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Abstract

We use the sample covariations to estimate the parameters in a univariate symmetric stable autoregressive process.
Unlike the sample correlation, the sample covariation can be used to estimate the tail decay parameter of the process. The
�tted model will be consistent with the dependence as measured by the covariation. The limit distribution of the sample
covariation can be used to derive con�dence intervals for the autoregressive parameter in a �rst order process. Simulations
show that con�dence intervals coming from the covariation have better coverage probabilities than those coming from the
sample correlations. The method is demonstrated on a time series of sea surface temperatures. c© 2001 Elsevier Science
B.V. All rights reserved
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1. Introduction

In this paper, we describe a method for �tting a symmetric alpha-stable (S�S) autoregressive (AR) process

Xt − �1Xt−1 − · · · − �pXt−p = Zt; (1.1)

where the sequence {Zt} is an iid sequence of S�S random variables with � ∈ (1; 2], to time series data
generated from a process with �nite absolute mean. We note here that if � = 2 we are �tting a traditional
Gaussian AR model. For background on stable processes the reader is referred to Samorodnitsky and Taqqu
(1994).
When �¡ 2 the process given by (1.1) has in�nite variance. Should we ever �t such a model to a data set?

Can we sometimes get a better �t using a model with in�nite variance? After we develop our methodology
in Sections 2 and 3, we will �t a Gaussian AR process and a stable non-Gaussian AR process to the same
data set.
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In a traditional time series model we assume an underlying stationary stochastic process {Xt} has a �-
nite second moment (see for example Brockwell and Davis, 1991). For ease of presentation, we will as-
sume throughout that our discrete time process has mean zero (if this were not the case we could subtract
the sample mean). Given time series data x1; x2; : : : ; xn, we can use the sample autocorrelation function (ACF)

�̂(h) =
∑n−h

t=1 xtxt+h∑n
t=1 x

2
t

h= 0; 1; 2; : : : (1.2)

to �t a time series model. In fact, we can mimic the observed sample ACF for any integer number of lags
by a Gaussian autoregressive process. The autoregressive parameters of our approximating process come from
the Yule–Walker equations which use the empirical ACF to estimate the parameters. If {Xt} is stationary and
ergodic then �̂(h) converges in the almost sure sense to the theoretical correlation function:

�(h) =
EXtXt+h

E|Xt |2 : (1.3)

For the process {Xt} with E|Xt |2 =∞, the theoretical ACF no longer exists. However, the sample ACF is
still well de�ned. For any causal ARMA process with representation:

Xt =
∞∑
j=0

 jZt−j t = 1; 2; : : : ; (1.4)

where {Zt} is an iid sequence of random variables in the domain of attraction of a stable law, the sample
ACF �̂(h) converges in probability to the constant limit

�(h) =
∑

 j j+h∑
 2
j

:

(Davis and Resnick, 1985) time series modeling techniques, such as the Yule–Walker equations, which depend
on the sample ACF can be used to �t autoregressive models to heavy tailed ARMA data.
What if our data is not generated by an ARMA process, but is coming from a process which is stationary

and ergodic? Can we use the sample ACF to approximate {Xt} with an autoregression as in the �nite second
moment case? Resnick et al. (1998) give examples of stationary ergodic stable processes for which the sample
ACF converges to a random limit and caution that, “the usual time series model �tting and diagnostic tools
such as the Akiake Information Criterion or Yule–Walker estimators will be of questionable applicability”
(see also Resnick, 1997).
We consider zero mean stationary ergodic processes, {Xt} with E|Xt |¡∞. For this class of processes the

autocovariation function (AcovF) at lag k,

�(k) =
EXtSt−k

E|Xt−k | for k = 0;±1;±2; : : : ; (1.5)

where

St = sign(Xt)

is well de�ned. Its sample version

�̂(k) =
∑r

t=l xtst−k∑n
t=1 |xt |

; (1.6)
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where l=max(1; 1 + k) and r =min(n; n+ k), satis�es

�̂(k) → �(k); (1.7)

where the convergence in (1.7) is in the almost sure sense. The limiting behavior of the sample AcovF is
investigated in Gallagher (2000).
The covariation was introduced in Cambanis and Miller (1981) as a measure of dependence for jointly

S�S vectors. For a S�S process �(k) is the normalized covariation of Xt on Xt−k and

E(Xt |Xt−k) = �(k)Xt−k : (1.8)

Given an empirical autocovariation function we can estimate the parameters of an autoregressive process using
a generalization of the Yule–Walker equations (see Nikias and Shao, 1995).
In Section 3, we see that we can use the sample AcovF to estimate the remaining parameters in model

(1.1). We use the sample AcovF to derive con�dence intervals for �1 in an AR(1) process in Section 4 and
give simulation results indicating that these intervals perform better (in terms of coverage probability) than
do intervals based on the ACF. We conclude the paper by �tting model (1.1) to a data set consisting of 217
daily sea surface temperatures recorded at an open sea buoy.

2. Generalized Yule–Walker equations

In this section, we describe how to �t an autoregression to a data set using the sample AcovF. For an
AR(p) process, we can use the sample AcovF to estimate the autoregressive parameters.
Let {Xt} be an autoregressive process satisfying (1.4). We describe the relationship between the auto-

regressive parameters and the AcovF.
Using the fact that {Xt} is causal we have,

�(k) = �1�(k − 1) + �2�(k − 2) + · · ·+ �p�(k − p) for k = 1; 2; : : : ; p:

In matrix form,

�= ��; (2.9)

where,

�= (�(1); : : : ; �(p))t ;

�= (�1; : : : ; �p)t ;

and � is the p× p matrix with (i; j)th element

�(i; j) = �(i − j) for i; j = 1; : : : ; p: (2.10)

We use the sample autocovariation to develop estimators of the parameters �1; : : : ; �p.
Nikias and Shao (1995) use (2.9) to estimate the autoregressive parameters by replacing �(k) with an

estimated value �̂(k), and give simulation evidence indicating that this estimator performs as well as the usual
Yule–Walker estimator when �̂(k) is given by (1.6). The generalized Yule–Walker estimate �̂ is any vector
� satisfying

�̂= �̂�̂; (2.11)

where

�̂= (�̂(1); : : : ; �̂(p))t ;
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and �̂ is the p× p matrix with (i; j)th element

�̂(i; j) = �̂(i − j) for i; j = 1; : : : ; p:

Remark 2.1. If Xt is either an AR(1) process or an AR(2) process, then the parameter estimates are unique
and strongly consistent. In either case both �̂ and � are nonsingular. In both cases �̂ is almost surely
nonsingular if P(Xt =0)=0. If Xt is an AR(1) process, �=�(1). If Xt is an AR(2) process, � is nonsingular
unless �(1) = �(−1) =±1. In such a case

�(1) = �(0)�1 + �(−1)�2 = �1 + �(1)�2:

So that Xt is not causal. Consistency follows from (1.7).

3. Fitting a stable process

In this section, we consider �tting model (1.1) to a data set. All the parameters in the model can be
estimated with a set of p+2 equations. From a �tted model we obtain residuals which can be used to check
the adequacy of the �t. Since the estimators are simple and quickly calculated on a computer, we can �t
various models and use residual diagnostics to choose a parsimonious model which provides an adequate �t.
The S�S AR process is completely determined by the autoregressive parameters, the tail decay parameter

� and the scale parameter of the iid sequence {Zt}. We can use the sample AcovF to estimate � as in
the previous section. Once we have an estimate �̂ we can use this and the sample AcovF to estimate � as
described below. The scale parameter � can be estimated from the residuals obtained from the �tted AR
parameters.
We have seen that given an observed autocovariation function on the integers in [−p;p], we can estimate

the autoregressive parameters of an AR(p) process and use the process

Xt − �̂1Xt−1 − · · · − �̂pXt−p = Ẑ t ; (3.12)

to estimate our underlying process. Does this process have the same theoretical autocovariation for every iid
sequence {Ẑ t}? The answer is no. The autocovariation is both a function of the autoregressive parameters
and �. How do we use the observed AcovF to estimate �?
The following fact, which we state as a proposition, suggests a procedure for estimating � from the sample

AcovF.

Proposition 3.1. Let Xt be a causal S�S AR(p) process. The following equation holds

(E|Z1|=E|X1|)� = 1− �1�(−1)− · · · − �p�(−p): (3.13)

Proof. Using properties of stable random variables (1.8) and (1.1)

E|Xt |= E|Xt |
(
�1�(−1) + · · ·+ �p�(−p) +

(∑
| j|�

)−1
)

and

(E|Z1|=E|X1|)� =
(∑

| j|�
)−1

:
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We can estimate � by replacing the autoregressive parameters by their estimates and �(·) by �̂(·) in
Eq. (3.13) and solving for �

�̂=
log (1− �̂1�̂(−1)− · · · − �̂p�̂(−p))

log(
∑n

t=1 |Ẑ t |=
∑n

t=1 |Xt |)
: (3.14)

Of course � could be estimated from the residuals using any of the estimators for iid data discussed in the
literature, but this estimate of � is consistent with the observed AcovF.
The �nal parameter in our model is the scale parameter. Once we have a �tted model we can estimate the

scale of Zt using the residuals. Under model (1.1)

� = �E|Zt |=(2�(1− 1=�)):

A simple estimate is

�̂ = �=(2�(1− 1=�̂))n−1
∑

|Ẑ t |: (3.15)

Let �̂(·) be the sample autocovariation of an observed time series on the integers in [ − p;p]. We
can approximate the underlying stochastic process from which our data is generated with (3.12), where
Zt∼S�S(�), � is given by (3.14), � is given by (3.15) and the autoregressive parameters are given by (2.11).

Diagnostic checking: If our model �ts the data well, the residual Ẑ t should be close to Zt . Since we
assume the sequence {Zt} is iid, if the model provides a good �t the residuals should appear to be from
an iid sequence. We consider two diagnostic checking procedures, both of which test to see if the residuals
behave like an iid sample from a heavy tailed data set. The �rst is based on the sample AcovF of the residuals.
The second is a nonparametric generalization of the Portmanteau test.
For an iid sequence, the AcovF is zero for all k �= 0. Since �̂(k)→ �(k), the sample AcovF should be

close to zero as well. The limiting distribution of the sample AcovF for causal ARMA processes is derived
in Gallagher (2000) and can be used to decide what is a signi�cant departure from zero. This can be done
with a formal hypothesis test or using a graphical procedure. This is discussed in more detail in Gallagher
(2000).
The usual Portmanteau test statistic doesn’t perform well in the heavy tailed case (see Runde, 1998). Dufour

and Roy (1986) derive the limiting distribution of a generalized Portmanteau test statistic which is based on
the ranks of the data. The chi-square limiting distribution is valid for iid sequences of continuous random
variables.

4. Con%dence intervals for AR(1) processes: a simulation

In this section, we consider the AR(1) model

Xt = �Xt−1 + Zt; (4.16)

where Zt ∼ S�S with �¿1. For this simple model, � can be estimated with the sample ACF at lag 1
(Yule–Walker estimate) or the AcovF at lag 1 (Generalized Yule–Walker). The limiting distributions of the
sample ACF and AcovF can be used to derive con�dence intervals for � based on their respective estimates.
Let �̂ACF be the estimate of � coming from the sample ACF. The limiting distribution of �̂ACF for �¡2

is derived in Davis and Resnick (1986) and is given by

(n=log(n))(1=�)(�̂ACF − �) ⇒ (1− ��)1=�U=V; (4.17)
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Fig. 1. (a) 0.975 quantiles of U=V in (4.17) and N in (4.18) and (b) 0.975 quantiles of S in (4.19). Quantiles for alpha values other
than 1:1; 1:2; 1:3; 1:4; 1:5; 1:6; 1:7; 1:8; 1:9; and 2 were approximated using interpolation.

where U and V are independent stable random variables. When � = 2, the limiting distribution and normal-
ization change

n1=2(�̂ACF − �) ⇒ (1− �2)1=2N; (4.18)

where N has a normal distribution. For a �xed sample size n the normalizing constant has a discontinuity
at � = 2. Likewise, the limiting distribution has a discontinuity at � = 2 (e.g. the limit of the 0.975 quantile
of U=V as � → 2 is not the appropriate quantile of the normal distribution). In practice this can present a
problem. If for example the data is normally distributed (� = 2), and � is estimated to be around 1.98, the
quantile used in the con�dence interval corresponding to � = 1:98 is vastly diRerent from the appropriate
quantile of the normal distribution. This can be seen from Fig. 1a which graphs the 0.975 quantile of U=V
in (4.17) and N in (4.18) versus �. Let �̂COV be the estimate of � coming from the sample AcovF. The
limiting distribution of �̂COV is given in Gallagher (1998) and is given by

n1−1=�(�̂COV − �) ⇒ (1− ��)1=�S; (4.19)

where S ∼ S�S for � ∈ (1; 2]. Note that there is no discontinuity in either the normalization or the limiting
distribution.
To use the above limiting results to make con�dence intervals we need appropriate quantiles of the limiting

distributions. Quantiles of the distribution of U=V are given in Adler et al. (1998) for various equally spaced
� values in (0; 2). Quantiles of S can be found in Samorodnitsky and Taqqu (1994).
To compare con�dence intervals using the two competing estimation procedures mentioned above, we

simulate from model (4.16) with �=0:9 for various � values and calculate con�dence intervals counting the
number of intervals which cover �. The results are shown in Table 1. For each � considered we simulated
10; 000 samples with a sample size of n= 1000. From each simulated sample, �ve con�dence intervals were
calculated

(i) Using �̂ACF and assuming � is known.
(ii) Using �̂COV and assuming � is known.
(iii) Using �̂ACF and estimating � using McCulloch’s method (McCulloch, 1986).
(iv) Using �̂COV and estimating � using McCulloch’s method.
(v) Using �̂COV and estimating � using (3.14).
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Table 1
Simulated coverage percentages for 95% con�dence intervals for � in model (4.16). When � was assumed
to be unknown it was estimated using �̂ coming from (3.14) or using �̂1 coming from McCulloch’s (1986)
quantile estimation method

Alpha unknown Alpha known

� �̂COV �̂ACF �̂COV �̂ACF
�̂ �̂1 �̂1 NA NA

1.1 93.77 96.31 85.48 96.04 81.48
1.2 93.84 96.92 86.83 97.49 85.62
1.3 93.66 97.48 87.68 97.84 87.86
1.4 94.52 97.87 88.39 98.07 89.89
1.5 94.35 97.47 88.13 97.75 90.18
1.6 94.89 96.91 86.70 97.60 90.10
1.7 95.44 96.71 84.76 97.46 88.15
1.8 95.62 96.16 81.72 96.81 82.20
1.9 96.10 95.98 81.31 95.91 70.00
2.0 96.32 96.62 81.19 94.93 94.71

For estimated � values for which the quantile of the limiting distribution was unknown, interpolation was
used to estimate the appropriate quantile (see Fig. 1). Also, any estimated value of � (coming from either
method) which was outside the appropriate range was set to be the closest value in [1:1; 2]. For example if
�̂= 1, �̂ was set to be 1.1 while if �̂= 2:1, �̂ was taken to be 2.

We can see from the �rst three columns of Table 1 that the con�dence intervals coming from the AcovF
outperform those from the ACF. For � ∈ [1:1; 1:8] the con�dence intervals using �̂ coming from (3.14) have
actual coverage probabilities closest to 95%. When � is closer to 2, it appears that the con�dence interval
using �̂1 coming from McCulloch’s estimator works the best.

Not surprisingly when � = 2 (unknown) the con�dence interval using �̂ACF performs poorly. The 95%
con�dence interval based on the sample ACF only covered the parameter about 81% of the time. Whereas
the con�dence interval based on the AcovF covered the parameter about 96% of the time.
We can also see from Table 1 that for heavy tailed data (�¡ 2) the large sample distribution of the sample

ACF provides a poor approximation. Even when � is known we can see from the last two columns in the table
that the intervals based on the AcovF have true coverage probabilities much closer to 95%. Surprisingly this is
true even when �=2. As � approaches 2 the true coverage probabilities based on the AcovF seem to approach
95%. For the intervals coming from �̂ACF we observe the opposite of this phenomenon. As � approaches 2
the coverage probabilities become farther from the nominal 95% level. Both the poor approximation of the
limiting distribution of the sample ACF and the decrease in accuracy as � approaches 2 have been observed
before (For example, see Adler et al., 1998; Runde, 1998.).
Table 1 demonstrates a common problem with large sample approximations in the heavy tailed case. Looking

at the last two columns we see that even with a sample size of 1000 and � known, we get a poor distributional
approximation. The AcovF gives intervals that are systematically closer to the nominal 95% level than the
ACF intervals, but we would only conclude that the true coverage is 95% when � = 2. In all other cases
the simulated coverage is more than two standard deviations (coming from the binomial distribution) from
the nominal level.

5. An example

Our example data set consists of sea surface temperatures for 217 days beginning on October 1st 1988.
We see from the time series plot in Fig. 2 that the temperature seems to be decreasing for about the �rst 120
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Fig. 2. Plots of temperature time series and time series of diRerences.

days and then begins to increase. Clearly we cannot assume the data is generated by a stationary stochastic
process. We take �rst diRerences to remove the trend. The data set of diRerences is plotted in Fig. 2 as well.
A trend is no longer apparent. Notice that there are quite a few jumps in the time series which may be an
indication of heavy tails.
Using the methodology from Section 4, we �t model (1.1) to the data set of diRerences. We start by �tting

an AR(1) model. Using the two diagnostic procedures described above we conclude the residuals cannot be
assumed to be iid. We add one parameter at a time �tting models of higher order and examining the residuals
until we �nd a model with residuals which appear to be iid. The chosen model has p = 6, �̂ = 2:7, and
�̂= 1:76.

We also �t a Gaussian AR model to the data set. The Yule–Walker equations were used to estimate the
autoregressive parameters. The order p was decided based on parsimony and Akiake’s information criterion
as well as residual diagnostics. The �tted Gaussian model has p = 6 and �̂ = 4:8, where �̂ is the estimated
standard deviation of Z1.
For the Gaussian model the sequence {Ẑ t} is a sequence of iid normal random variables with � = 4:8.

Fig. 3 is a plot of this normal density function along with a nonparametric density estimate from the residuals
of the Gaussian model. Under the stable (non-Gaussian) model the innovation sequence {Ẑ t} is an iid sequence
of S�S random variables with � = 1:76 and � = 2:7. Fig. 4 shows a plot of this density function along with
a nonparametric density estimate from the residuals of the �tted model. Both nonparametric density estimates
were done on S-plus using a normal kernel. The density estimate for the stable model is very close to the
�tted stable density.
We note here that the estimated parameters from both the Yule–Walker and generalized Yule–Walker

equations are quite similar in this case. However, the sample ACF cannot be used to estimate the tail decay
of the stable distribution. The advantage of the method described in this paper is that it provides a complete
probability model for the process. The moment estimators considered can be used as preliminary estimates in
a numerical maximization of the stable likelihood.
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Fig. 3. Normal density function and nonparametric density estimate of residuals from Gaussian model.

Fig. 4. Stable density function and nonparametric density estimate of residuals from non-Gaussian model.
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