explain why they work well compared with the
Ljung–Box and the Monti statistics. Intuitively, the sample
autocorrelation at lag 1 will be the most accurate since its
numerator is based on n − 1 data points, whereas the autocor-
relation at lag m is estimated with only n − m observations.
The statistics from Peña and Rodrı́guez (2002, 2006) and
Mahdi and McLeod (2012) put more emphasis on the more
accurate autocorrelations. However, they are not without their
own set of potential drawbacks. As described in section 7.2 of
Brockwell and Davis (1991), the sample autocorrelation matrix
R̂m is nonnegative definite, but when the autocorrelations are
replaced by their standardized counterparts, the matrix R̃m is
not necessarily nonnegative definite. Lin and McLeod (2006)
highlighted this deficiency as the recommended statistic from
Peña and Rodrı́guez (2002) is frequently undefined. They
suggest using the statistic D̂ and improving on its performance
by using a Monte Carlo method to determine the distribution.

The computational instability of the determinant of R̃m is ad-
dressed by the statistic from Peña and Rodrı́guez (2006), which
does not require the computation of a determinant. However,
this statistic still requires logarithmic calculation on m partial
autocorrelations that could lead to other computational stability
and accuracy problems. Mahdi and McLeod (2012) used R̂m

which is nonsingular, however when constructed at large lags,
it too may become ill conditioned. Bickel and Levina (2008)
proposed a consistent regularization procedure that bands or
tapers the autocorrelation matrix under a Gaussian white noise
process; their simulations are promising and this method might
provide a more numerically stable statistic. In this article, we
consider statistics based on the trace of the square of estimated
correlation matrices. These statistics share the same asymptotic
distribution as Peña and Rodrı́guez (2002, 2006), but are
simpler to calculate and are computationally stable. Also, the
proposed statistics seem to be less sensitive to the choice of m.

2.1 Proposed Statistics for ARMA Processes

In the field of multivariate analysis, many authors have pro-
posed methods for testing on the covariance matrix in high-
dimensions; see Schott (2005), Srivastava (2005), Fisher, Sun,
and Gallagher (2010), and Srivastava, Kollo, and von Rosen
(2011) to name a few. In particular, when the dimensionality
exceeds the sample size, the likelihood ratio method degener-
ates as the sample covariance matrix becomes singular. Due to
some of the computational concerns with the matrix R̂m, similar
methodology appears well justified.

Consider the problem discussed in Srivastava (2005) for test-
ing for an identity covariance matrix. Using his approach, let
�m denote the probability limit of matrix R̂m. To test for an iid
correlation structure, we test H0 : �m = I, which is equivalent
to testing if each eigenvalue of �m is one. In practice, we can
use the matrix R̂m and its eigenvalues ai , i = 1, . . . , m + 1 to
test H0. The likelihood ratio criterion uses the geometric mean
of the eigenvalues. If R̂m is singular or close to singular, a
statistic based on the arithmetic mean of the eigenvalues would
be preferred. Note that

1

m + 1

m+1∑
k=1

(ak − 1)2 ≥ 0
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with equality when each ak = 1. An equivalent statement after
some algebra is

1

m + 1
tr

(
R̂2

m

) − 1 ≥ 0.

From calculating the trace of the matrix R̂2
m, we may consider

testing the hypothesis based on the inequality

m∑
k=1

2(m − k + 1)

m + 1
r̂2
k ≥ 0.

Noting the inequality will not change if each side is multiplied
by (m + 1)/2m, and replacing the squared autocorrelations with
their standardized residual counterparts leads to the suggested
statistic

Q̃W = n(n + 2)
m∑

k=1

(m − k + 1)

m

r̂2
k

n − k
. (5)

The statistic Q̃W can be interpreted as a Weighted Ljung–Box
statistic. The residual at lag 1 is given the most weight, 1, while
the residual at lag m is given the least weight, 1/m. The statistic
is easy to implement and is computationally stable. A similar
derivation using the matrix of partial autocorrelations leads to a
Weighted Monti statistic

M̃W = n(n + 2)
m∑

k=1

(m − k + 1)

m

π̂2
k

n − k
. (6)

2.2 Asymptotic Distribution

Define r̂′ = (r̂1, . . . , r̂m) and π̂ ′ = (π̂1, . . . , π̂m) and using
the results of Ljung and Box (1978) and Monti (1994) that

√
nr̂

and
√

nπ̂ are asymptotically multivariate normal with mean
zero vector and covariance matrix (I − Q), where Q = X�−1X′,
� is the information matrix for parameters φ and θ , and X
is an m × (p + q) matrix with elements φ′ and θ ′ defined by
1/φ(B) = ∑

φ′
iB

i and 1/θ (B) = ∑
θ ′
iB

i .

Theorem 1. Under the null hypothesis of an adequately fitted
model, the statistics Q̃W and M̃W are asymptotically distributed
as

∑m
k=1 λkχ

2
k where {χ2

k } are independent chi-squared random
variables with one degree of freedom and λk (k = 1, . . . , m)
are the eigenvalues of (I − Q)W, where W is a diagonal matrix
with elements wii = (m − i + 1)/m (i = 1, . . . , m).

We note that the statistics Q̃W and M̃W follow the same null
asymptotic distribution as that of Peña and Rodrı́guez (2002,
2006) and this distribution is similar to that in Mahdi and
McLeod (2012). The density is difficult to write in explicit form
but approximating the distribution has been discussed by many
authors. Imhof (1961) had shown that probabilities can be found
through numerical integration. Peña and Rodrı́guez (2006) sug-
gested a normal approximation using a generalization of the
Wilson-Hilferty cube root transformation of a chi-squared ran-
dom variable. Lin and McLeod (2006) and Mahdi and McLeod
(2012) suggested a Monte Carlo method to determine the critical
points and p-values. For computational ease, like that in Peña
and Rodrı́guez (2002), we recommend an approximation using
a gamma distribution described in Satterthwaite (1941, 1946)

and Box (1954) with shape and scale parameters

α = 3

4

m(m + 1)2

2m2 + 3m + 1 − 6m(p + q)
, (7)

and

β = 2

3

2m2 + 3m + 1 − 6m(p + q)

m(m + 1)
, (8)

respectively. The derivation of α and β follows similar method-
ology as in Peña and Rodrı́guez (2002) except our recommended
shape and scale are conservative to improve the approximation.
The details of the derivation appear in the Appendix.

It may be natural to let m depend on the sample size n, partic-
ularly to detect serial correlation at higher lags. The following
theorem, which is similar to the results of Bhansali, Giraitis,
and Kokoszka (2007), provides the asymptotic distribution of
our statistic as (n,m) → ∞. Similar results can be derived for
the statistics by Peña and Rodrı́guez (2002) and Mahdi and
McLeod (2012), but in practice if m is large relative to n, their
statistics can become numerically unstable.

Theorem 2. Let {Xt } be an ARMA(p, q) process with inno-
vation sequence {εt }. If m = O(nδ) for some 0 < δ < 1 such
that m/n → 0 and E[ε8] < ∞, then under the null hypothesis
as n → ∞, (QW − K1)/

√
K2 converges to a standard normal

random variable, where K1 and K2 are given in (A.2) and (A.3),
respectively.

3. NONLINEAR MODELS

Due to the limitations of linear models in capturing some
observed data features, much attention has been focused on the
analysis of time series using nonlinear models. It may be the
case that the innovation sequence is uncorrelated, but not iid. In
this case, some function of the residuals may be autocorrelated.
Many authors have considered nonlinear parametric models of
the form

εt = g(ht )ηt , (9)

where ηt are iid with mean zero and variance 1 and {ht } follows
an ARMA type recursion. Two special cases are the GARCH
process of Bollerslev (1986), which takes g(x) = √

x, and the
SV model of Taylor (1986), which assumes g(x) = exp (x). For
these models, a nonlinear function of {εt } inherits the correlation
structure of an ARMA process. Two problems of interest are
studied; (1) using a portmanteau statistic to detect nonlinear
processes and (2) determining the goodness of fit of a nonlinear
process.

3.1 Detecting Nonlinear Processes

Many authors have studied detecting the presence of a non-
linear innovation process by using transformed residuals of a
fitted model. Pérez and Ruiz (2003) provided a nice review
of the topic. McLeod and Li (1983) first showed that if the
innovation sequence is iid, then the vector of autocorrelation
coefficients based on the squared residuals of a fitted ARMA
model is asymptotically normally distributed with mean zero
and unit covariance matrix. In particular, the distribution of the
autocorrelations based on the squared residuals is not influenced
by the number of fitted ARMA parameters. Similarly, Peña and
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Rodrı́guez (2006) and several other authors had suggested us-
ing the absolute residuals or the log of the squared residuals to
detect GARCH or SV structures. Define

r̂k(∗) =
∑n

t=k+1(g(ε̂t ) − ḡ(ε̂t ))(g(ε̂t−k) − ḡ(ε̂t ))∑n
t=1(g(ε̂t ) − ḡ(ε̂t ))2

, (10)

where ḡ(ε̂t ) = ∑
g(ε̂t )/n, as the autocorrelation function based

on the transformation g(·) of the residuals. To simplify the nota-
tion, we use the ∗ character to indicate either a squared, absolute,
or log-squared transformation of the residuals. McLeod and Li
(1983) suggested a Ljung–Box type test statistic,

Q̃∗ = n(n + 2)
m∑

k=1

r̂2
k (∗)

n − k
, (11)

where the ∗ represents the squared residuals in their work, for de-
tecting nonlinear processes in ARMA innovations. They showed
that Q̃∗ is asymptotically distributed as chi-squared with m
degrees of freedom. Peña and Rodrı́guez (2002) provided an
analogous version of their statistics in which the matrix R̃m is
constructed based on the standardized squared residuals. The
statistic in Mahdi and McLeod (2012) can easily be extended to
use any of these transformations of the residuals.

As pointed out in Peña and Rodrı́guez (2002), it is possible
to build a test based on the partial autocorrelations, π̂k(∗). From
this, the Weighted Ljung–Box and the Weighted Monti test can
easily be extended for checking the linearity assumption in a
time series. Consider the following statistics for checking the
linearity assumption

Q̃∗
W = n(n + 2)

m∑
k=1

(m − k + 1)

m

r̂2
k (∗)

n − k
, (12)

and

M̃∗
W = n(n + 2)

m∑
k=1

(m − k + 1)

m

π̂2
k (∗)

n − k
, (13)

where r̂k(∗) is the autocorrelation at lag k based on ε̂2, |ε̂| or
log(ε̂2) and π̂k(∗) are the corresponding partial autocorrelations.
Q̃∗

W can be considered as a Weighted McLeod–Li type statistic
and M̃∗

W is a Weighted Monti type statistic.

Theorem 3. If the series follows a stationary ARMA
process, the statistics Q̃∗

W and M̃∗
W computed from the squared

residuals are asymptotically distributed as
∑m

k=1 wkχ
2
k where

{χ2
k } are independent chi-squared random variables with one

degree of freedom and wk (k = 1, . . . , m) are the weights
wk = (m − k + 1)/m.

We note that a similar argument can be made for the statistics
using the autocorrelations based on |ε̂| and log(ε̂2). As before,
the asymptotic distribution can be approximated using a gamma
distribution. If the series follows an ARMA process, the ap-
proximate distribution of Q̃∗

W and M̃∗
W is gamma with shape

α = 3m(m + 1)/(8m + 4) and scale β = 2(2m + 1)/3m.

3.2 GARCH and ARCH Goodness of Fit

With advances in the area of macroeconomics and financial
time series, the ARCH models of Engle (1982) and GARCH
models of Bollerslev (1986) have gained in popularity. The

GARCH(b, a) model is given by g(x) = √
x in (9) where {ηt }

is iid with zero mean and variance of unity and

ht = ω +
b∑

i=1

αiε
2
t−i +

a∑
j=1

βjht−j .

Much like fitting an ARMA process, after fitting the param-
eters for the GARCH process, checking for the adequacy of
that model should follow. Li and Mak (1994) showed that the
Box–Pierce type statistic suggested by Higgins and Bera (1992)
does not converge to a chi-squared distribution asymptotically
when constructed with the squared residuals. They proposed
the statistic for a fitted GARCH process based on the autocor-
relation function developed by the standardized sample squared
residuals,

r̂k

(
ε̂2
t /ht

) =
∑n

t=k+1

(
ε̂2
t /ĥt − ε̄

) (
ε̂2
t−k/ĥt−k − ε̄

)
∑n

t=1

(
ε̂2
t /ĥt − ε̄

)2 ,

where ε̄ = (1/n)
∑

ε̂2
t /ĥt and ĥt are the sample conditional

variances. They showed

L(m) = nr̂
(
ε̂2
t /ĥt

)′
V̂−1r̂

(
ε̂2
t /ĥt

)
(14)

will be asymptotically distributed as a chi-squared random vari-
able with m degrees of freedom. The matrix V̂ is a consistent
estimator for the covariance matrix of r̂(ε̂2

t /ĥt ).
In addition, Li and Mak (1994) showed that for an ARCH(b)

model (GARCH(b, 0)), the residual autocorrelations r̂k(ε̂2
t /ĥt )

for k = b + 1, . . . , m are asymptotically iid standard normal.
They proposed the modified statistic

L(b,m) = n

m∑
k=b+1

r̂2
k

(
ε̂2
t /ĥt

)
. (15)

Their simulation study shows only modest improvement using
L(m) compared with L(b,m) when the data follow an ARCH
process. They suggested that a practitioner may prefer L(b,m)
for its simplicity in checking the adequacy of a fitted ARCH
model.

Tse (2002) proposed a statistic by modifying the ordinary
least squares procedure that includes lagged squared standard-
ized residuals. The statistic can be calculated using the recursive
method in Tse (2000). Tsui (2004) provided a nice review of
these statistics and a simulation study showing that the statistics
of Li and Mak (1994) and Tse (2002) are comparable and more
powerful than the general regression-based diagnostic provided
in Wooldridge (1991). Li and Li (2005) derived the distribution
of r̂k(ε̂2

t /ĥt ) after an absolute deviations approach for fitting
the GARCH process. They suggested a similar statistic to L(m)
in (14).

3.3 Proposed Statistics

Weighted versions of the statistics from Li and Mak (1994)
can easily be constructed. For a fitted GARCH(b, a) process,
the vector of autocorrelation coefficients on the standardized
squared residuals is asymptotically distributed as multivariate
normal with covariance matrix V. Their statistic L(m) is a stan-
dard quadratic form where V̂ is estimated with a consistent
estimator. A Weighted Li–Mak test could be constructed by con-
sidering the quadratic form nr̂(ε̂2

t /ĥt )′Wr̂(ε̂2
t /ĥt ) where W is a
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Table 1. Empirical size at 5% for AR(1) and MA(1) models, n = 100, m = 20

Fitted AR(1) Fitted MA(1)

φ/θ Q̃W M̃W Dm Q̃ M̃ Q̃W M̃W Dm Q̃ M̃

0.10 0.042 0.040 0.030 0.059 0.050 0.032 0.026 0.015 0.049 0.035
0.30 0.059 0.043 0.033 0.077 0.059 0.035 0.029 0.020 0.056 0.048
0.50 0.053 0.040 0.034 0.070 0.050 0.045 0.038 0.026 0.064 0.057
0.70 0.031 0.024 0.014 0.045 0.034 0.056 0.039 0.027 0.075 0.056
0.90 0.045 0.038 0.025 0.056 0.047 0.062 0.043 0.032 0.078 0.059

matrix of weights described in the Appendix. The distribution of
that statistic would follow the previous theorems. Unfortunately,
the covariance matrix V depends on the asymptotic covariance
matrix of the vector of estimated GARCH parameters, which is
typically estimated by the Hessian of the maximized likelihood
and tends to be numerically unstable. We recommend building
a test based on the simpler Li–Mak test for fitted ARCH(b)
processes. Consider the statistic

LW (b,m) = n

m∑
k=b+1

m − k + (b + 1)

m
r̂2
k

(
ε̂2
t /ĥt

)
. (16)

Theorem 4. Under the null hypothesis of an adequately fit-
ted ARCH(b) model, the statistic LW (b,m) is asymptotically
distributed as

∑m
k=1 wkχ

2
k where each χ2

k is an independent chi-
squared random variable with one degree of freedom and wk

(k = 1, . . . , m) are the weights wk = (m − k + (b + 1))/m.

As with the other proposed statistics in this article, the dis-
tribution can be approximated with a gamma distribution with
shape and scale parameters:

α = 3

4

(m + b + 1)2(m − b)

2m2 + 3m + 2mb + 2b2 + 3b + 1
,

and

β = 2

3

2m2 + 3m + 2mb + 2b2 + 3b + 1

m(m + b + 1)
.

4. COMPUTATIONAL STUDY

As aforementioned, the proposed statistics are easy to im-
plement in any available statistical language. Source code for
the proposed statistics are provided in the functions Weighted.
Box.test and Weighted.LM.test in the “WeightedPortTest” pack-
age of the GNU-licensed R-Project. In this simulation study, the
proposed statistics are compared with the statistic Dm from
Mahdi and McLeod (2012), Q̃ from Ljung and Box (1978),
M̃ from Monti (1994), and L(b,m) from Li and Mak (1994).
The statistic Dm was chosen over those in Peña and Rodrı́guez
(2002, 2006) since it has conservative Type-I performance and
is implemented in the “portes” package in R. Ljung–Box statis-
tic is implemented in the Box.test function and Monti statistic is
easy to implement; both were chosen as they are common statis-
tics used by practitioners. To assist the reader, in each included
power study, the best performing statistic is noted in boldface.

4.1 Study on Fitted ARMA Models

This section presents a comparative study of the empirical
significance level and simulated power for the proposed statis-
tics against those in the literature. This study is similar to that
provided in Peña and Rodrı́guez (2002). Table 1 provides the
empirical size of the statistics under low-order AR and MA
models. In each case, 1000 replicates were performed where an
AR(1) or MA(1) process of size n = 100 was generated using
several φ or θ values. The model was properly fit by an AR(1)
or MA(1) process and the test statistics were computed. The
values show the empirical significance levels when the statis-
tics were calculated at lag m = 20. We see in Table 1 that the
statistic of Mahdi and McLeod (2012) tends to be conservative.
The Ljung and Box (1978) statistic tends to be liberal, whereas
the proposed statistics and that from Monti (1994) tend to be
close to the nominal level of 0.05. At higher ordered models,
the proposed statistics tend to be conservative as seen in the
additional simulations in the supplementary documentation.

A study similar to that of Monti (1994) and Peña and
Rodrı́guez (2002, 2006) indicates the relative power of the
statistics in detecting 24 different under fit ARMA(2,2) models.
Table 2 shows the power of the five statistics when, erroneously,
an AR(1) or MA(1) model is fitted to the ARMA(2,2) process.
In each case, 1000 replicates of n = 100 observations were gen-
erated and the power was calculated at lag m = 20. We see in
Table 2 that one of the two proposed statistics is always the most
powerful, or tied for most powerful. Apparently, the weighting
improves power.

Overall, we conclude that the proposed statistics are compa-
rable with those in Mahdi and McLeod (2012) (and likewise
Peña and Rodrı́guez 2002, 2006) and both tend to outperform
the commonly used Ljung and Box (1978) and Monti (1994).

4.2 Detecting Nonlinear Processes

The study in Pérez and Ruiz (2003) suggests that statistics
based on the squared and absolute residuals are more powerful
than those based on the log of the squared residuals, particularly
when the true model contains some long persistence. Based on
their result, we restrict our study to the case of squared and
absolute residuals.

Consider four nonlinear models proposed in Keenan (1985):

NL-1: Yt = εt − 0.4εt−1 + 0.3εt−2 + 0.5εt εt−2;
NL-2: Yt = εt − 0.3εt−1 + 0.2εt−2 + 0.4εt−1εt−2 − 0.25ε2

t−2;
NL-3: Yt = 0.4Yt−1 − 0.3Yt−2 + 0.5Yt−1εt−1 + εt ;
NL-4: Yt = 0.4Yt−1 − 0.3Yt−2 + 0.5Yt−1εt−1 + 0.8εt−1 + εt .
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Table 2. Power levels based on 5% significance when data are generated from ARMA(2,2) models and AR(1)
or MA(1) models are fitted, n = 100, m = 20

Model # φ1 φ2 θ1 θ2 Q̃W M̃W Dm Q̃ M̃

Fitted with AR(1) model
1 – – −0.50 – 0.275 0.286 0.250 0.223 0.210
2 – – −0.80 – 0.792 0.966 0.956 0.624 0.856
3 – – −0.60 0.30 0.805 0.990 0.986 0.632 0.937
4 0.10 0.30 – – 0.463 0.421 0.394 0.375 0.295
5 1.30 −0.35 – – 0.745 0.721 0.704 0.615 0.517
6 0.70 – −0.40 – 0.573 0.645 0.618 0.442 0.455
7 0.70 – −0.90 – 0.997 1.000 1.000 0.927 1.000
8 0.40 – −0.60 0.30 0.879 0.998 0.998 0.707 0.979
9 0.70 – 0.70 −0.15 0.156 0.140 0.114 0.138 0.111
10 0.70 0.20 0.50 – 0.759 0.755 0.729 0.650 0.613
11 0.70 0.20 −0.50 – 0.369 0.465 0.422 0.293 0.271
12 0.90 −0.40 1.20 −0.30 0.738 0.963 0.953 0.579 0.887

Fitted with MA(1) model
13 0.50 – – – 0.323 0.290 0.251 0.274 0.207
14 0.80 – – – 0.986 0.974 0.974 0.962 0.926
15 1.10 −0.35 – – 0.996 0.997 0.997 0.986 0.986
16 – – 0.80 −0.50 0.860 0.937 0.924 0.696 0.800
17 – – −0.60 0.30 0.420 0.473 0.441 0.319 0.306
18 0.50 – −0.70 – 0.897 0.869 0.854 0.777 0.695
19 −0.50 – 0.70 – 0.901 0.882 0.876 0.796 0.740
20 0.30 – 0.80 −0.50 0.640 0.762 0.727 0.498 0.590
21 0.80 – −0.50 0.30 0.986 0.978 0.977 0.966 0.929
22 1.20 −0.50 0.90 – 0.439 0.677 0.617 0.383 0.596
23 0.30 −0.20 −0.70 – 0.238 0.263 0.230 0.228 0.207
24 0.90 −0.40 1.20 −0.30 0.799 0.939 0.929 0.615 0.828

NOTE: The best performing statistic is noted in bold.

For each model, 1000 replicates of sample size n = 204 are gen-
erated and an AR(p) is fitted to the data, where p is selected by the
Akaike Information Criterion (AIC) with p ∈ {1, 2, 3, 4}. This
study is analogous to those performed in Peña and Rodrı́guez
(2002, 2006). The simulation results in Table 3 show that the
statistics based on the squared residuals are more powerful for
the first three nonlinear models, whereas in NL-4, the statistics
based on absolute residuals are the most powerful. In general,
the proposed Weighted McLeod–Li type test appears to be the
most powerful in detecting the nonlinear process, with a few
exceptions in which the Weighted Monti is most powerful or
ties Mahdi–McLeod as the most powerful. As with the results

in Tsay (1986) and Peña and Rodrı́guez (2002, 2006), we see
that the statistics have difficulty in detecting the nonlinearity of
NL-1. Empirical sizes for these nonlinear detection statistics are
provided in the supplementary documents.

The study in Peña and Rodrı́guez (2002) suggests that the
statistic based on the likelihood ratio criterion is less powerful
than the traditional McLeod–Li or Monti type statistics when
detecting a heteroscedastic process with long persistence.
Rodrı́guez and Ruiz (2005) proposed a new statistic using
similar methodology as McLeod and Li (1983) attempting
to improve the results by including additional information
in the statistic to detect possible patterns among the sample

Table 3. Power levels of the Q̃∗
W , M̃∗

W , D∗
m, Q̃∗, and M̃∗ tests at 5% significance for four nonlinear models and

the fitted model is an AR(p), n = 204

m = 7 m = 24

Model Q̃∗
W M̃∗

W D∗
m Q̃∗ M̃∗ Q̃∗

W M̃∗
W D∗

m Q̃∗ M̃∗

NL-1 ε2 0.159 0.162 0.162 .132 0.145 0.120 0.118 0.108 0.079 0.082
|ε| 0.073 0.068 0.065 0.073 0.073 0.069 0.068 0.055 0.062 0.065

NL-2 ε2 0.615 0.607 0.601 0.504 0.501 0.459 0.448 0.423 0.321 0.295
|ε| 0.484 0.467 0.462 0.391 0.358 0.373 0.351 0.325 0.273 0.223

NL-3 ε2 0.970 0.965 0.962 0.914 0.915 0.898 0.892 0.887 0.757 0.737
|ε| 0.932 0.936 0.935 0.858 0.849 0.851 0.834 0.824 0.732 0.659

NL-4 ε2 0.929 0.926 0.926 0.864 0.841 0.825 0.797 0.788 0.675 0.611
|ε| 0.963 0.959 0.959 0.925 0.902 0.904 0.885 0.880 0.801 0.766

NOTE: The best performing statistic is noted in bold.
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Table 4. Power levels of the Q̃∗
W , M̃∗

W , D∗
m, Q̃∗, and M̃∗ tests at 5% significance for detecting GARCH(1,1) models of financial time series

m = 12 m = 24

n Model Q̃∗
W M̃∗

W D∗
m Q̃∗ M̃∗ Q̃∗

W M̃∗
W D∗

m Q̃∗ M̃∗

250 GF-1 ε2 0.317 0.280 0.271 0.285 0.251 0.309 0.270 0.253 0.276 0.222
|ε| 0.246 0.202 0.192 0.230 0.161 0.245 0.177 0.166 0.217 0.141

GF-2 ε2 0.877 0.844 0.839 0.847 0.794 0.861 0.822 0.808 0.802 0.723
|ε| 0.846 0.802 0.796 0.813 0.744 0.836 0.781 0.762 0.782 0.668

500 GF-1 ε2 0.561 0.519 0.514 0.556 0.490 0.571 0.515 0.504 0.515 0.441
|ε| 0.457 0.400 0.395 0.458 0.373 0.470 0.400 0.382 0.428 0.300

GF-2 ε2 0.985 0.981 0.981 0.982 0.973 0.982 0.979 0.979 0.973 0.952
|ε| 0.979 0.973 0.973 0.973 0.957 0.975 0.966 0.964 0.965 0.934

NOTE: The best performing statistic is noted in bold.

autocorrelation. Their statistic has an embedded structure and
is a generalization of the McLeod–Li statistic. We omit it from
our study, as it is outside the scope and aim of this article.

We perform the study from Peña and Rodrı́guez (2002) in-
volving the financial models from Carnero, Peña, and Ruiz
(2001). A GARCH(1,1) process (9) is generated with two
sets of parameters: GF-1: (ω, α, β) = (1, 0.05, 0.90) and GF-2:
(ω, α, β) = (1, 0.15, 0.80). One thousand replicates of two dif-
ferent sample sizes are generated, the statistics based on the
squared and absolute residuals are computed, and the em-
pirical power is found at lags m = 12 and m = 24. Table 4
shows that in general, the statistics based on the squared resid-
uals are more powerful. Furthermore, the proposed Weighted
McLeod–Li type test tends to be the most powerful, with the

exception of one instance when it is comparable to the most
powerful McLeod–Li type test. Generally, the McLeod–Li type
test outperforms that based on the likelihood ratio criterion. As
with the previous study, there is a decrease in power as m in-
creases, although the decrease appears to be less pronounced for
the Weighted McLeod–Li type statistic. A similar study based
on the results of Tol (1996) is provided in the supplementary
documents.

The final study for detecting heteroscedastic processes studies
the long memory stochastic volatility (LMSV) models found in
Pérez and Ruiz (2003),

Yt = exp(ht/2)εt

(1 − φB)(1 − B)dht = ηt ,

Table 5. Power levels of the Q̃∗
W , M̃∗

W , D∗
m, Q̃∗, and M̃∗ tests at 5% significance for long memory stochastic volatility processes

m = 10 m = 50

n Model Q̃∗
W M̃∗

W D∗
m Q̃∗ M̃∗ Q̃∗

W M̃∗
W D∗

m Q̃∗ M̃∗

256 LM-1 ε2 0.907 0.881 0.878 0.895 0.853 0.878 0.823 0.796 0.815 0.696
|ε| 0.937 0.922 0.919 0.941 0.908 0.930 0.877 0.845 0.894 0.748

LM-2 ε2 0.287 0.252 0.247 0.267 0.247 0.266 0.218 0.160 0.197 0.123
|ε| 0.236 0.195 0.189 0.235 0.180 0.232 0.150 0.103 0.192 0.104

LM-3 ε2 0.934 0.914 0.912 0.927 0.892 0.893 0.834 0.811 0.796 0.633
|ε| 0.987 0.981 0.981 0.985 0.971 0.973 0.943 0.935 0.950 0.841

LM-4 ε2 0.402 0.373 0.369 0.396 0.348 0.402 0.330 0.273 0.312 0.203
|ε| 0.390 0.341 0.332 0.378 0.313 0.378 0.258 0.211 0.315 0.162

LM-5 ε2 0.825 0.795 0.791 0.822 0.774 0.805 0.730 0.691 0.724 0.574
|ε| 0.843 0.802 0.797 0.839 0.772 0.821 0.714 0.676 0.757 0.574

LM-6 ε2 0.201 0.189 0.185 0.192 0.180 0.180 0.153 0.112 0.136 0.103
|ε| 0.135 0.122 0.117 0.138 0.109 0.135 0.095 0.068 0.121 0.070

512 LM-1 ε2 0.994 0.994 0.994 0.995 0.992 0.994 0.990 0.989 0.987 0.967
|ε| 0.999 0.999 0.999 0.998 0.997 0.998 0.997 0.997 0.998 0.984

LM-2 ε2 0.480 0.439 0.437 0.484 0.431 0.490 0.411 0.385 0.405 0.313
|ε| 0.430 0.384 0.374 0.429 0.353 0.425 0.300 0.276 0.340 0.217

LM-3 ε2 0.993 0.991 0.991 0.993 0.988 0.987 0.975 0.972 0.967 0.925
|ε| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998

LM-4 ε2 0.738 0.701 0.699 0.737 0.675 0.739 0.674 0.643 0.663 0.545
|ε| 0.709 0.643 0.638 0.699 0.623 0.701 0.591 0.549 0.624 0.432

LM-5 ε2 0.989 0.982 0.982 0.992 0.984 0.991 0.978 0.978 0.977 0.922
|ε| 0.993 0.991 0.991 0.991 0.983 0.992 0.978 0.977 0.983 0.950

LM-6 ε2 0.297 0.275 0.272 0.293 0.265 0.310 0.266 0.242 0.263 0.205
|ε| 0.265 0.226 0.220 0.256 0.217 0.283 0.207 0.164 0.237 0.131

NOTE: The best performing statistic is noted in bold.
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that is, the log volatility follows an AR fractionally integrated
MA, or ARFIMA(p, d, q). We note that when d = 0, we have
a short memory autoregressive stochastic volatility model
(ARSV). Table 5 provides the power of the statistics based on
the squared and absolute residuals after 1000 replicates of two
sample sizes were calculated and tested at lags m = 10 and
m = 50. The six different long memory stochastic volatility
models considered are LM-1: (φ, d, σ 2

η ) = (0.98, 0, 0.05),
LM-2: (φ, d, σ 2

η ) = (0.9, 0.2, 0.01), LM-3: (φ, d, σ 2
η ) =

(0.9, 0.2, 0.1), LM-4: (φ, d, σ 2
η ) = (0.8, 0.45, 0.01), LM-

5: (φ, d, σ 2
η ) = (0.9, 0.45, 0.01), and LM-6: (φ, d, σ 2

η ) =
(0.0, 0.45, 0.1).

Table 5 shows that on models LM-1, LM-3, and LM-5, the
statistics based on the absolute residuals tend to be the most
powerful. On models LM-2, LM-4, and LM-6, the statistics
based on the squared residuals are the most powerful; this fol-
lows the results in Pérez and Ruiz (2003). We also note that for
lag m = 10, the proposed Weighted McLeod–Li type and origi-
nal McLeod–Li type tests are comparable and the most powerful
in every case. When testing at the larger lag of m = 50, we see
the proposed Weighted McLeod–Li type test is always the most
powerful and its decrease in power appears less pronounced
than that of the McLeod–Li type.

4.3 Fitted ARCH Processes

In Section 3.2, the versatility of the methodology is shown as
it is extended to check for the adequacy of a GARCH or ARCH
fit. As discussed in Section 3.2, a Weighted Li and Mak or Li
and Li statistic can be constructed but the exact distribution
(and approximation) under the null hypothesis will depend on
a consistent estimate for the covariance of the autocorrelations.
We omit that study here, although an example is provided in the
supplementary documents.

Table 6 provides the empirical Type I errors where
the data are generated, and properly fit, by two differ-
ent AR(1)-ARCH(b) models suggested in Li and Mak
(1994): ARCH-1: (φ,ω, α1) = (0.2, 0.2, 0.2) and ARCH-2:
(φ,ω, α1, α2) = (0.2, 0.2, 0.2, 0.2) where ARCH-1 has b = 1
and ARCH-2 has b = 2. Four different sample sizes are
considered and 1000 replicates are performed. We see in
Table 6 that the simulated size is comparable to that found in
Li and Mak (1994). We extend their study by comparing the

Table 6. Empirical size at size 5% for ARCH-1 and ARCH-2 models

m = 6 m = 12

LW (b, m) L(b, m) LW (b, m) L(b, m)

Model ARCH-1, b = 1
n = 100 0.022 0.020 0.017 0.014
n = 200 0.039 0.037 0.038 0.037
n = 300 0.036 0.040 0.033 0.040
n = 400 0.038 0.033 0.033 0.041

Model ARCH-2, b = 2
n = 100 0.024 0.016 0.019 0.016
n = 200 0.038 0.027 0.034 0.024
n = 300 0.050 0.051 0.042 0.033
n = 400 0.047 0.042 0.039 0.043

Table 7. Power levels at size 0.05 for ARCH(1) and ARCH(2) models

m = 6 m = 12

LW (b, m) L(b, m) LW (b,m) L(b, m)

AR(1)-ARCH(1) fitted to ARCH-2, b = 1
n = 100 0.185 0.134 0.139 0.081
n = 200 0.393 0.330 0.338 0.233
n = 300 0.579 0.491 0.511 0.399
n = 400 0.753 0.662 0.676 0.553

AR(1)-ARCH(2) fitted to ARCH-3, b = 2
n = 100 0.088 0.084 0.079 0.062
n = 200 0.207 0.197 0.193 0.158
n = 300 0.343 0.323 0.331 0.260
n = 400 0.471 0.454 0.450 0.355

NOTE: The best performing statistic is noted in bold.

statistics at two lags, m = 6 and m = 12. All of the statistics
are close to the nominal size of 0.05 or conservative.

Table 7 supplies a power study analogous to that in
Li and Mak (1994). The data are generated from models
ARCH-2 and model ARCH-3: (φ,ω, α1, α2, α3, α4, α5) =
(0.2, 0.2, 0.2, 0.2, 0.1, 0.05, 0.05). An inadequate AR(1)-
ARCH(1) or AR(1)-ARCH(2) are fit, respectively. One
thousand replicates were performed on four different sample
sizes and the power levels are reported. Table 7 shows that the
proposed statistic is more powerful in detecting an inadequate
ARCH fit. We see an improvement of upwards of 10% for
n = 300 when an AR(1)-ARCH(1) is fit to a true model of
AR(1)-ARCH(2).

4.4 Monte Carlo Methods and Computational Efficiency

Lin and McLeod (2006) and Mahdi and McLeod (2012) rec-
ommended a Monte Carlo method to obtain the distribution and
p-values for the statistic based on the determinant of the autocor-
relation matrix R̂m. With advances in modern computing power,
particularly with parallel processing, this procedure can gener-
ally be handled quite easily. However, in some applications, the
use of a Monte Carlo method may be too expensive due to the
computational efficiency of the statistic. In practice, calculation
of the determinant of an m × m matrix requires on the order
of O(m2) operations, where our proposed statistics only require
O(m) operations. Further studies are included in the supple-
mental documents. If a practitioner wishes to use a Monte Carlo
method, the more computationally efficient proposed statistics
may be preferred.

4.5 Data Analysis

To demonstrate the effectiveness of the proposed methods,
consider the analysis of two return series. We examine the log
daily closing return of Apple, Inc., stock (AAPL) and the Nikkei-
300 index (N300) on the market days from May 1, 2006, through
October 31, 2007. This period essentially accounts for the year
and a half before the very volatile recession that began in late
2007. The two series can be seen in Figure 1.

When analyzing the Apple, Inc., log returns, using any of the
statistics, no ARMA process is detected. Furthermore, through
analysis of the squared series, no nonlinear process is detected
using any method. Table 8 provides the p-values of the five
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Figure 1. Apple, Inc., and Nikkei-300 return May 1, 2006, through October 31, 2007.

aforementioned statistics using absolute values at various lags
m. The simulation study suggested the proposed Weighted
McLeod–Li type statistic appeared to be the most powerful
in detecting long memory processes, particularly when testing
at larger lags. As seen in Table 8, in general, only the proposed
Weighted McLeod–Li type and the McLeod–Li type statistic
suggest any presence of a nonlinear process. It is also interest-
ing to note that the proposed statistic tends to have more stable
p-values. That is, once the nonlinear process is detected, it con-
tinues to be detected, even when testing at larger lags, whereas
the McLeod–Li type statistic becomes insignificant.

A similar phenomenon is seen with the Weighted Li–Mak
statistic. When analyzing the Nikkei-300 index, no ARMA pro-
cess is detected. Every statistic, using both the squared series
and absolute series, suggests the presence of a nonlinear pro-
cess. Following the work of Li and Mak (1994), we fit increasing
orders of ARCH processes to the index series. After fitting an
ARCH(3) model to the series, Table 9 provides the p-values of
the proposed statistics and that of Li and Mak (1994) at various
lags. The proposed Weighted Li–Mak test appears to suggest that
an ARCH(3) is inadequate, while the conclusion of the Li and
Mak (1994) test is not consistent across m. The proposed method
tends to be more stable as the lag m increases. Even at m = 50
when the statistic is insignificant, it still suggests weak signifi-
cance while that of Li–Mak has a p-value greater than 0.30.

Table 8. The p-values in detecting nonlinear effects in Apple, Inc.,
returns using absolute values

m Q̃∗
W M̃∗

W D∗
m Q̃∗ M̃∗

10 0.1033 0.2089 0.2170 0.1480 0.3454
20 0.0148 0.0707 0.0816 0.0037 0.0266
30 0.0079 0.0482 0.0610 0.0133 0.0665
40 0.0066 0.0541 0.0735 0.0231 0.1422
50 0.0092 0.0773 0.1095 0.0368 0.2029
60 0.0123 0.1043 0.1546 0.0878 0.3853

5. DISCUSSION

This article introduces new time series goodness of fit tests,
which can be derived by considering traces of squares of esti-
mated correlation matrices. Using the trace of R̂2

m rather than
the determinant results in a test statistic that is much more sta-
ble in terms of m. The resulting weighted portmanteau tests
are easy to compute and numerically stable, but still tend to be
more powerful than the usual Ljung–Box tests in detecting un-
der fit ARMA processes. In many cases, the proposed methods
are more effective in detecting nonlinear effects compared with
those in the literature. The simulations and data analysis consid-
ered in this article demonstrate that the weighting scheme also
results in test statistics that are less sensitive to the choice of m;
that is, the conclusion of the test is more consistent as m varies.

There are several open questions pointed out by referees. In
what sense is the weighting scheme optimal? It may be possible
to analytically show that the large sample distributional approx-
imation is optimal if the weights decrease in the lag. A second
notion of optimality is in terms of power of detecting under fit
models. Since for ARMA processes the autocorrelations (even-
tually) decay exponentially in the lag, it may be the case that in
the class of ARMA processes, a decreasing sequence of weights
can optimize power in certain settings. It has been known for
some time that partial correlations pick up missing MA com-
ponents, while autocorrelations are better at detecting missing

Table 9. The p-values of statistics after ARCH(3) has been fit to
Nikkei-300 index series

m LW (b,m) L(b, m)

10 0.0298 0.0115
20 0.0335 0.0883
30 0.0184 0.0244
40 0.0341 0.1724
50 0.0690 0.3227
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autoregressive terms. Can a combination of Q̃W and M̃W be used
to improve performance in detecting under fit ARMA models?

APPENDIX: TECHNICAL DETAILS

A.1 Testing on ARMA Models

Proof of Theorem 1. Both Q̃W and M̃W can be expressed as
quadratic forms. Define

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0
m − 1

m
· · · 0

... · · · . . .
...

0 · · · 0
1

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

as the diagonal matrix of our weights. Then Q̃W and M̃W are asymp-
totically expressed as the quadratic forms

Q̃W � nr̂′Wr̂ and M̃W � nπ̂ ′Wπ̂ as n → ∞,

respectively, where A′ denotes the transpose operation on vector/matrix
A and r̂ (π̂) is the m × 1 vector of the autocorrelations (partial auto-
correlations) from lag 1 to m. From the results in Box (1954), both
quadratic forms will be distributed as

m∑
k=1

λkχ
2
k , (A.1)

where each χ 2
k are independently distributed chi-squared random vari-

ables with one degree of freedom, and the λk are the m real nonzero
characteristic roots of the matrix (I − Q)W where I − Q is the m × m

covariance matrix of both
√

nr̂ and
√

nπ̂ . Box and Pierce (1970) and
McLeod (1978) approximated the matrix Q by the projection matrix
X(X′X)−1X′ when m is moderately high.

Gamma Approximation Box (1954) and Satterthwaite (1941, 1946)
demonstrated that the distribution of this particular quadratic form can
be well approximated by cχ 2

k , or gamma distribution. The parameters
are chosen so that the distribution has the same first two cumulants as the
quadratic form. In particular, consider the shape and scale parameters
for a gamma distribution:

α = K2
1

K2
and β = K2

K1
,

where Ki is the ith cumulant of the distribution (A.1). Box (1954)
provided a formula (theorem 2.2 in Box 1954) for the cumulants and
a simple algebraic manipulation of the results in Peña and Rodrı́guez
(2002) provides

K1 =
m∑

i=1

λi = tr((I − Q)W) = m + 1

2
− (p + q) + 1

m

m∑
i=2

(i − 1)qii ,

and

K2 = 2
m∑

i=1

λ2
i = 2tr ((I − Q)W(I − Q)W)

= 1

3m
(m + 1)(2m + 1) − 2(p + q)

+ 4

m

m∑
i=2

(i − 1)qii − 4

m2

m∑
i=2

(i − 1)2qii

+ 2

m2

m∑
i=2

m∑
j=2

(i − 1)(j − 1)q2
ij ,

where qij is the element of the matrix Q on row i, column j. Peña and
Rodrı́guez (2002) demonstrated that as m grows large, the O(m−1) and
O(m−2) terms tend to zero. We recommend using an upper bound on
K1 as it improves the approximation under the null distribution and the
limiting argument for K2 from Peña and Rodrı́guez (2002):

K1 = m + 1

2
, (A.2)

and

K2 = (m + 1)(2m + 1)

3m
− 2(p + q). (A.3)

Proof of Theorem 3. From the result in McLeod and Li (1983), the
autocorrelations of the squared residuals are asymptotically normally
distribution as

√
nr̂(ε̂2

t ) → N (0, Im) where Im is an m × m identity
matrix. Applying this result to the results in Monti (1994) provides
the asymptotic distribution

√
nπ̂ (ε̂2

t ) → N (0, Im). Both Q̃W (ε̂2
t ) and

M̃W (ε̂2
t ) can be expressed as quadratic forms as in Theorem 1 and

the result follows. We note that the gamma approximation follows
the previous result with the exception that the cumulants are easier
to find since the covariance matrix of the autocorrelations and partial
autocorrelations is an identity matrix.

A.2 Testing on ARCH Models

Proof of Theorem 4. From the result in Li and Mak (1994), for
an ARCH(b) model, the autocorrelations of the standardized squared
residuals are asymptotically normally distributed as N (0, Im−(b+1))
where Im−(b+1) is an (m − (b + 1)) × (m − (b + 1)) identity matrix.
LW (b, m) can be expressed as a quadratic form and the result follows
that in A.1.

Cumulants for the Gamma Approximation. We note that only m −
(b + 1) terms are in the above statistic, but the weights are still based
on m. Only a submatrix of W from above is used, the cumulants
are

K1 = m(m + 1) − b(b + 1)

2m
,

and

K2 = m(m + 1)(2m + 1) − b(b + 1)(2b + 1)

3m2
.

SUPPLEMENTARY MATERIALS

Proof of Theorem 2: Outline of a proof to Theorem 2 in Section
2.2. (mtoinfty.pdf, Portable Document Format file)

Additional Simulations: Extension of Section 4 including ad-
ditional simulation studies. (simulations.pdf, Portable Docu-
ment Format file)

Data for analysis: Apple, Inc., (AAPL) stock and Nikkei-300
index (N300) closing prices from May 1, 2006, through
October 31, 2007. (apple0607.csv and n300-0607.csv,
comma-separated values file)

WeightedPortTest R-package: R-package contaning source
code for the weighted portmanteau tests introduced in
this article. (WeightedPortTest 1.0.tar.gz, GNU zipped tar
file)

[Received August 2011. Revised January 2012.]
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