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ABSTRACT

The scalar–scalar-gradient filtered joint density function (FJDF) and its transport equation for large eddy simulation of turbulent combustion
are studied experimentally. Measurements are performed in the fully developed region of an axisymmetric turbulent jet (with jet Reynolds
number UjDj=� ¼ 40 000) using an array consisting of three X-wires and three resistance-wire temperature probes. Filtering in the cross-
stream and streamwise directions is realized by using the array and by invoking Taylor’s hypothesis, respectively. The FJDF and the terms in
the transport equation are analyzed using their means conditional on the filtered scalar and the subgrid-scale (SGS) scalar variance. The
FJDF is unimodal when the SGS scalar variance is small compared to its mean value. The scalar gradient depends weakly on the SGS scalar.
For large SGS variance, the FJDF is bimodal and the gradient depends strongly on the SGS scalar; therefore, the often-invoked independence
assumption is not valid. The SGS scalar under such a condition contains a diffusion layer structure and the SGS mixing is similar to the early
stages of binary mixing. The isoscalar surface in the diffusion layer has a lower surface-to-volume ratio than that in a well-mixed scalar. The
conditionally filtered diffusion of the scalar gradient has an S-shaped dependence on the scalar gradient, which is expected to be qualitatively
different from that of a reactive scalar under fast chemistry conditions. However, because modeling is performed at a higher level and because
the scalar–scalar-gradient FJDF contains the information about the scalar dissipation and the surface-to-volume ratio, the FJDF approach is
expected to be more accurate than scalar filtered density function approaches and has the potential to model turbulent combustion over a
wide range of Damk€ohler numbers.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039025

I. INTRODUCTION

Large eddy simulation (LES) is gaining increasing importance as
an approach for computing turbulent reactive flows. The scalar filtered
density function (FDF) method1–3 has been shown to be a highly effec-
tive method to account for the effects of subgrid-scale (SGS) mixing.
The method solves the FDF transport equation in which the effects of
reactions on the evolution of the FDF are in closed form. However, it
has the limitation that it contains no information about the small-scale
spatial structure. In addition, the effects of reactions on mixing (scalar
diffusion) must be modeled; therefore, it is difficult to apply this
approach to a wide range of Damk€ohler numbers without assump-
tions about the flame structure.

A higher-level approach solves the scalar–scalar-gradient filtered
joint density function (FJDF) transport equation, in which the effects
of reactions on the scalar gradient distribution are also in closed

form.4,5 The scalar–scalar-gradient FJDF contains the information
about the scalar and its dissipation rate, which play a central role in
the laminar flamelet,6 the quasi-equilibrium distributed reaction
zones,7 and the conditional moment8 approaches for nonpremixed
combustion. It also contains the isoscalar surface-to-volume ratio that
is often used in modeling premixed combustion.4 Models for the evo-
lution of the scalar–scalar-gradient joint probability density function
(JPDF) have previously been developed9,10 and can, in principle, be
adapted to the FJDF approach. To develop improved models used in
the scalar–scalar-gradient FJDF approach, an understanding of the
physics of the SGS scalar and the scalar-gradient fields is essential. In
the present work, we investigate the scalar–scalar-gradient FJDF of a
conserved scalar and its transport equation. In nonpremixed combus-
tion, reactive scalars are strongly dependent on the mixture fraction,
which is a conserved scalar. Therefore, the mixture fraction plays an
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important role in understanding and modeling nonpremixed flames.
An understanding of the FJDF of the mixture fraction and its gradient
is a first step toward understanding that of reactive scalars.

The FJDF is defined as1,4

f/wð/̂; ŵ; x; tÞ

¼
ð

d /ðx0; tÞ � /̂
h iY3
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where /̂ and ŵ are the sample-space variables for the scalar / and its
gradient w ¼ r/, and d and G are the Dirac delta function and the
filter function, respectively. The integration is over all physical space.
A filtered variable is denoted as h�iL. The symbol h�i is used for ensem-
ble averages. The transport equation of the FJDF can be obtained using
standard techniques,11
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where D is the molecular diffusivity and h � j/̂; ŵiL denotes a condi-
tionally filtered variable conditional on the scalar and its gradient. The
left-hand side is the time rate of change of the FJDF and advection of
FJDF in physical space by the fluid velocity u. The first term on the
right-hand side represents transport in scalar space by the scalar diffu-
sion, and the second and third terms represent transport in scalar-
gradient space by the scalar-gradient diffusion and the scalar-gradient
production. The alternatives to the two conditionally filtered diffusion
terms are the scalar dissipation v ¼ Dwiwi, which is in closed form,

the conditionally filtered scalar gradient dissipation hD @wi
@xj

@wi
@xj
j/̂; ŵi

L
,

and the mixed scalar–scalar-gradient dissipation ŵjhD
@wi
@xj
j/̂; ŵi

L
.

The gradient of a conserved scalar in turbulent flows is generally
considered to be a small-scale variable and is highly intermittent.
According to Kolmogorov’s hypotheses, it is statistically independent
of scalar fluctuations in high-Reynolds number, (quasi-) equilibrium
flows. However, the scalar dissipation has been observed to depend on
scalar fluctuations although their correlation coefficient is generally
low in flows without large-scale intermittency.12 In developing scalar
fields or in highly intermittent regions of fully developed flows, the
dependence can be significant. In the early stages of initially
binary mixing, the scalar dissipation is strongly dependent on the sca-
lar.13 The scalar gradient obtained in Monte Carlo simulations of
binary mixing is also found to be dependent on the scalar.10

Significant correlations have also been observed in the developing
region of a turbulent jet and near the wall of a turbulent boundary
layer.14 Because of the role played by the scalar gradient in combustion
modeling, the correlation is important and requires further
investigations.

In the present work, we study the characteristics of the FJDF and
some of the SGS terms in its transport equation. Unlike PDFs, an
FJDF is not a statistic, but a random variable, and, therefore, must be
characterized statistically. For a filter size smaller than the integral
length scales, the (unconditioned) mean FJDF approximately equals
the JPDF. Important characteristics of the FJDF can be revealed by its
conditional means. Previous investigations of conditional scalar FDF
and scalar–scalar-dissipation FJDF have shown that the SGS scalar at a
given location in a flow is on average in equilibrium and in nonequi-
librium for small and large instantaneous SGS variance, respec-
tively.15–17 Here, for convenience, we refer to both the cases of the SGS
production equal to and smaller than the dissipation as quasi-
equilibrium because the corresponding SGS fields have very similar
characteristics. For an equilibrium SGS scalar, the FDF is on average
close to Gaussian and the scalar dissipation has only a moderate
dependence on the SGS scalar. However, for a nonequilibrium SGS
scalar at large SGS scalar variance, the FDF is bimodal and the scalar
dissipation depends strongly on the SGS scalar. The SGS scalar is also
characterized by the presence of a diffusion-layer structure (ramp-
cliffs) previously observed.12,18 These characteristics are similar to the
early stages of initially binary mixing.13 Because the SGS scalar in the
equilibrium and nonequilibrium regimes is dominated by different
structures and dynamics, the FJDF could potentially be modeled more
accurately than the unconditioned FDF (or PDF), leading to improved
LES statistics. In this work, we use velocity and passive temperature
data obtained experimentally in the fully developed region of an axi-
symmetric turbulent jet to analyze the scalar–scalar-gradient FJDF and
its transport equation.

II. FACILITIES AND APPARATUS

The jet facility was housed in a large, air conditioned room. The
jet was produced with an assembly of a nozzle and a plenum chamber
(Fig. 1), which contains a section of flow-straightening honeycomb
and three stages of damping screens. The jet assembly was mounted
vertically on a 5� 5 ft2 grill portion of the floor to allow the flow of
entrainment air (Fig. 1). The flow downstream of the nozzle was sur-
rounded by a circular screen (1/1600 mesh size) of 6 ft in diameter to
reduce the disturbances in the room. A collection hood at a down-
stream distance of 260 nozzle diameters (3.9 m) minimizes the effects
of the ceiling on the jet. The hood was connected to an exhaust fan
with the flow rate adjusted by a throttle. Jet air supply was heated with
a pipe heater before entering the plenum chamber, producing an
excess temperature (above the ambient) of 20 �C at the nozzle exit.
The jet nozzle had a fifth-order polynomial profile with a large con-
traction ratio (�100), producing a nearly top-hat velocity profile at the
nozzle exit.

Measurements were performed for a jet exit velocity Uj of 40 m/s,
which gives a jet Reynolds number Rej of 40 000. The nozzle diameter
Dj was 15mm. The corresponding Taylor microscale Reynolds num-
ber Rk ¼ hu21i

1=2k=� was approximately 230, where hu21i
1=2 is the rms

streamwise velocity fluctuation and k is the Taylor microscale. Refer to
Table I for other flow parameters. Data were collected at a downstream
distance of x=Dj ¼ 80 on the jet centerline, well into the self-similar
(fully developed) region of the jet.

The mean axial velocity on the jet centerline Uc at this down-
stream location was 3.07 m/s, and the resulting Uj=Uc value was com-
parable to previous results.19–21 The excess mean temperature was
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approximately 1:25 �C, and the normalized temperature was similar to
those in previous studies.22 The Kolmogorov scale and the scalar dissi-
pation length scale g ¼ ð�3=�Þ1=4 were 0.16mm and 0.22mm, respec-
tively, where � is the turbulent kinetic energy dissipation rate. Under
these flow conditions The Kolmogorov frequency of the signals
ðUc=ð2pgÞ ¼ 2:5 kHz) was fully resolved by the sensors. The non-
buoyant (momentum dominated) region was determined to be
x=Dj � 196 using a criterion based on a jet Froude number (the ratio
of the square of the Reynolds number to the Grashof number) given
by Chen and Rodi.23 The effects of the initial jet-to-air density ratio
(�0:93) on the properties of the jet, such as the spreading rate and the
rms fluctuations of velocity and temperature, were small.24,25 Thus,
our measurement locations were well within the region in which the
buoyancy effects were negligible and the temperature fluctuations
were dynamically passive.

Measurements of the FJDF require spatial filtering of turbulent
velocity and scalar fields. Due to the difficulties in obtaining three-
dimensional data experimentally, two-dimensional (streamwise and
radial directions) filtering is generally employed. In the present study,
streamwise filtering was performed by invoking Taylor’s hypothesis
and cross-stream filtering was realized with three hot-wire
and resistance-wire sensors aligned in the cross-stream direction. The

X-wires are oriented such that the two measured velocity components
are in the filter plane, while the resistance wires are placed near the X-
wires. To minimize the error associated with invoking Taylor’s
hypothesis, instantaneous convection velocity obtained by low-pass fil-
tering the streamwise velocity component with a larger filter was used.

The array filter technique was proposed and studied by Tong
et al.26 for measurements in the atmospheric boundary layer and has
been used by a number of authors to study the SGS stress27 and condi-
tional FDF.15 Two-dimensional filtering has been demonstrated to
provide a very good approximation of three-dimensional filtering,
with errors of approximately 5% for the rms of the resolvable-scale
variables.26 Previous studies of scalar FDF used box filters15,16,28

because a scalar FDF obtained with a box filter is easily interpreted. In
this study, we also use box filters to maintain consistency between the
SGS velocity and scalar fields. Our cross-stream array filter has a trans-
fer function Ĝ2ðj2Þ ¼ 1

3þ 2
3 cosðj2D=2Þ, which is somewhat narrower

than a true box filter (Ĝðj2Þ ¼ sinðj2D=2Þ
j2D=2

) in the wavenumber space,

where D is the filter size. Our estimates using the spectral model for
inertial-range isotropic turbulence show that the array filter overesti-
mates the mean SGS energy and SGS scalar variance by approximately
13%. The mean SGS velocity variance hu0021 i and hu0022 i (double primes
denote the SGS variables) is overestimated by 16% and 10%, respec-
tively. These errors are not negligible but are not expected to have sig-
nificant effects on the measured FJDF since much larger changes in
the SGS variance (h/002iL) are needed to alter the shape of the condi-
tional FJDF (see Sec. III). Therefore, we expect that the box-array filter
will produce FJDF statistics similar to those using a true two-
dimensional box filter.

In the present study, three filter widths, 10, 20, and 40mm, were
used. These correspond to D=‘ ¼ 0:13, 0.27, 0.53, and D=g ¼ 63, 125,
250, respectively. Here, g (¼ 0.16mm) is the Kolmogorov length scale.
The scalar dissipation length scale g/ is 0.22mm. The integral length
scale ‘ is estimated to be 75mm using hu21i

3=2=h�i, where
� ¼ 5�fð@u1=@x1Þ2 þ ð@u2=@x1Þ2g. The percentages of the kinetic
energy and the scalar variance contained in the SGS scales are given in
Table II. The spectra of the streamwise velocity and resolvable-scale
velocity are given in Ref. 17, which quantify the scales filtered.

Temperature fluctuations were measured with platinum resis-
tance wires. Details of the devices are given in Ref. 28. Velocity

FIG. 1. A schematic of the experimental setup including a magnified view of the
sensor array.

TABLE I. Flow parameters on the jet centerline at x=Dj ¼ 80. Here, hu21i
1=2, hu22i

1=2; Rk; h�i, g, hvi= h/2i; g/, and ‘ are the streamwise and cross-stream rms velocity fluc-
tuations, the Taylor Reynolds number, the mean energy dissipation rate, the Kolmogorov length scale, the scalar dissipation rate, the scalar dissipation (Corrsin) length scale,
and the integral length scale, respectively.

hUi hu21i
1=2 hu22i

1=2 Rk h�i g hvi=h/2i g/ ‘

3.07m s�1 0.72m s�1 0.61m s�1 229 5.25 m2 s�3 0.16mm 5.52 s�1 0.22mm 75mm

TABLE II. SGS variances on the jet centerline at x=Dj ¼ 80.

D=g (D=‘) hu0021 i hu0022 i h/002i=h/2i

63 (0.13) 0.107 m2 s�2 0.089 m2 s�2 0.189
125 (0.27) 0.174 m2 s�2 0.140 m2 s�2 0.317
250 (0.53) 0.261 m2 s�2 0.205 m2 s�2 0.462
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measurements were performed with three X-wire probes operated by
TSI IFA 100 hot-wire anemometers with an overheat ratio of 1.8. The
probes were calibrated using a modification of the method by Browne
et al.17,29 Due to the high signal-to-noise ratio of the resistance-wire
temperature device, a very low excess temperature (1:25 �C at the
measurement location) can be used, rendering the temperature con-
tamination of hot wires negligible. For the statistics considered, the dif-
ferences between the corrected and uncorrected results are within 2%.
Therefore, the uncorrected results are given.

The velocity and temperature signals were low-pass filtered at
5 kHz and amplified using Krohn-Hite 3364 filter/amplifiers. The sig-
nals were digitized at 10k samples/s using a 12-bit National
Instrument A/D converter (PCI-6071E), which has a maximum sam-
pling rate of 1.25 �106 samples/s so that the interchannel delay is
much shorter than the sample interval. In the present study, most of
the statistics computed are conditional statistics with two to four con-
ditioning variables. We achieve good statistical convergence by moni-
toring the results when the sample size is increased. We find that
2� 108 data samples are sufficient.

III. RESULTS AND DISCUSSION

In this section, the results of the measured conditional FJDF and
some of the terms in the FJDF transport equation are presented.
Although the conditional scalar gradient is expected to be more inter-
mittent as D=g (D=g/) increases, it is influenced more strongly by the
SGS scalar variance and the results for the three filter sizes are qualita-
tively similar. Therefore, only results for D=g ¼ 125 are presented.

A. The conditional FJDF

The mean FJDF conditional on the SGS scalar variance and the
resolvable-scale scalar hf/w1

jh/002iL; h/iLi is shown in Fig. 2. Note that
for a specified value of the resolvable-scale scalar, the SGS scalar is
equivalent to the total scalar. For convenience, we use /00 and w1 only

and omit the sample-space variables /̂ and ŵ1 when plotting the

FJDF. The FJDF is normalized by h/002i1=2L and ðvL=DÞ1=2 (vL defined
as hDð@/=@x1Þ2iL), with the latter being the rms scalar gradient in the
filter domain. Figure 2 shows that for small SGS variance (generally
h/002iL=h/002i � 1), the conditional FJDF is unimodal. The FJDF is
close to the product of the marginal conditional FDFs of / and w1,
indicating that the statistical dependence between the two variables is
weak. The scalar–scalar-gradient JPDF measured at the same location,
which is in the fully developed region of the turbulent jet, also has a
similar shape14 although the correlation between / and w1 is slightly
higher. Because a fully developed jet is in quasi-equilibrium, the simi-
larity between the FJDF and the JPDF suggests that when the SGS vari-
ance is small, the SGS scalar is also in quasi-equilibrium and the scalar
gradient has characteristics similar to those in an equilibrium flow.

For large SGS variance (generally h/002iL=h/002i > 3), the FJDF
[Fig. 2(b)] is bimodal with the two peaks near /00 ¼ 61 and w1 ¼ 0.
The isocontours between /00 ¼ 61 have much larger values of jw1j
compared to those of the product of the conditional marginal FDFs,
indicating that the scalar gradient has much larger probabilities to take
large values than those given by the marginal FDFs. Furthermore, the
FJDF is strongly skewed to negative w1 values. Therefore, the scalar
gradient is strongly dependent on the SGS scalar for these /00 values.

For /00 values beyond 61, the dependence becomes somewhat weaker,
suggesting that the SGS scalar in these regions is better mixed.

The FJDF results for large SGS variance are due to the presence
of the diffusion layer structure in the SGS scalar. In such a structure,
the gradient is largest near the center (cliff) where /00 ¼ 0 and
decreases toward the edges, resulting in a strong dependence of the
gradient on the SGS scalar. The observed asymmetry of the FJDF in
w1 is due to the anisotropy of the scalar field: the scalar values are on
average higher on the upstream side; therefore, cliffs with higher
upstream scalar values (w1 < 0) are more likely to occur.30 Previous
studies of conditionally filtered scalar dissipation and the
scalar–scalar-dissipation FJDF16,28 are also consistent with the present
results. Fox10 used one-dimensional layer-like lamella structures to
model binary scalar mixing and obtained JPDFs qualitatively similar
to the FJDF observed here. It would be interesting to compare the

FIG. 2. Conditional mean of the FJDF on the jet centerline for h/iL ¼ h/i. (a)
h/002iL=h/002i ¼ 0:3 and (b) 11.0. Solid and dashed isocontours are the condi-
tional FJDF and the product of the marginal conditional FDFs, respectively.
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FJDF with the JPDF from direct numerical simulations. The strong
coupling between / and w1 shows that the independence assumption
often invoked is not valid.

To further quantify the FJDF, we examine the conditional mar-
ginal FDF, hfw1j/jh/iL; h/

002iLi (Fig. 3). For small SGS variance, the
conditional marginal FDF is only weakly dependent on /00 (not
shown), consistent with the results in Fig. 2(a). For large SGS variance,
near /00 ¼ 1 (and beyond), the conditional FDF has the classical
stretched exponential shape of scalar gradient PDFs, again consistent
with that of a well-mixed scalar. The slight skewness to the negative
values is likely due to the residual anisotropy. For /00 ¼ 0, which is
near the center of the diffusion layer, the FDF decreases more slowly
for jw1j < 6. Beyond this range, the FDF appears to roll off at approxi-
mately the same rate as that for /00 ¼ 61. This suggests that the con-
tributions of the cliffs to w1 are largely limited to jw1j < 6 (for
higher SGS variance values, the limit is expected to be greater);
therefore, the scalar gradient within cliffs is less intermittent than
that outside. This is further evidenced by the kurtosis of the condi-
tional marginal FDF (Fig. 4), which has two peaks near /00 ¼ 61
and a minimum near /00 ¼ 0 (in the cliff). The peak kurtosis values
are comparable to the scalar gradient kurtosis obtained in moderate
Reynolds number flows.12,31

The conditional FJDF also contains information about the den-
sity of isoscalar surfaces (e.g., the stoichiometric mixture fraction sur-
face). The SGS isoscalar surface-to-volume ratio can be obtained as
Rð/00Þ ¼ f/hjw1jj/00iL. For small h/002iL; Rð/00Þ has a shape close to
Gaussian (Fig. 5). This is because the scalar FDF is close to Gaussian
and the conditionally filtered scalar gradient magnitude has a moder-
ate dependence on /00. For large h/002iL, Rð/00Þ has a bimodal shape
with a local minimum near /00 ¼ 0, indicating that the SGS cliffs have
a smaller surface density than the well-mixed SGS scalar. Therefore, in
a reactive flow, when h/002iL is large, the reaction zones, which tend to
occur in cliffs, are expected to be less wrinkled than those in a well-
mixed region. The diffusion layer structure is similar to the mixture
fraction structure in a laminar flamelet,32 and the lower surface den-
sity, which is equivalent to lower surface curvatures, further indicates
that the structure is conducive to flamelets. By contrast, distributed

reaction zones, which are more likely to occur in well-mixed mixture
fraction fields, have higher curvatures.

B. The conditionally filtered scalar and scalar-gradient
diffusion

In the present study, the scalar diffusion and scalar-gradient dif-
fusion are also obtained using the streamwise derivatives. The condi-
tionally filtered scalar diffusion h@2/=@x21j/

00;w1iL has a negative
dependence on /00, similar to the conditionally filtered scalar diffusion
conditional on / alone (h@2/=@x21j/

00iL).
16 The dependence becomes

stronger with increasing w1 (Fig. 6) because on average the diffusion is
larger when mixing is stronger (large w1). For w1 ¼ 0, the diffusion is
small but non-zero, perhaps because the diffusion at local extrema has
a zero gradient but non-zero diffusion. For larger SGS variance values,

FIG. 3. Conditional mean of the FDF hfwj/jh/iL; h/002iLi for h/002iL=h/002i ¼ 7:0.

FIG. 4. Conditional kurtosis of the SGS scalar for the SGS variance values given in
the legend.

FIG. 5. Conditional isoscalar-surface density for the SGS variance values given in
the legend.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 035121 (2021); doi: 10.1063/5.0039025 33, 035121-5

Published under license by AIP Publishing

https://scitation.org/journal/phf


this qualitative feature is more pronounced, with the dependence
weaker for small jw1j and stronger for large jw1j. The dependence is
especially strong for w1 < �3 This is probably due to an ensemble of
diffusion layers in the SGS scalar: in a diffusion layer, the diffusion is
zero at the layer center and is largest near the edges where /00 ¼ 60:7,
thus producing a strong dependence of the diffusion on /00 for
j/00j < 0:7. For j/00j > 0:7, the diffusion is not strongly affected by the
diffusion layer and the dependence on /00 and w1 may become weaker,
as suggested by the S-shaped diffusion conditioned on /00 alone.16 The
conditional diffusion term h@2/=@x21j/;w1i in the scalar–scalar-
gradient JPDF transport equation measured at the same location in the
jet (not shown) has a similar dependence on / and w1. We note that
although the scalar diffusion is not in closed form in the scalar–scalar-
gradient FJDF approach, its alternative (the scalar dissipation term) is.

The conditionally filtered scalar-gradient diffusion shown in
Fig. 7 has a negative, slightly S-shaped dependence on w1. Therefore,

molecular diffusion tends to pull the gradient toward the equilibrium
point (usually the mean gradient), similar to its effects on the scalar.
For large SGS variance, the S-shape appears to be more pronounced
and the normalized magnitude of the gradient diffusion is smaller.
This is due to the presence of diffusion layers. The scalar-gradient dif-
fusion is close to zero away from a diffusion layer (w1 � 0) and
becomes negative near the edges of the layer (in a diffusion layer with
a negative scalar jump), close to the layer center where w1 has large
negative values and @2w1=@

2x1 becomes positive. Thus, the
@2w1=@x

2
1 � w1 curve has a dip at small negative w1 values. A diffu-

sion layer with a positive scalar jump will produce a diffusion curve
that is anti-symmetric to that of a layer with a negative-jump, complet-
ing the S-shaped curve.

The dependence of the scalar-gradient diffusion on /00 is gener-
ally weak for small SGS variance but becomes slightly stronger at large
SGS variance. To further examine this, we compute the conditionally
filtered gradient diffusion conditional on /00 alone (not shown). For
large h/002iL, the gradient diffusion is positive near / ¼ 000 and
becomes negative for large j/00j values, qualitatively consistent with
the diffusion layer structure.

In FDF methods, the effects of reactions on FDFs are in closed
form. However, the effects on molecular diffusion must still be mod-
eled. Generally, there are qualitative differences between the diffusion
of a conserved scalar and that of a reacting scalar. For a conserved sca-
lar, the conditionally filtered diffusion is linear or S-shaped, whereas
for a reacting scalar (e.g., YF) under fast chemistry conditions, it has a
bell shape centered at the stoichiometric mixture fraction (close to Y F

¼ 0).7 The conditionally filtered scalar-gradient diffusion of YF is also
expected to have a different shape from that of a conserved scalar. A
qualitative shape sketched in Fig. 7, which can be inferred from the
laminar flamelet solution,33 shows a rapid oscillation that is caused by

FIG. 6. Conditional scalar diffusion. The conditions are the same as in Figs. 2(a)
and 2(b), respectively.

FIG. 7. Conditional scalar-gradient diffusion. The conditions are the same as in
Fig. 2. The upper and lower curves are for small and large SGS variances, respec-
tively. The thick solid line is a sketch of the diffusion of the gradient of a reacting
scalar (e.g., YF) under fast chemistry conditions. The arrows point to the vertical
coordinates for the curves.
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the reaction. Therefore, a mixing model for a conserved scalar gradient
can potentially lead to unphysical prediction of mixing of reacting sca-
lars. However, since in the /� w FJDF approach, the effects of reac-
tions on the scalar diffusion are modeled at a higher level compared to
the scalar FDF approach, errors caused by a conserved-scalar mixing
model are expected to be smaller.

The conditionally filtered production of scalar-gradient
�h@u1@x1

w1j/;w1iL has a positive dependence on w1 (Fig. 8), while the

dependence on /00 is generally weak. The conditionally filtered velocity
gradient h@u1@x1

j/00;w1iL has an approximately symmetric linear depen-

dence on w1 (not shown). The increase in � @u1
@x1

with jw1j is expected
as the production of w is mainly due to compressive strain rates acting
on the scalar gradient. The approximate linear dependence is because
on average the magnitudes of the dissipation-scale velocity and scalar
fluctuations are generally proportional to each other (e.g., their rms
fluctuations normalized by the rms integral-scale fluctuations scale as

Re1=4‘ , where Re1=4‘ is the turbulent Reynolds number). Therefore, the
scalar gradient production has an asymmetric quadratic dependence
on w1. Figure 8 shows that the dependence is stronger for larger SGS
variance values, as diffusion layers tend to be associated with large
strain rates.

C. The conditionally filtered scalar-gradient dissipation

The conditionally filtered scalar-gradient dissipation shown in
Fig. 9 generally increases with both/00 andw1. For small SGS variance,
the isocontours are oval-shaped and there is a dependence on both /00

and w1. The dependence on /00 is similar to the dependence of the
conditionally filtered scalar dissipation on the SGS scalar.16 For large
SGS variance, the dependence on /00 is weak for jw1j=ðhviL=DÞ

1=2

< 1 because a small gradient occurs mostly outside the diffusion layer
where the gradient dissipation is also small. For large w1, the isocon-
tours extend into regions of large w1 and small /00 values, consistent
with small gradient dissipation values near the center of a diffusion

layer. Moving toward larger j/00j with a fixed large w1 value (e.g., 65),
the dissipation increases sharply due to the large scalar-gradient dissi-
pation near the edges of the diffusion layer. Again, mixing models
need to predict the different characteristics of the scalar-gradient dissi-
pation for small and large h/002iL.

IV. CONCLUSIONS

The scalar–scalar-gradient FJDF and its transport equation were
studied experimentally. Measurements were performed in the fully
developed region (80 jet diameters downstream of the nozzle) of a
heated turbulent air jet of Reynolds number 40 000. Velocity and tem-
perature were obtained using an array consisting of three X-wire
probes and three resistance-wire temperature probes. Filtering in the
streamwise and cross-stream directions was performed by invoking
Taylor’s hypothesis and using the array filter, respectively. The mean
FJDF conditional on the filtered scalar and the SGS scalar variance, the
conditionally filtered scalar diffusion, scalar-gradient diffusion, scalar-
gradient production, and scalar-gradient dissipation were obtained.

FIG. 8. Conditional scalar-gradient production. The upper and lower curves are for
small and large SGS variances, respectively. The conditions are the same as in Fig. 2.

FIG. 9. Conditional scalar-gradient dissipation. The conditions are the same as in
Figs. 2(a) and 2(b), respectively.
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In our analysis, qualitatively different results are obtained for
small and large values of the SGS variance, h/002iL. For small SGS sca-
lar variance, the conditional FJDF is unimodal and the statistical
dependence of the scalar gradient on the SGS scalar is weak. However,
for large SGS variance, the FJDF is bimodal and the dependence of the
gradient on /00 is strong. Therefore, the independence assumption
used in some modeling approaches is not valid. The results are consis-
tent with the presence of diffusion layer structures that are similar to
the mixture fraction structure in a laminar flamelet. The surface-to-
volume ratio of such a structure is also smaller than that of an isoscalar
surface in a well-mixed SGS scalar.

The conditionally filtered diffusion of w1 has an S-shaped depen-
dence on w1, which is more pronounced at large SGS variance due to
the presence of the diffusion layer structure. The scalar-gradient diffu-
sion of a reacting scalar under fast chemistry conditions is expected to
be qualitatively different from that of a conserved scalar. The scalar-
gradient production has a quadratic dependence on the scalar
gradient, consistent with the expected linear dependence of the veloc-
ity gradient on the scalar gradient. The scalar gradient dissipation is
also strongly affected by the diffusion layer structure. These character-
istics are important for modeling the FJDF equation. In LES, the differ-
ent structures and dynamics of the SGS scalar and scalar gradient
under (instantaneous) equilibrium and nonequilibrium conditions
(e.g., small and large SGS scalar variance) could potentially be modeled
more accurately. In addition, in the scalar–scalar-gradient FJDF
approach, modeling is performed at a higher level, and it is expected
to be more accurate than scalar FDF approaches. Furthermore,
because the FJDF contains the information about the scalar dissipation
and the surface-to-volume ratio, the FJDF approach has strong poten-
tial for accurately modeling turbulent combustion over a wide range of
Damk€ohler numbers.
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