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We propose a new adaptive L1 penalized quantile regression estimator for high-

dimensional sparse regression models with heterogeneous error sequences. We show

that under weaker conditions compared with alternative procedures, the adaptive L1

quantile regression selects the true underlying model with probability converging to one,

and the unique estimates of nonzero coefficients it provides have the same asymptotic

normal distribution as the quantile estimator which uses only the covariates with non-

zero impact on the response. Thus, the adaptive L1 quantile regression enjoys oracle

properties. We propose a completely data driven choice of the penalty level ln, which

ensures good performance of the adaptive L1 quantile regression. Extensive Monte Carlo

simulation studies have been conducted to demonstrate the finite sample performance of

the proposed method.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Consider the high dimensional sparse regression model

yi ¼ bn

0þb
n

1zi1þ � � � þb
n

pzipþEi, i¼ 1, . . . ,n, ð1Þ

where fyig’s are random variables, fzig’s are p� 1 independent random covariate vectors, and fEig are independent random
error terms with PðEir09ziÞ ¼ t for some quantile index t. We allow the dimension of the covariate vector to be very large,
possibly of order OðexpðnaÞÞ, for some constant 0oao1; but the regression parameter bn is sparse in the sense that only
s5p of its components are non-zero. Of interest is to identify the nonzero regressors and estimate their regression
coefficients as well. Such models have attracted great attention due to the demand for data analysis created by many new
applications arising in genetics, signal processing, machine learning, climate change point detection and other fields with
high-dimensional data sets available.

Various methods have been developed to identify the unknown model and estimate the corresponding coefficients
simultaneously for the high dimensional sparse model (see Fan and Peng, 2004; Huang et al., 2008a, 2008b), which mostly
focus on the penalized least squares regression. Although some of them enjoy desirable oracle properties (Fan and Li,
2001), they generally require stringent moment assumptions (Cramér condition) on the unobservable homoscedastic
random errors, fEig. Therefore, they are not robust and may not be applicable in practice. Compared with least squares,
another important statistical method, quantile regression (Koenker and Basset, 1978), is robust and allows relaxation of
moment conditions on the heterogeneous error sequence. The advantage of quantile regression goes beyond that: it can
provide a more complete model of the relationship between predictors and response variables. (e.g. Koenker, 2005), it
. All rights reserved.
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owns excellent computational properties. (e.g. Portnoy and Koenker, 1997), and it has widespread applications (e.g. Yu
et al., 2003; Chernozhukov, 2005). Belloni and Chernozhukov (2011) integrate general quantile regression into an L1

penalty framework for the high-dimensional sparse model. Another interesting estimator, the Dantzig selector, considered
by Candes and Tao (2007), can be considered as a penalized median regression. However, both of these estimators achieve
the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðs logðpÞÞ

p
consistency rate, which is slower than the oracle rate

ffiffiffiffiffiffiffiffi
n=s

p
from He and Shao (2000). Wang et al. (2012)

proposed a quantile regression with SCAD penalty. Since the objective function is not convex, the solutions are not unique.
To our best knowledge, the desirable oracle properties have not been achieved by any penalized quantile regression for the
high-dimensional sparse model.

In this paper we attempt to overcome the limitations of the existing quantile regression techniques by combining
quantile regression with a fully adaptive L1 penalty function to produce adaptive L1 quantile regression, which can
simultaneously select the model and provide a robust estimator possessing oracle properties. Exploiting the ideas of Wang
et al. (2007) and Zou and Yuan (2006), we use the consistent estimator from Belloni and Chernozhukov (2011) to
determine adaptive weights. Since we are using quantile loss functions, we do not require the Cramér condition on the
error sequence. This paper’s contributions are summarized as follows:
�
 First, we show that under mild conditions, the adaptive L1 quantile regression will select the correct model with
probability converging to 1, and for any quantile index in a compact set in (0, 1), the unique adaptive L1 quantile
regression estimates are consistent with the oracle rate

ffiffiffiffiffiffiffiffi
n=s

p
. This is an advancement from the existing quantile

regression methods for the high-dimensional sparse model.

�
 Second, any linear combination of the estimates is asymptotically normal with the same asymptotic variance as that of

the oracle estimator.

�
 Third, in deriving the aforementioned oracle properties, we propose a new data-driven procedure to select the penalty

level and show that it satisfies the requirements to achieve the oracle rate.

The rest of the paper is organized as follows. In Section 2, we define the adaptive L1 quantile regression procedure. In
Section 3, we study the asymptotic properties of the L1 quantile regression estimator and discuss the choice of penalty
level ln. Numerical studies are presented in Section 4. We give concluding remarks in Section 5, and relegate the technical
proofs to Appendix.

2. The adaptive L1 quantile regression

We start with introducing notations. We implicitly index all parameter values by the sample size n, but we omit the
index whenever this does not cause confusion. We use the notation a3b¼maxfa,bg and a4b¼minfa,bg. We denote the l2-
norm by J � J, and the l0-‘‘norm’’ (the number of nonzero components) by J � J0. Given a vector d 2 Rpþ1, and a set of indices
T � f0,1, . . . ,pg, we denote by dT the vector in which dTj ¼ dj if j 2 T , dTj ¼ 0 if j=2T . And qn is the tth quantile of E.

In order to define the adaptive L1 quantile regression, let us briefly review quantile regression and L1 penalized quantile
regression. Let xi ¼ ð1,zT

i Þ
T . Quantile regression estimator of bn can be obtained by solving

b
^

¼ arg min
b

Xn

i ¼ 1

rtðyi�xT
i bÞ, ð2Þ

where rtðtÞ ¼ t1ðt40Þt�ð1�tÞ1ðtr0Þt is the check function.
Without loss of generality, we assume that the first sþ1 elements of bn are nonzero, and the rest are zero. For

simplicity, write bn
¼ ðbnT

a ,bnT
b Þ

T , where bn

a is a ðsþ1Þ � 1 vector and bn

b is a ðp�sÞ � 1 vector of zeroes. Similarly, we
decompose xi as ðxT

ia,xT
ibÞ

T .
Belloni and Chernozhukov (2011) proposed a penalized L1 quantile regression estimator b

~

, which minimizes

~Q tðbÞ ¼
Xn

i ¼ 1

rtðyi�xT
i bÞþ

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1�tÞ

p
n

Xp

i ¼ 1

ŝj9bj9, ð3Þ

where ŝj ¼
Pn

i ¼ 1 x2
ij=n,j¼ 1, . . . ,p and obeys Pðmax1r jrp9ŝj�19r1=2ÞZ1�a-1. Here ln is the penalty parameter.

Ideally, a penalty function should be adaptive in the sense that it penalizes insignificant variables enough to force
estimates of their regression coefficients to be zero, but does not overpenalize significant variables, so that the correct
model can be identified and hence oracle properties can be attained. However, it can be seen that the penalty for each
variable in (3) is of the same order, ln=n, and hence not quite adaptive. A similar issue appears in the estimator proposed
by Candes and Tao (2007).

To improve the quantile regression for the high-dimensional sparse model, we attempt to assign fully adaptive weights
to different variables and propose the adaptive L1 quantile regression estimator b

^

, which is a minimizer of the objective
function

QtðbÞ ¼
Xn

i ¼ 1

rtðyi�xT
i bÞþln

Xp

j ¼ 1

oj9bj9, ð4Þ
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where x 2 Rp is weights vector chosen to be 9b
~

9�14
ffiffiffi
n
p

, for any
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðs logðn3pÞÞ

p
-consistent estimator b

~

of bn. For example,
we can take the estimator from Belloni and Chernozhukov (2011) as b

~

, which under conditions A1–A3 given below will
converge at a sufficiently fast rate. The formulation (4) includes the LAD-Lasso proposed by Wang et al. (2007) as a special
case that the dimensionality p is fixed.

3. Asymptotic properties

In this section, we state primitive regularity conditions and then establish the asymptotic properties of the adaptive L1

quantile regression estimator.

3.1. Regularity conditions

The following regularity conditions are assumed throughout the rest of this paper.
A1
 (Sampling and smoothness). For any value x in the support of xi, the conditional density f E9zðE9zÞ is continuously

differentiable at each y 2 R, and f E9xðE9xÞ and @=@Ef E9xðE9xÞ are bounded in absolute value by constants f and f 0

uniformly in E 2 R and x in the support of xi. Moreover, the conditional density of E9x evaluated at the conditional

quantile qn
x is bounded away from 0 uniformly for any x in the support of xi. That is, there exists a constant f , such that

f E9xðq
n
x9xÞ4 f 40
A2
 (Restricted identifiability and nonlinearity). Define T ¼ f0,1, . . . ,sg, and T ðd,mÞ � f0,1, . . . ,pg\T as the support of the m

largest in absolute value components of the vector. For some constants mZ0 and cZ0, the matrix E½xixi
0� satisfies

k2
m :¼ inf

d2A A,da0

d0E½xixi
0�d

JdT
S

T ðd,mÞJ
2
40,

where A :¼ fd 2 Rpþ1 : JdTcJrc0JdTJ,JdTcJ0rng and k2
0rCf for some constant Cf. Moreover,

q :¼
3

8

f 3=2

f
0 inf

d2A,da0

E½9xT
i d9

2
�3=2

E½9xT
i d9

3
�

40:
A3
 (Growth rate of covariates). The growth rate of significant variables and all variables allowed is assumed to satisfy
s3ðlogðn3pÞÞ2þg=n-0, for some g40.
A4
 (Moments of covariate). Covariates satisfy the Cramér condition E½9zij9
k
�r0:5CmMk�2k! for some constant Cm, M, all

kZ2 and all j¼ 1, . . . ,p.

A5
 (Well separated regression coefficients). We assume that there exists a b040, such that for all jrs, 9bn

j 94b0. We note
b0 could still be unknown to us.
Conditions A1–A5 are commonly assumed in the literature (see e.g. Fan and Peng, 2004; Huang et al., 2008a, 2008b;
Belloni and Chernozhukov, 2011). Condition A1 is slightly different from Condition D.1 in Belloni and Chernozhukov
(2011). The assumption D.1 in Belloni and Chernozhukov (2011), requiring the conditional density at the conditional
quantile is uniformly bounded away from 0, can be replaced by a more general condition. In fact, we only need that the
conditional density is nonvanishing. Condition A2 requires that there exists a constant Cf, such that k2

0rCf . This along with
the fact that k2

m is nonincreasing in m, immediately entails that the smallest eigenvalue of the covariance matrix Ss :¼
E½xiaxia

0� is finite and bounded away from 0.
Condition A3 seems to be a strong assumption at first glance, because it limits the size of significant variables to be less

than n1=3, rather than n2=3 as shown in Portnoy (1984). However, this assumption is in accord with Welsh (1989), in which
the author showed that if the score function is discontinuous, the growth rate for covariates, p3ðlogðnÞÞ2þg=n-0 is
sufficient to obtain the consistency and asymptotic normality under the full model. Since we deal with the high-
dimensional sparse model, the growth rate would be expected to obey s3ðlogðn3pÞÞ2þg=n-0. Condition A4 is important for
us to apply Bernstein’s inequality, and hence to establish the sparsity property of the adaptive L1 quantile estimator. In
addition, A5 also implies

Pn
i ¼ 1 EJxiaJ

2
�OðnsÞ, which is essential for establishing the oracle consistency property.

Condition A5 is also required in Huang et al. (2008b). It assumes that the nonzero coefficients are uniformly bounded
away from 0; in other words, the parameter values of the true model are well separated from zero. This assumption can be
relaxed to that minjr s9b

n

j 9 goes to 0 at a suitable rate, at the cost of more complicated technical proofs.

3.2. Oracle properties

We show that the adaptive L1 quantile regression estimator enjoys oracle properties.



Q. Zheng et al. / Journal of Statistical Planning and Inference 143 (2013) 1029–10381032
Theorem 3.1. Suppose that assumptions A1–A5 are satisfied. Furthermore, if ln satisfies lns=
ffiffiffi
n
p

-0 and ln=ð
ffiffi
s
p

logðn3pÞÞ-1,
then the adaptive L1 quantile regression estimator b

^

must satisfy the following three properties:
1.
 Variable selection consistency:

Pðb
^

b ¼ 0ÞZ1�6 exp �
logðn3pÞ

4

� �
:

2.
 Estimation consistency:

Jb
^

�bn
J¼Op

ffiffiffi
s

n

r� �
:

3.
 Asymptotic normality: Let u2
s ¼ aTSsa for any vector a 2 Rs satisfying JaJo1. Then

n1=2u�1
s aT ðb

^

a�b
n

aÞ-
D

N 0,
tð1�tÞ
f 2
ðqnÞ

 !
:

Remark 3.1. b
~

must be at least
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðs logðn3pÞÞ

p
-consistent. If b

~

is a consistent estimator of bn with some faster rate, that

is, there is a sequence of an such that anJb
~

�bn
J�Opð1Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðs logðn3pÞÞ

p
� oðanÞ, the oracle properties can still be

achieved if lns=
ffiffiffi
n
p

-0 and lnan=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðn3pÞ

p
-1.

Remark 3.2. The asymptotic normality of any linear combination u�1
s aðb

^

a�b
n

aÞ is a substitute for the traditional
asymptotic normality. Convergence of the finite-dimensional distributions ensures convergence in sequence space. In
practice, hypothesis tests and confidence intervals would be constructed using linear combinations.

3.3. The choice of ln

The regularization parameter, ln, plays a crucial role for the adaptive L1 quantile estimator. It controls the overall
magnitude of the adaptive weights and should be chosen so that insignificant variables’ regression coefficient estimates
shrink to zero, while significant variables are not overpenalized.

Procedures, which are commonly used to select ln, such as k-fold cross-validation, generalized cross-validation
(Tibshirani, 1996; Fan and Li, 2001), and so on, can be applied to choose ln with some appropriate modification. However,
using them may have several drawbacks. First, p, the number of variables in the full model, is increasing as the sample size
grows. This factor results in an unpleasant issue in that the number of potential models goes to infinity very quickly, which
makes computation much too expensive. Second, their statistical properties are not clearly understood for (ultra)high-
dimensional regression. For example, there is no guarantee that K-fold cross-validation would provide a choice of ln with a
proper rate. Third, their statistical properties are still uncharted under the heavy-tailed errors, where quantile regressions
are often applied.

Wang and Leng (2007) developed a BIC criterion to select the tuning parameter ln for least square approximation (LSA)
procedure, and its theoretical model selection consistency property has been demonstrated in Wang et al. (2007) for fixed
dimensionality and in Wang et al. (2009) for high-dimensional regression. However, two limitations make such a BIC
criterion less favorable in this ultra-high dimensional problem. The first limitation is that one of the requirements in Wang
et al. (2009) is pon, which may not be satisfied in the ultra-high dimensional problem. The other limitation is that there is
no efficient path-finding algorithm for quantile regression. Thus, we need to search all possible subsets to find the
minimum BIC. This could potentially exhaust our computation. One might be able to use the LSA to approximate the
quantile regression, and then implement least angle regression slicing (LARS) algorithm to find a solution path in an easier
manner, as pointed out in Wang and Leng (2007). However, this would require obtaining a reliable estimate of the inverse
of the covariance matrix (see Wang and Leng, 2007), which is a difficult problem in the ultra-high dimensional case.
Instead we consider an alternative method for selecting ln.

According to Theorem 3.1, a proper ln must satisfy two conditions: lns=
ffiffiffi
n
p

-0 and ln=ð
ffiffi
s
p

logðn3pÞÞ-1. We can see

that Oð
ffiffi
s
p

logðn3pÞðlog nÞg=2
Þ is a suitable choice of ln under the condition A5. However, the obstacle is that we do not

know the true dimension s. Hence, a natural problem is can we find a good estimate of s, or at least get a quantity of order

O(s)? Belloni and Chernozhukov (2011) show that their estimator Jb
~

tJ0 �OpðsÞ. If the parameter values of the minimal true

model are well separated from zero as condition A7 assumes, then Jb
~

J0 �OpðsÞ. Since b
~

is consistent, Jb
~

tJ0 is of order s

with a large probability. Therefore, we can use b
~

t not only to adjust weights for each regression coefficient, but also to get a

quantity used to construct a good choice of ln. In practice, we choose ln ¼ 0:25

ffiffiffiffiffiffiffiffiffiffi
Jb
~

J0

r
logðn3pÞðlog nÞ0:1=2 and it works well

in our simulation studies.
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4. Numerical analysis

To evaluate the finite sample performance of the proposed estimator, we conducted Monte Carlo simulations. We
compare the performance of the oracle quantile estimator, the L1 penalized, post L1 penalized quantile estimators (Belloni
and Chernozhukov, 2011), and the proposed adaptive estimator. The post L1 penalized quantile estimator is obtained by
applying ordinary quantile regression to the model selected by the L1 penalized quantile regression.

We adopt the simulation settings used in Belloni and Chernozhukov (2011). Consider the regression model 1

yi ¼ xT
i bþE,

where b¼ ð1,1,1=2,1=3,1=4,1=5,0, . . . ,0ÞT and xi ¼ ð1,zT
i Þ

T consists of an intercept and covariates zi �Nð0,SÞ, and the errors

E are independently and identically distributed E�Nð0,s2Þ. The dimension p of covariate is 500, and the true dimensional s

is 6. The regressors are correlated with Sij ¼ r9i�j9 and r¼ 0:5. We apply the median regression and choose

ln ¼ 0:25

ffiffiffiffiffiffiffiffiffiffi
Jb
~

J0

r
logðn3pÞð log nÞ0:1=2. We consider three levels of noise s¼ 1,0:5 and 0.1. 100 training data sets are

generated, each consisting of 100 observations.
We assess model selection by calculating N1: the number of covariates selected by each estimator b

^

, N2: the correct
number of covariates selected by each estimator, and the percentage of underfitted, correctly fitted, and overfitted. We
evaluate the estimation accuracy by computing the norm of the bias and the empirical risk ½E½xT

i ðb
^

�bÞ�2�1=2. The results are
summarized in Table 1. We can see that although the proposed estimator may still fail to select some significant variables
when s is large due to the ultra-high dimensionality, it significantly improves the performance of quantile regression in
both model selection and estimation, compared with the L1 penalized, post L1 penalized quantile estimators. Notice that
the proposed estimator does not necessarily treat 0 as an absorbing status even when the initial L1 penalized estimator
provides a zero estimate. This is the advantage of using oj ¼ 9b

~

9�14
ffiffiffi
n
p

, which provides another opportunity to select the
significant regressors, and hence provides better results.
Table 1
Simulation results for model 1.

Average N1 Average N2 Underfitted Correctly fitted Overfitted Bias Empirical risk

s¼ 1

Oracle 6 6 0 1 0 0.03 0.31

L1 3.21 3.21 1 0 0 0.77 1.09

Post L1 3.21 3.21 1 0 0 0.30 0.59

Adaptive 4.04 4.04 1 0 0 0.22 0.43

s¼ 0:5

Oracle 6 6 0 1 0 0.02 0.15

L1 4.41 4.40 0.98 0.02 0 0.49 0.69

Post L1 4.41 4.40 0.98 0.02 0 0.21 0.31

Adaptive 5.05 5.04 0.73 0.26 0.01 0.16 0.25

s¼ 0:1

Oracle 6 6 0 1 0 0 0.03

L1 5.93 5.93 0.07 0.93 0 0.15 0.20

Post L1 5.93 5.93 0.07 0.93 0 0.01 0.04

Adaptive 6.05 5.99 0.01 0.95 0.04 0.01 0.03

Table 2
Simulation results for model 2.

Average N1 Average N2 Underfitted Correctly fitted Overfitted Bias Empirical risk

s¼ 1

Oracle 6 6 0 1 0 0.02 0.11

L1 4.36 4.35 0.96 0.04 0 0.53 0.74

Post L1 4.36 4.35 0.96 0.04 0 0.20 0.31

Adaptive 5.08 5.06 0.75 0.25 0 0.14 0.22

s¼ 0:5

Oracle 6 6 0 1 0 0 0.05

L1 5.35 5.34 0.62 0.38 0 0.33 0.46

Post L1 5.35 5.34 0.62 0.38 0 0.12 0.15

Adaptive 5.88 5.85 0.15 0.85 0 0.05 0.08
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Following Wang et al. (2012), we consider model 2, which is a heterogenous version model 1.

yi ¼ xT
i bþFðxi2ÞE,

where Fð�Þ is the standard normal cumulative density function. We consider s¼ 1 and s¼ 0:5. And the results
are presented in Table 2. Similar conclusions can be drawn from Table 2. All three methods are able to work for
regression models with heterogenous errors. However, as observed from Table 2, the adaptive penalized quantile
regression drastically outperformed the L1 penalized, post L1 penalized quantile estimators in both model selection and
estimation.
5. Conclusion

In this paper, the adaptive L1 quantile regression is introduced for high-dimensional sparse models. It is shown
that such an adaptive robust estimator enjoys the oracle properties. In the case of quantile regression we can relax the
moment conditions and the constant variance assumption on the error sequence from those used to prove
oracle properties of penalized least squares loss methods for high-dimensional data. Our simulation results demonstrate
that the proposed estimator owns satisfactory finite sample performances. Although the oracle properties of a single
quantile index t are presented here, the result can be easily extended to a finite composite quantile regression (Zou and
Yuan, 2006).
Appendix A. Consistency and sparsity

Define the score function of rtð�Þ by jtð�Þ, i.e. jtðtÞ ¼ t1ðtZ0Þ�ð1�tÞ1ðto0Þ. b
^

t is the minimizer of the objective
function

QtðbÞ ¼
Xn

i ¼ 1

rtðyi�xT
i bÞþln

Xp

j ¼ 0

oj9bj9:

Throughout b
~

is a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðs logðn3pÞÞ

p
-consistent estimator of bn.

Lemma A1. Under assumptions A1–A5, if ln=ð
ffiffi
s
p

logðn3pÞÞ-1 and oi ¼ 9b
~

tj9
�1

for 1r jrp, then the adaptive L1 quantile

regression estimator b
^

t satisfies b
^

tb ¼ 0 with probability tending to1.

Proof. It can be seen that the objective function QtðbÞ is piecewise linear. According to Theorem 1 in Bloomfield and
Steiger (1983, p. 7), the minimum of QtðbÞ can be achieved at some breaking point b

�

, where rtðyi�xT
i b
�

Þ ¼ 0 for some values
of i¼ 1, . . . ,n.

Take the first derivative of Q ðbÞ at any differential point b
ˇ
2 Rpþ1 with respect to bj,j¼ sþ1, . . . ,p, and we obtain that

@Q ðbÞ
@bj

9
b
ˇ ¼�

Xn

i ¼ 1

jðyi�xT
i b

ˇ
Þxijþlnoj sgnðb

ˇ
jÞ: ðA:1Þ

Let

Dðb
ˇ
,bn
Þ ¼

Xn

i ¼ 1

jðyi�xT
i b

ˇ
Þxij�

Xn

i ¼ 1

jðyi�xT
i b

n
Þxij:

Note that,

Dðb
ˇ
,bn
Þ ¼

X
Ei Zqn

xi
,Ei Zqn

xi
þxT

i
ðb

ˇ
�bn
Þ

½txij�txij�þ
X

Ei Zqn
xi

,Ei oqn
xi
þxT

i
ðb

ˇ
�bn
Þ

½�ð1�tÞxij�txij�

þ
X

Ei oqn
xi

,Ei Zqn
xi
þxT

i
ðb

ˇ
�bn
Þ

½txijþð1�tÞxij�þ
X

Ei oqn
xi

,Ei oqn
xi
þxT

i
ðb

ˇ
�bn
Þ

½�ð1�tÞxijþð1�tÞxij�,

where qn
xi

is the conditional tth quantile of Ei9xi. For K1 ¼ fi : qn
xi
rEioqn

xi
þxT

i ðb
ˇ
�bn
Þg and K2 ¼ fi : qn

xi
4EiZqn

xi
þxT

i ðb
ˇ
�bn
Þg,

Dðb
ˇ
,bn
Þ ¼�

X
K1

xijþ
X
K2

xij:

Hence,

Xn

i ¼ 1

jðyi�xT
i b

ˇ
Þxij

�����
�����¼

Xn

i ¼ 1

jðyi�xT
i b

n
ÞxijþDðb

ˇ
,bn
Þ

�����
�����r

Xn

i ¼ 1

jðyi�xT
i b

n
Þxij

�����
�����þ

X
K1

xij

�����
�����þ

X
K2

xij

�����
����� ¼: I1þ I2þ I3:
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Consider I1 first. Let xi ¼jðyi�xT
i b

n
Þ ¼ t1ðEiZqn

xi
Þ�ð1�tÞ1ðEioqn

xi
Þ. Conditional on xi, it is easy to verify that E½xixij� ¼ 0 and

xixij,i¼ 1, . . . ,n satisfy the Cramér condition. As a result, applying Bernstein’s inequality yields

P
Xn

i ¼ 1

xixij

�����
�����4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p !
r2 exp �

5Cm logðn3pÞ

2 CmþM
ffiffiffiffiffiffiffiffiffi
5Cm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðn3pÞ

p
ffiffiffi
n
p

" #
8>>>><
>>>>:

9>>>>=
>>>>;
r2 exp �

5 logðn3pÞ

4

� �
:

Let

O1 ¼ max
sþ1r jrp

Xn

i ¼ 1

xixij

�����
�����r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p( )
:

Then

PðO1ÞZ1�2 exp logðp�sÞ�
5 logðn3pÞ

4

� �
Z1�n1,

where n1 ¼ 2 expf�logðn3pÞ=4g-0 as n-1. Applying Bernstein’s inequality to I2 yields

P
X
K1

xij

�����
�����4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cm logðn3pÞ

p !
r2 exp �

5Cm logðn3pÞ

2
9K19Cm

n
þM

ffiffiffiffiffiffiffiffiffi
5Cm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðn3pÞ

p
ffiffiffi
n
p

" #
8>>>><
>>>>:

9>>>>=
>>>>;
:

Define

O2 ¼ max
sþ1r jrp

X
i2K1

xij

�����
�����r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p( )
:

We obtain PðO2ÞZ1�n1. A similar argument will show that PðO3ÞZ1�n1, where

O3 ¼ max
sþ1r jrp

X
i2K2

xij

�����
�����r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p( )
:

Note that O1
S
O2
S
O3 � f9jðyi�xT

i b
ˇ
Þxij9r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p
g. Therefore,

Pð9jðyi�xT
i b

ˇ
Þxij9r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p
ÞZ1�3n1:

Since Jb
~

J�Opð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s logðn3pÞ=n

p
Þ, for n sufficiently large with probability approaching 1,

lnoj

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p 41:

With probability at least 1�3n1, we have

9jðyi�xT
i b

ˇ
Þxij9

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p r1o
lnoj

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cmn logðn3pÞ

p
for all j4s. This implies that with probability tending to 1

@Q ðbÞ
@bj

9
b
ˇ ¼

40 if b
ˇ

j40

o0 if b
ˇ

jo0

8><
>: :

Since Q ðbÞ is a continuous function, b
^

, the minimizer of Q ðbÞ must satisfy b
^

b ¼ 0. &

Lemma A2. Under the assumptions A1–A5, if lns=
ffiffiffi
n
p

-0 and oi ¼ 9b
~

tj9
�1

for 0r jrp, then the adaptive L1 quantile regression

estimator is
ffiffiffiffiffiffiffiffi
n=s

p
-consistent.

Proof. We want to show that for any E40, there exists a sufficiently large constant, such that

P inf
JdaJ ¼ C

Qa bn

aþ

ffiffiffi
s

n

r
da

� �
4Qaðb

n

aÞ

� �
41�E ðA:2Þ

where Qað�Þ is the objective function restricted to the true underlying model, da 2 R
s and JdJ¼ C. Since the objective

function QaðbaÞ is strictly convex, the inequality (A.2) implies, with probability at least 1�E, the oracle quantile estimator
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lies in the shrinking ball fbn
þ

ffiffiffiffiffiffiffiffi
s=n

p
da : da 2 R

sþ1,JdaJrCg. This provides the consistency result immediately.

Qa bn

aþ

ffiffiffi
s

n

r
da

� �
�Qaðb

n

aÞ ¼
Xn

i ¼ 1
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ia bn
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s
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�rðyi�xT
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n

aÞþln

Xs

j ¼ 0

oj 9bn

tjþ

ffiffiffi
s

n

r
daj9�9b

n

tj9
� �

ðA:3Þ

According to Knight (1998), for any xa0, we have

9x�y9�9x9¼�y½1ðx40Þ�1ðxo0Þ�þ2

Z y

0
½1ðxotÞ�1ðxo0Þ� dt

Then we have

rðx�yÞ�rðxÞ ¼ y½1ðxo0Þ�t�þ2

Z y

0
½1ðxotÞ�1ðxo0Þ� dt

Hence, (A.3) can be written asffiffiffi
s

n

r Xn

i ¼ 1

xT
iada½1ðyi�xT

iab
n
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p
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s
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Using independence and the Cauchy–Schwarz inequality,
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n

ao0Þ�t�Þ2
" #
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2JdaJ

2
�

rnstð1�tÞCmC2:

Using Chebychev’s inequality, we see that for any constant k

P

ffiffiffi
s

n

r
T14ksC2
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r

tð1�tÞCm

C2
: ðA:4Þ

Next, we deal with T2. The goal is to show that T2Z
p

0:5sf k2
0C2. Using independence and the fact that VðXÞrEX2,

V ½T2� ¼ V
Xn

i ¼ 1
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ÞxT
ia
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0
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Given an Z40 we have
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Z ð ffiffiffiffiffis=n
p

ÞxT
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da

0
½1ðyi�xT
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3
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, ðA:5Þ

where the last line follows from Holder’s inequality. Under condition A4,

E½9xT
iada9

3
�r

3

8

f 3=2

f
0

E½9xT
iada9

2
�3=2

q
: ðA:6Þ

Applying Bernstein’s inequality (Lemma 2.2.11 of Van Der Vaart and Wellner 1996),

P 9xT
iada94Z
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n
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: ðA:7Þ

Combining bounds (A.6) and (A.7) yields

RHS of ðA:5Þr4s
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2
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0
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Z
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n
p

6MC
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s
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,
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which converges to 0 if Z satisfies (C1): logðsÞ � oðZ
ffiffiffi
n
p

=ð12MC
ffiffi
s
p
ÞÞ and (C2): Z

ffiffiffi
n
p

=
ffiffi
s
p

-1. On the other hand,
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If Z is close to 0, then FðtÞ�Fð0Þr f t,89t9oZ. Thus, we obtain

ðA:7Þr f tZnE

Z ffiffiffiffiffi
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9xT
ia
da9
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t dt
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ffiffiffi
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iada9oZ
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r f tZ3n

which converges to 0, if Z satisfies (C3): Z3n-0. If Z satisfies conditions C1, C2 and C3, then as n-1 VðT2Þ-0. By
Chebyshev’s inequality, we have

T2�nE
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-

p
p

Using Cauchy–Schwartz inequality and a similar argument as in the proof of VðT2Þ-0, we can show that for n sufficiently
large
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Finally for T3, we have
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C-0

Combining the fact that T3 converges to zero in probability with (A.4), we see that for sufficiently large C, (A.3) is positive
with probability at least 1�E and (A.2) is satisfied. &

Appendix B. Asymptotic normality

Proof of Theorem 3.1. As in the foregoing proofs, we see that with probability at least 1�3n1, b
^

¼ b
ˇ
. Therefore, properties

(1) and (2) are achieved automatically. We know that b
ˇ
¼ ððbn

þ
ffiffiffiffiffiffiffiffi
s=n

p
d
ˇ

aÞ
T ,0ÞT where

ffiffiffiffiffiffiffiffi
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ˇ

a is the minimizer of the
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:¼ J1þ J2þ J3:

And with probability at least 1�E, dˇ a locates in a ball BE :¼ fda : JdJrCg for some constant C that implicitly depends on E.
For any da 2 BE, using the argument as in the proof of consistency, we can show that
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Thus, with probability at least 1�3n1�E, minimizing Qaðb
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which provides

d
ˇ
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Therefore, with probability at least 1�3n1�E
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:

Denote zi by u�1
s aTS�1

s xia½1ðEioqn
xi
Þ�t� for i¼ 1, . . . ,n. Then E½zi� ¼ 0 and Var½zi� ¼ tð1�tÞ. Therefore, we have
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p
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which completes the proof. &
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