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ABSTRACT: Combining theories in continuous-systems vibrations, piezoelectricity, and fluid
dynamics, we develop and experimentally validate an analytical electromechanical model to
predict the response behavior of a self-excited micro-power generator. Similar to music-
playing harmonica that create tones via oscillations of reeds when subjected to air blow, the
proposed device uses flow-induced self-excited oscillations of a piezoelectric beam embedded
within a cavity to generate electric power. To obtain the desired model, we adopt the non-
linear Euler�Bernoulli beam’s theory and linear constitutive relationships. We use Hamilton’s
principle in conjunction with electric circuits theory and the inextensibility condition to derive
the partial differential equation that captures the transversal dynamics of the beam and the
ordinary differential equation governing the dynamics of the harvesting circuit. Using the
steady Bernoulli equation and the continuity equation, we further relate the exciting pressure
at the surface of the beam to the beam’s deflection, and the inflow rate of air. Subsequently,
we employ a Galerkin’s descritization to reduce the order of the model and show that a single-
mode reduced-order model of the infinite-dimensional system is sufficient to predict the
response behavior. Using the method of multiple scales, we develop an approximate analytical
solution of the resulting reduced-order model near the stability boundary and study the
normal form of the resulting bifurcation. We observe that a Hopf bifurcation of the super-
critical nature is responsible for the onset of limit-cycle oscillations.
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INTRODUCTION

T
ODAY, many critical electronic devices, such as those
used in wireless sensing and health monitoring, are

becoming smaller, and more energy efficient requiring
minute amounts of power to function. For instance, a
wireless transponder for data transmission can operate
efficiently with less than 1mW of power (Gregori et al.,
2004; Kim et al., 2007). A sensor interface chip for
health monitoring has an average power consumption
of 48 mW (Baerta et al., 2006; Bracke et al., 2007).
These, and many other similar low-power consumption
devices, are currently being powered using batteries that
have not kept pace with their demands, especially in
terms of energy density (Roundy et al., 2003; Paradiso
and Starner, 2005). In addition, batteries have a finite
life span requiring regular replacement or recharging,
which, in many cases, is a very cumbersome and time-
consuming process.
In light of the very low-power consumption of these

electronics and different challenges associated with bat-
tery technology, scavenging, otherwise, wasted energy

from the ambient environment can provide a solution
to autonomously power and maintain these systems.
To achieve this goal, scalable, low-maintainace, and
easy to design micropower generators (MPGs) have
been recently introduced as means to transform wasted
ambient energy, e.g., thermal, solar, wind, and vibra-
tions into electricity, (Roundy et al., 2003; Arms et al.,
2005; duPlessis et al., 2005; Roundy and Wright, 2005;
Inman and Grisso, 2006).

In the last couple of years, aerodynamic energy fields
such as wind have attracted specific attention due to their
abundance (Allen and Smits, 2001; Liao et al., 2003;
Robbins et al., 2006; Simpson et al., 2008; Tang et al.,
2009; Zhu et al., 2009; Barrero-Gil et al., 2010; Erturk
et al., 2010). Unfortunately, traditional wind turbine
designs that are based on an electromagnetic rotary-
type generators suffer from scalability issues because
their performance drops significantly with their size.
Mitcheson et al. (2008) reported that the power coeffi-
cient of a rotary wind turbine can drop from 0.59 which
corresponds to the Betz limit to less than 0.1 as the size of
the turbine decreases. This is a result of relatively high
viscous drag on the blades at low Reynolds numbers
(Lissaman, 1983), bearing and thermal losses which
increase significantly as size decreases, and high electro-
magnetic interferences. In addition to performance
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issues, the design and fabrication of traditional small-
scale rotary-type generators that require a rotor, a
stator, magnets, wirings, and blades is a very complex
and expensive process. This makes their actual imple-
mentation for compact applications an astounding task.
Motivated by the obvious need for a compact, scalable,

cheap, and low-maintenance wind energy generator, we
have recently introduced a new concept for an energy
harvester which uses wind energy to maintain remote
low-power consumption sensors (St. Clair et al., 2009,
2010). Inspired by music-playing harmonica, the har-
vester shown in Figure 1 consists of a piezoelectric can-
tilever uni-morph structure embedded within a cavity to
mimic the vibrations of the reeds in a harmonica when
subjected to air blow. The operation principle of the
harvester is simple. Wind blows into the chamber and
tries to escape through the small aperture between the
cantilever (reed) and the supporting structure. The
sudden change in area causes the flow to separate
from the cantilever at the sharp edge which causes the
velocity to increase rapidly. This, in turn, produces a
pressure drop across the cantilever. The resulting pres-
sure drop bends the cantilever which causes the aperture
area to increase. Consequently, the flow velocity drops
and the pressure drop decreases. The mechanical restor-
ing force pulls the beam back decreasing the aperture
area and the process is repeated. These periodic fluctu-
ations in the pressure cause the beam to undergo self-
sustained oscillations. The resulting periodic strain in the
piezoelectric layer produces an electric field which can
be channeled as a current to an electric device.
In previous efforts (St. Clair et al., 2009, 2010), the

authors introduced the basic physics of this concept and
proved its feasibility. In this study, we focus on obtain-
ing and validating a non-linear aero-electro-mechanical
model to represent the system dynamics. The availability
of this model is essential toward optimizing the design
parameters for enhanced power density and to minimize
the cut-on wind speed of the device. To achieve this goal,
the rest of the manuscript is organized as follows: We
first discuss the basic physics of the generator in the

second Section. We follow that by a development of
an electromechanical model to predict its behavior in
the third Section. Using a Galerkin descritization, we
reduce the order of the model in the fourth Section
and study its convergence in the fifth Section. In the
sixth Section, we experimentally validate the reduced-
order model. Using the resulting model, we construct
the normal form of the bifurcation near the stability
boundary in the seventh Section. Finally, in eighth
Section, we present our conclusions and recommenda-
tions for future work.

OPERATION CONCEPT

The operation concept of this device is based on a
non-linear phenomenon known as self-excited or self-
sustained oscillations. This phenomenon can be best
explained by studying the dynamics of the long-
celebrated Van der Pol oscillator whose equation of
motion can be written as (Strogatz, 2000):

€xþ�ðx2�1Þ _xþx¼0, ��0: ð1Þ

Equation (1) is a simple harmonic oscillator but with a
linear negative damping term �� _x and a non-linear pos-
itive damping term �x2 _x. Note that negative damping
pumps energy into the system while positive damping
pumps energy out of the system. As such, for small oscil-
lations, jxj< 1, the non-linear positive damping is very
small and the effective damping of the system is negative
causing small amplitude oscillations to grow. However,
as jxj> 1, the non-linear damping becomes large and the
effective damping becomes positive causing large ampli-
tudes to decay. At one point, the energy dissipated over
one cycle balances the energy pumped and the system
settles into self-sustained fixed-amplitude oscillations
that are called limit cycles.

In the case of this MPG concept, self-excited oscilla-
tions occur when the volumetric flow rate past the can-
tilever is large enough such that the energy pumped into
the structure via non-linear pressure forces offsets the
intrinsic linear damping in the system which consists
of the structural damping and electric damping due to
electric energy generation. One can think of this process
as a non-linear feedback mechanism in which the motion
of the cantilever produces a disturbance in the potential
flow that feeds enough energy back to the structure to
overcome the internal damping (Hilaire, 1976; Fletcher,
1992; Tarnopolsky et al., 2001).

The onset of the limit-cycle oscillations necessary for
energy harvesting (cut-on wind speed) is governed by a
threshold combination of the flow and design parame-
ters known as the Hopf bifurcation point. Below that
point, the energy pumping mechanism cannot overcome
the damping mechanism and the structure settles at a
static equilibrium and hence no power can be harvested
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Figure 1. Operation concept of the self-excited MPG.
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as shown in Figure 2(a). Beyond that threshold, the
non-linear pressure forces overcome the intrinsic damp-
ing in the system and the beam undergoes limit-cycle
oscillations.
Not only does the combination of the design param-

eters determine the cut-on wind speed but they also
determine the nature of the response beyond it (bifurca-
tion nature). As shown in Figure 2(a), when the bifurca-
tion is supercritical and the flow rate exceeds the
threshold value, small-amplitude limit-cycle oscillations
about the former static position are born. On the other
hand, when the bifurcation is subcritical as shown in
Figure 2(b), the output voltage jumps to a distant attrac-
tor which can be another fixed point, a large-amplitude
limit cycle, or a chaotic attractor.
From a mathematical perspective, this bifurcation

threshold represents a point at which two or more com-
plex-conjugate eigenvalues associated with the Jacobian
of the system dynamics transversally cross the imaginary
axis from the left- to the right-half of the complex plane.
With this understanding, it becomes evident that the
ability of this device to generate energy depends on the
onset of the bifurcation which has a complex and, as of
today, unknown dependence on the design parameters
and flow characteristics.

THE ELECTROMECHANICAL MODEL

To resolve the unknown dependence of the dynamics
on the the design parameters, we obtain a non-linear
electromechanical model that governs the response of
the system shown in Figure 3. As air of flow rate, U0,
blows into one side of a large reservoir, its speed drops
causing a pressure PA(t) to build on the top side of the
cantilever which forces the cantilever to deflect by w(s, t)
and elongate by u(s, t). Air escapes with a flow rate U(t)
through the aperture between the cantilever and the sup-
port. Variations in the pressure produce a time-varying
strain in the piezoelectric layer, which produces a volt-
age V(t) across an electric load, R.
As depicted graphically in Figure 4, five equations are

necessary to describe the evolution of the system dynam-
ics which is governed by five parameters, namely, the
exciting pressure, PA(t), the beam’s deflection and elon-
gation, w(s, t) and u(s, t), the flow rate through the

aperture, U(t), and the voltage developed across the
load, V(t); with the last being the critical parameter nec-
essary to calculate the output power of the harvester.

Non-linear Strain�Displacement Relationship

We start by developing the strain�displacement rela-
tionships of the beam. For a slender beam similar to the
one considered here, shear deformations and rotary iner-
tia can be neglected allowing for the adoption of the non-
linear Euler�Bernoulli’s beam theory to model the
beam’s response. According to Euler’s theory, the flex-
ural dynamics of the beam can be described using a lon-
gitudinal displacement, u(s, t), and a transversal
displacement, w(s, t), Figure 4(b), where s denotes the
arclength and t denotes time. To describe a beam element
before and after deformation, two cartesian coordinate
systems are utilized: the (x, y, z) is considered to be global,
while the ð �x, �y, �zÞ is a local system, and they are related
through a transformation matrix corresponding to the
rotation around the �y-axis. Using Figure 4(b), it follows
that the longitudinal elongation of the beam element can
be written as (Nayfeh, 2004):

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdsþ duÞ2 þ dw2

q
� ds: ð2Þ

Dividing Equation (2) by the element length, ds, the
strain along the neutral axis of the differential element
becomes:

�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ w02

q
� 1, ð3Þ
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Figure 2. Two scenarios for the voltage response of the MPG as the flow rate increases: (a) supercritical Hopf bifurcation and (b) subcritical
Hopf bifurcation.
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Figure 3. Schematic of the self-excited MPG: (a) front view and
(b) sectional view.
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where the over-prime denotes a derivative with respect
to the arclength, s. Using a quadratic Taylor expansion
of Equation (3), we obtain:

�0 ¼ u0 þ
w02

2
: ð4Þ

Due to rotation of the differential beam element, the
strain at a point having the coordinates ð �x, �y, �zÞ relative
to the neutral axis can be written in terms of the beam’s
curvature using:

� ¼ � �z
d 

ds
: ð5Þ

Referring to Figure 4(b), the rotation angle,  (s, t), can
be expressed as:

 ðs, tÞ ¼ tan�1
w0ðs, tÞ

1þ u0ðs, tÞ

� �
: ð6Þ

Substituting Equation (6) back into Equation (5), then
expanding the outcome in a Taylor expansion up to
cubic terms, yields:

� ¼ � �z w00 � w00u0 � w0u00 � w00w0
2

h i
: ð7Þ

Adding Equations (4) and (7), the total axial strain can
be written as:

�x ¼ u0 þ
w02

2
� �z w00 � w00u0 � w0u00 � w00w0

2
h i

: ð8Þ

Stress�Strain Relationships

The stress�strain relationships of the beam and the
piezoelectric layer are assumed to follow the linear con-
stitutive equations given by:

�bx ¼ Yb�bx, ð9Þ

�px ¼ Yp �px � d31E3

� �
, ð10Þ

where �x and ex are the stress and the strain in the axial
direction, respectively; Y is Young’s modulus, d31 the
piezoelectric constant, and E3 the electric field developed
in the piezoelectric layer. Here, the superscript p and
b stand for the piezoelectric and structural layers,
respectively.

Assuming that the charge has a homogeneous distribu-
tion along the piezoelectric layer, the electric field can be
related to the voltage, V(t), developed across the electric
load, R, and the piezoelectric layer thickness, tp, using
E3¼�V(t)/tp. Utilizing Ohm’s law, the voltage can be
further related to the current via VðtÞ ¼ R _QRðtÞ, where
_QR is the current passing through the load, see Figure 5.
Here, the over-dot indicates a derivative with respect to
time. Substituting the aforementioned relations back into
Equation (10), yields:

�px ¼ Yp �px þ
d31
tp

R _QRðtÞ

� �
: ð11Þ

(b)
z

s

w
A B

ds u+du x

ds+e
u

A*

y

B*

w+dw

z
x

(a)
z

R

V (t) PA (t)

Lp

hb hc

ha
tb

Z

n.a

tp

L
x

s

w (s,t)

wb

+–

Figure 4. (a) Schematic of the beam harvester and (b) Deformation of a differential beam element.
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Equations of Motion and Boundary Conditions

To obtain the equations of motion, we use Hamilton’s
variational principle which states that:

Z t2

t1

�L þ �W extdt ¼ 0, ð12Þ

where t1 to t2 is any arbitrary time interval, d the virtual
operator, L¼T�U the Lagrangian, and Wext a non-
conservative work term. The kinetic energy, T, of the
system can be expressed as:

T ¼
1

2

Z L

0

MðsÞ _u2 þ _w2
� �

ds, ð13Þ

where M(s) is the mass per unit length of the beam
given by:

MðsÞ ¼Wb�
btb þWp�

ptp HðsÞ �Hðs� LpÞ
� �

: ð14Þ

Here, � is the mass density, t and W are the associated
thickness and width of the layer, and H(s) is the
Heaviside function.
The total potential energy of the system, U, consists

of the strain energy of the composite beam in addition to
the electric potential stored in the capacitive piezoelec-
tric layer. These can be expressed as:

U ¼
1

2

Z
V

�bx�
b
x þ �

p
x�

p
x

� �
dV �

1

2

Z
V

E3D3dV, ð15Þ

where V is the domain and D3 the electric displacement
given by the following linear piezoelectric constitutive
relation:

D3 ¼ d31Y
p�px � e33E3, ð16Þ

where e33 is the permittivity at constant strain.
Replacing the electric field, E3, in Equation (16) again

by �R _QR=tp, then substituting Equations (8), (9), (11),

and (16) back into Equation (15), and carrying the inte-
gration over the thickness of each layer, we obtain:

U ¼
1

2

Z L

0

�
YAðsÞ

	
u02 þ u0w02 þ

1

4
w04



þ YIðsÞ

	
w002 � 2w002w02 � 2w002u0 � 2w0w00u00




þ 2�ðsÞ

	
w00 � w00u0 � w0u00 � w00w02



R _QRðtÞ

�
ds

�
1

2
CpðR _QRðtÞÞ

2, ð17Þ

where YA(s), YI(s), �(s), and Cp are, respectively, the
axial stiffness, the bending stiffness, the electromechan-
ical coupling, and the piezoelectric capacitance:

YAðsÞ ¼WptpY
p HðsÞ �Hðs� LpÞ
� �

þWbtbY
b,

YIðsÞ ¼
1

3
WbY

b h3b � h3a
� �

þWpY
p h3c � h3b
� �� �

� H sð Þ �H s� Lp

� �� �
þ
WbY

bt3b
12

H s� Lp

� �
�H s� Lð Þ

� �
,

�ðsÞ ¼
�WpY

pd31

2tp
h2c � h2b
� �

HðsÞ �Hðs� LpÞ
� �

,

Cp ¼
e33WpLp

tp
:

Here, ha, hb, and hc are the thickness boundaries mea-
sured from the neutral axis of the beam as showed in
Figure 4(a). The location of the neutral axis is deter-
mined relative to the bottom surface of the composite
beam by recalling that stresses through the cross-section
must be in equilibrium, which yields:

ha ¼ �
1

2

YbWbt
2
b þ 2YpWptptb þ YpWpt

2
p

YbWbtb þ YpWptp
: ð18Þ

INEXTENSIBILITY CONDITION
Assuming that the beam is inextensible, i.e., the elon-

gation along the neutral axis is equal zero, we can relate
the longitudinal displacement, u(s, t), to the transversal
displacement, w(s, t). This condition is valid only when
the beam has a zero geometric boundary condition at
one end; similar to the cantilever beam considered here.
With that, Equation (3) yields:

1þ u0ð Þ
2
þw02 ¼ 1: ð19Þ

Integrating Equation (19) twice with respect to the
arclength s, taking into account the boundary conditions
at the clamped end, we obtain:

u ¼ �
1

2

Z s

0

w02ds: ð20Þ

Cp

Qc

R

+

V

–

˙QR
˙

Piezoelectric
patch

Figure 5. Schematic of the harvesting circuit.
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Using Equations (13), (17), and (19), the Lagrangian of
the system can be written as:

L ¼
1

2

Z L

0

�
MðsÞ _u2 þ _w2

� �
� YAðsÞ

�
u02 þ u0w02 þ

1

4
w04
�

� YIðsÞ w002 � 2w002w02 � 2w002u0 � 2w0w00u00
� �

� 2�ðsÞ w00 � w00u0 � w0u00 � w00w02
� �

R _QRðtÞ

þ �ðs, tÞ 1� 1þ u0ð Þ
2
�w02

h i�
ds

þ
1

2
CpðR _QRðtÞÞ

2, ð21Þ

where �(s, t) is a Lagrange multiplier introduced to
account for the inextensibility constraint.

NON-CONSERVATIVE FORCES
The influence of the non-conservative forces can be

captured by introducing the general virtual-work term:

�Wext ¼

Z L

0

F�u�uþ F�w�wþ F����
� �

dsþ F�QR
�QR, ð22Þ

where

F�u ¼ 0, F�w ¼ ½WPAðtÞ � ca _w�, F�� ¼ 0, F�QR
¼ �R _QRðtÞ:

The term associated with F�w represents the work done
by the pressure forces on the beam surface and mechan-
ical viscous damping. Here, the gauge pressure, PA(t), is
assumed to be uniform over the beam area and ca
denotes a viscous damping coefficient. The term associ-
ated with F�QR

is used to account for electric damping.
Substituting Equations (21) and (22) back into

Equation (12) yields the equations of motion and
boundary conditions in the following general form
(Meirovitch, 1997):

@‘

@ri
�
@

@s

@‘

@r0i

	 

þ
@2

@s2
@‘

@r00i

	 

�
@

@t

@‘

@ _ri

	 

¼ �F�i , ð23Þ

B1i ¼
@‘

@r0i
�
@

@s

@‘

@r00i

	 
� �
�ri

� �s¼L

s¼0

¼ 0,

B2i ¼
@‘

@r00i

� �
�r0i

� �s¼L

s¼0

¼ 0, ð24Þ

where L ¼
R L
0 ‘ ðs, tÞds and ri� (u(s, t), w(s, t), QR(t)).

LONGITUDINAL DYNAMICS
When ri� u(s, t), Equations (23) and (24) yield:

YIðsÞw002
� �0

þ
1

2
R _QR 2�ðsÞw00½ �

0
� �ð1�

1

2
w02Þ

� �0
� YIðsÞw0w00 þ �ðsÞR _QRw

0
� �00

�MðsÞ
1

2

Z s

0

ð €w0Þ2ds

� �
¼ 0, ð25Þ

and the boundary conditions:

u ¼ 0 at s ¼ 0,

YIðsÞw002 þ �ðsÞw00R _QR � �ð1�
1

2
w02Þ

� YIðsÞw0w00 þ �ðsÞR _QRw
0

� �0
¼ 0 at s ¼ L, ð26Þ

Using Equations (25) and (26), we can solve for �(s, t)
and obtain to second order:

�ðs, tÞ ¼ YIðsÞw002 � YIðsÞw0w00 þ �ðsÞR _QRw
0

� �0
þ �ðsÞw00R _QR �

Z s

L

MðsÞ
1

2

Z s

0

ð €w0Þ2ds

� �
ds: ð27Þ

TRANSVERSAL DYNAMICS
When ri�w(s, t), Equations (20), (23), (24), and (27)

yield the following equation of motion governing the
transversal vibrations of the beam:

MðsÞ €wþ YIðsÞw00½ �
00
þ w0ðYIðsÞw0w00Þ0
� �0

þca _w

þ w0
Z s

L

MðsÞ
1

2

Z s

0

ð €w0Þ2ds

� �
ds

� �0
þ3 �ðsÞw0w00VðtÞ½ �

0

þ �0ðsÞVðtÞð1þ
1

2
w02Þ

� �0
¼WbPAðtÞ, ð28Þ

and the associated boundary conditions:

w ¼ w0 ¼ 0, at s ¼ 0; w00 ¼ w000 ¼ 0 at s ¼ L: ð29Þ

Equation (28) contains terms similar to those obtained
by many researches for vibratory energy harvesters
(duToit and Wardle, 2007; Erturk and Inman, 2008;
Osorio and Daqaq, 2009). However, the difference is
that these equations include non-linear stiffness and
inertia terms, the fourth and fifth terms in Equation
(28), respectively; as well as, the non-linear electro-
mechanical coupling terms, the sixth and second part
of the seventh term, respectively. The excitation term,
which is normally in the form of a base excitation in
vibratory energy harvesters, is replaced by the unknown
dynamics of the surface pressure, PA(t).

ELECTRIC CIRCUIT DYNAMICS
Setting ri�QR(t) in Equations (23) and (24), we

obtain the following equation for the electric circuit
dynamics:

@

@t

Z L

0

�ðsÞðw00 þ
1

2
w00w02Þds

� �
� Cp

_VðtÞ ¼ _QR: ð30Þ

Since the piezoelectric element and the resistive load
are connected in parallel, Figure 5, we can replace the
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current passing through the resistor, _QR, by V(t)/R.
With that, Equation (30) becomes:

Cp
_VðtÞ þ

1

R
VðtÞ ¼

@

@t

Z L

0

�ðsÞðw00 þ
1

2
w00w02Þds

� �
: ð31Þ

PRESSURE DYNAMICS
The only remaining unknown in the model is the

pressure distribution on the cantilever surface. This
distribution which we denoted as PA(t) depends on the
inflow rate of air, U0, the beam deflection, w(s, t), and
the flow rate through the aperture, U(t). To obtain
an equation that governs the dynamics of the pressure
exerted on the cantilever, we invoke several assumptions
on the flow field near the cantilever. First, we assume
that the flow near the beam and through the aperture
is invisid knowing the very low viscosity of air at
normal temperatures. Also, following studies by Ricot
et al. (2005) on the dynamics of harmonica, we assume
that the flow stream through the aperture is irrotational,
two dimensional, and laminar. Tarnopolsky et al. (2000)
has also shown experimentally that unsteadiness of
the flow through the aperture has a little influence
on the dynamics of harmonica reeds and hence can
be neglected. With these assumptions, we can utilize
the steady Bernoulli equation to relate the air pressure
on the surface, PA(t), to the volumetric air flow
rate through the aperture, U(t), as following (Fletcher,
1992):

PAðtÞ ¼
1

2
�a

U2ðtÞ

C2
cA

2ðtÞ
, ð32Þ

where ra is the density of air, Cc is the flow contraction
coefficient for flow through a sharp edged slit (Munson
et al., 2009), and A(t) is the total exit area of the aperture
given by:

AðtÞ ¼ 2

Z L

0

w2ðs, tÞ þ b2
� �1

2 dsþWb w2ðL, tÞ þ b2
� �1

2: ð33Þ

Here, b is the width of the clearance gap around the
beam. Using the continuity equation, we further relate
the pressure to the steady inflow U0, the outflow U(t),
and the change in reservoir volume caused by beam
vibrations using:

_PAðtÞ ¼
�ac

2

Vr
U0 �UðtÞ �Wb

@

@t

Z L

0

wðs, tÞds

� �
, ð34Þ

where c is the speed of sound, and Vr is the volume of
the chamber. Solving Equation (32) for U(t), then

substituting into Equation (34), we obtain:

_PAðtÞ ¼
�ac

2

Vr
U0 � CcAðtÞ

2

�a
PAðtÞ

	 
1
2

"

�Wb
@

@t

Z L

0

wðs, tÞds

�
: ð35Þ

For known U0 and system design parameters, the
response characteristics of the harvester can now be
determined by solving Equations (28), (31), and (35).

REDUCED-ORDER MODELING

We utilize a Galerkin expansion to discretize the
partial differential equation governing the motion of
the system. We express the spatio-temporal function rep-
resenting the transversal vibrations of the beam, w(s, t),
in the form of a convergent series of eigenfunctions mul-
tiplied by unknown temporal coordinates, i.e., we let:

wðs, tÞ ¼
X1
i¼1

	iðsÞqiðtÞ, ð36Þ

where qi(t) is the unknown temporal coordinates and 	i(s)
are chosen as the orthonormal mass-normalized mode
shapes of a cantilever beam. These can be written as:

	iðsÞ ¼ Ci cosh
�i
L
s � cos

�i
L
s

�

��i sinh
�i
L
s� sin

�i
L
s

	 
�
, ð37Þ

where si is expressed as:

�i ¼
sinh �i � sin �i
cosh �i þ cos �i

, ð38Þ

and the �i and Ci are obtained via:

1þ cosh �i cos �i ¼ 0, ð39Þ

Z L

0

MðsÞ	2i sð Þds ¼ 1: ð40Þ

Substituting Equation (36) into Equation (28), multiply-
ing by 	n(s), integrating over the length of the beam, and
using the orthonormality properties of the chosen mode
shapes yields the following set of non-linear ordinary
differential equations:

€qn þ 2
!n _qn þ !
2
nqn þ

X1
i,j,k

Anijkqiqjqk

þ
X1
i,j,k

Bnijkqið €qjqk þ 2 _qj _qk þ qj €qkÞ þ Dn þ
X1
i,j

Cnijqiqj

" #

� VðtÞ ¼ EnPAðtÞ, n ¼ 1, 2, 3, . . . , ð41Þ

Aeroelastic Micro-Power Generator 583



where

!2
n ¼

Z L

0

	n YIðsÞ	00i
� �00

ds,

Anijk ¼

Z L

0

	n 	
0
iðYIðsÞ	

0
j	
00
kÞ
0

h i0
ds,

Bnijk ¼
1

2

Z L

0

	n 	
0
i

Z s

L

MðsÞ

Z s

0

	0j	
0
kds

	 

ds

� �0
ds,

Cnij ¼ 3

Z L

0

	n �ðsÞ	
0
i	
00
j

h i0
dsþ

1

2

Z L

0

	n �
0ðsÞ	0i	

0
j

h i0
ds,

Dn ¼

Z L

0

	n�
00ðsÞds,

En ¼Wb

Z L

0

	nds:

Also, substituting Equation (36) into Equations (31) and
(35), we obtain:

Cp
_VðtÞ þ

1

R
VðtÞ ¼

X1
n

F n _qn

þ
X1
nij

Gnijð _qnqiqj þ qn _qiqj þ qnqi _qjÞ, ð42Þ

and

_PAðtÞ ¼
�ac

2

Vr
U0 � CcAðtÞ

2

�a
PAðtÞ

	 
1
2

�
X1
n

En _qn

" #
, ð43Þ

where

F n ¼

Z L

0

�ðsÞ	00nds,

Gnij ¼
1

2

Z L

0

�ðsÞ	00n	
0
i	
0
jds,

AðtÞ ¼ 2

Z L

0

X1
ni

	n	iqnqi þ b2

" #1
2

ds

þWb

X1
ni

	nðLÞ	iðLÞqnqi þ b2

" #1
2

: ð44Þ

CONVERGENCE ANALYSIS

When the air flows into the chamber with flow rate
U0, the beam deflects into a new static position deter-
mined by the flow rate. If the flow rate is less than a
certain threshold which we will denote as the bifurcation
or cut-on flow rate, the pressure forces cannot overcome
the intrinsic damping in the system and the beam settles
at that static position. On the other hand, when the flow
rate exceeds the cut-on threshold, the static solution

loses stability via a Hopf bifurcation giving way to
limit-cycle oscillations around it. Before we delve into
the experimental validations of the derived model and
its ability to predict this behavior, we seek to determine
the minimum number of modes necessary for conver-
gence. In other words, we want to determine the mini-
mum number of modes to be kept in the Galerkin
expansion such that the addition of any more modes
does not affect the predictions of:

(i) the static response,
(ii) the cut-on flow rate (linear dynamic response), and
(iii) the amplitude of the limit cycles around it (non-

linear dynamic response).

Toward that end, we express Equations (41), (42),
and (43) in the state-space form as following:

_
x ¼ f ðx,U0Þ; ð45Þ

where x ¼ q1, _q1, q2, _q2, . . . , qi, _qi, _PA, _V
� �

, U0 is the input
flow rate (bifurcation parameter), and f ðx,U0Þ is the
non-linear vector field. To study the convergence
of the static solution, the equilibrium points of the
system are obtained by setting the right-hand side of
Equation (45) to zero and solving the resulting non-
linear algebraic equations, f ðx0,U0Þ ¼ 0, for x0.

Figure 6 shows variation of the static tip deflection
of the beam with the input flow rate using a single-mode
and three-mode approximations. Results are obtained
for the numerical parameters listed in Table 1. It can
be seen clearly that the algebraic system yields only
one physical solution and that the two curves are in
excellent agreement. This implies that the static position
is well-estimated using a single-mode assumption.
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Figure 6. Static tip deflection of the beam using a single-mode
approximation (solid) and three-mode reduced-order model
(dashed).
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To determine the minimum number of modes neces-
sary to capture the linear dynamic response of the
system, we obtain the eigenvalues of the response by
finding the determinant of the Jacobian matrix evalu-
ated at the fixed points. This yields a characteristic equa-
tion having 2nþ 2 roots. Two of the resulting
eigenvalues are always real and are associated with the
harvesting circuit and pressure dynamics, respectively.
The remaining 2n eigenvalues represent n pairs of com-
plex conjugate roots that describe the mechanical vibra-
tions of the beam. The convergence of the reduced-order
model is investigated by keeping a single mode in the
series (n¼ 1) and calculating the first four eigenvalues.
The number of modes is then gradually increased and
variation of these eigenvalues is monitored. Using a
flow rate of U0¼ 0.25L/s, we calculate the following
eigenvalues by keeping one mode: 71.60 � 588.02i,
�366.00, and �997.00. Adding an additional mode, we
obtain the following eigenvalues 72.99 � 587.80i,
�360.69, and �977.37. This yields a maximum error
of less than 3% in all of the resulting eigenvalues. By
adding a third mode, the maximum error drops to less
than 0.5%. Furthermore, the bifurcation point repre-
senting the cut-on flow rate of the device was determined
to be Ucr¼ 0.2L/s using a single-mode assumption and
Ucr¼ 0.1965L/s using the three-mode approximation.
Such results indicate that a single-mode reduced-order
model is sufficient to predict the local dynamics of the
response around the static equilibria.
To see how these trends are reflected in the non-linear

system’s response, Equations (41), (42), and (43) were
integrated numerically using a single- and three-mode
expansions. The resulting bifurcation diagram shown

in Figure 7, which depicts variation of the steady-state
output voltage with the flow rate, clearly demonstrates
negligible differences between the single- and three-
mode response. This again demonstrates the accuracy
of the single-mode approximation. As such, further
analysis presented in this manuscript will be based on
a reduced-order model consisting of a single mode.

EXPERIMENTAL VALIDATIONS

Figure 8 depicts the experimental configuration
employed to investigate the validity of the proposed
model. A 2.4L air chamber is constructed using a PVC
pipe with inside diameter of 76.2mm, closed with two

Table 1. Geometric and material properties of the beam
and piezoelectric layer.

Properties

Modulus of elasticity, Yb (GPa) 70
Density, �b (kg/m3) 2700
Length, Lb (mm) 60
Width, Wb (mm) 16
Thickness, tb (mm) 0.25
Gap width, b (mm) 0.2
Piezoelectric layer
Density, �p (kg/m3) 7850
Length, Lp (mm) 13
Width, Wb (mm) 16
Modulus of elasticity, Yp (GPa) 66
Thickness, tp (mm) 0.127
Electromechanical coupling, d31 (pm/V) �190
Permittivity, e33 (nF/m) 15.93
Other
Air density, �a (kg/m3) 1.2
Speed of sound, c (m/s) 340
Contraction coefficient, Cc 0.63
Chamber volume, Vr (L) 2.4
Electrical load, R (K�) 50
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Figure 7. Voltage response of the beam using a single-mode
approximation (solid) and a three-mode reduced-order model
(dashed).
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Figure 8. Wind-driven autonomous beam vibrations.
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PVCcaps.Onone endcap, the cantilever beam ismounted
over the aperture/slot as shown in the figure. To accom-
modate the beam, the aperture is made slightly larger
than the beam. From the other end of the chamber, air
is supplied using an air pump through a small hole at
the center of the cap. To validate the model, a beam is
cut from a 0.3-mm thick aluminum sheet which has the
geometric and material properties listed in Table 1.
In the experiments, the air pressure is increased incre-

mentally from 0 to 100Pa. At each step, the mean pres-
sure at the beam surface is measured using a pressure
gage and the corresponding output voltage at different
pressures is recorded. The air pressure is then slowly
decreased from 100Pa until the beam vibration ceases.
Once again, the output voltage at different pressures is
recorded. It was observed that there are not much dif-
ferences between the voltage values measured at both
directions of the pressure sweep. As such, only the aver-
age value is reported. The natural frequency of the limit
cycle was observed to have slight variation with the
inflow rate and was recorded at about 85Hz. Figure 9
shows variation of the voltage and output power of the
device with the wind speed over an electric load of
50 k�. The experimental results are also compared to
numerical simulations obtained via long-time integra-
tion of Equations (41), (42), and (43).
As shown in Figure 9, there is fairly good agreement

between the theoretical and experimental findings and
the Hopf bifurcation point is well estimated. The beam
is activated at a moderate cut-on wind speed of approx-
imately 6.95m/s. The experiments further reveal that the
transition from the static position to the limit-cycle

oscillations is continuous without sudden jumps. This
indicates that the bifurcation is supercritical for the
chosen design parameters which agrees with the predic-
tions of the mathematical model. The 0.1�0.8mW of
output power attained at wind speeds ranging between
7.5 and 12.5m/s clearly demonstrate the potential for
using such concept to power and operate many micro-
controller chips, health-monitoring sensors, and wireless
transponders (Bracke et al., 2007; Kim et al., 2007).
However, such results by no means represent the opti-
mal performance of this device.

BIFURCATION’S NORMAL FORM

As shown previously in Figure 2(a), when the bifur-
cation is supercritical and the flow rate exceeds the
threshold value, small-amplitude limit-cycle oscillations
about the former static position are born. On the other
hand, when the bifurcation is subcritical as shown in
Figure 2(b), the output voltage jumps to a distant attrac-
tor which can be another fixed point, a large-amplitude
limit cycle, or even a chaotic attractor. In most engineer-
ing applications, subcritical bifurcations are considered
dangerous because they can cause structural failure.
In our study, however, a subcritical Hopf bifurcation
means large amplitude oscillations at lower wind speeds
which could imply an enhanced performance of the
harvester.

In this section, we utilize the method of multiple scales
(Nayfeh, 1981) to study the normal form and nature of
the bifurcation responsible for the onset of limit-cycle
oscillations of the MPG. To implement the method of

Wind speed (m/s) Wind speed (m/s)

0.0 0.0

8

7

6

5

4

3

2

1

1

1.2
x10–3

0.8

0.6

0.4

0.2

00
0 50 100 0 50 100

9.1 9.112.9 12.9

V
ol

ta
ge

 (
V

)

Threshold pressure (Pa) Threshold pressure (Pa)
O

ut
pu

t p
ow

er
 (

W
at

t)

Figure 9. Variation of the voltage and output power with the wind speed. Asterisks represent experimental data.
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multiple scales, we first non-dimensionalize the coupled
ordinary differential equations governing the response.
Toward that end, we introduce the following dimension-
less quantities:

�q ¼
q

L
, �t ¼ t!n, �V ¼

Cp

�
V, �PA ¼

PA

P1
, �U ¼

U0

Ucr
, ð46Þ

where P1 is the ambient pressure and Ucr is the critical
inflow rate. Introducing Equation (46) into Equations
(41), (42), and (43) yields:

€�qþ 2
 _�qþ �qþ � �q3 þ� �q2 €�qþ �q_�q2
� �

þ �1 �Vþ �2 �q2 �V ¼ � �PA, ð47Þ

_�V ¼ �� �Vþ �3 _�qþ �4 �q2 _�q, ð48Þ

_�PA ¼ �1 �UUcr � Cc
�Að �qÞ

2P1
�

�PA

	 
1
2

��_�q

" #
, ð49Þ

where

� ¼
AL2

!2
n

, � ¼ BL2, �1 ¼
D�

L!2
nCp

,

�2 ¼
CL�

Cp!2
n

, � ¼
EP1
L!2

n

, � ¼
1

RCp!n
,

�3 ¼
FCpL

�
, �4 ¼

GL3Cp

�
, �1 ¼

�c2

Vr!nP1
, � ¼ EL!n,

ð50Þ

�Að �qÞ ¼ 2L

Z L

0

	2ðsÞL2 �q2 þ b2
� �1

2ds

þWb 	
2ðLÞL2 �q2 þ b2

� �1
2 ð51Þ

To facilitate the implementation of the method of
multiple scales, the integral of Equation (51) is approxi-
mated using our knowledge of the form of 	(s). This
permits writing the total exit area of the aperture in
terms of the tip deflection as (Fletcher, 1992):

�Að �qÞ ¼ 2L 0:16	2ðLÞ �q2L2 þ b2
� �1

2

þWb 	
2ðLÞ �q2L2 þ b2

� �1
2 ð52Þ

Figure 10 shows a comparison between the exact and
the approximated values of the aperture area. Two sets
of curves are generated by evaluating Equations (51)
and (52) for a given range of tip deflections. The first

set is obtained for a small gap width, b¼ 0.1mm, while
the second set is calculated for a relatively large gap
width, b¼ 0.5mm. It can be seen that in both cases,
the approximated aperture area is well-estimated using
Equation (52), and that the error in the estimation
increases by increasing the gap width.

To allow for correct scaling of the non-linear terms
associated with the non-linear strain�displacement rela-
tionship in Equation (8); we asses their influence on the
non-linear system’s response. As such, we integrate
Equations (47) and (48) numerically and obtain the
steady-state non-dimensional voltage, �V, and deflection
�q with and without including the non-linear terms.
Figure 11 demonstrates that the error resulting from
neglecting the non-linear terms remains within 0.01%
for both �q and �V. This implies that these cubic non-
linearity terms have a negligible influence on the sys-
tem’s response and therefore can be neglected.
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Figure 11. Steady-state error resulting from neglecting the non-
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Implementation of the Method of Multiple Scale

We express the system response as the sum of static
and dynamic components as follows:

�q ¼ qs þ qd,

�PA ¼ Ps þ pd,

�V ¼ Vs þ Vd, ð53Þ

where the subscript s denotes the static part and d
denotes the dynamic component. The quantities qs, Ps,
and Vs represent, respectively, the static deflection, pres-
sure, and output voltage for a given input flow rate U0.
These can be obtained by setting the time derivatives in
Equations (47)�(49) to zero and solving the resulting
algebraic equations. Substituting Equation (53) back
into Equations (47), (48), and (49), expanding the aper-
ture area, �Að �qÞ, in a Taylor series up to cubic terms, and
separating the dynamic and static terms, yield the fol-
lowing set of equations:

€qd þ 2
 _qd þ qd þ �1Vd ¼ �pd, ð54aÞ

_Vd ¼ ��Vd þ �3 _qd, ð54bÞ

_pd ¼ �

C1pd þ C2qd þ C3pdqd þ C4p

2
d þ C5q

2
d þ C6q

3
d

þ C7p
2
dqd þ C8pdq

2
d þ C9p

3
d þ C10 _qd

�
, ð54cÞ

where

C1 ¼
�1�2�0
2Ps

, C2 ¼ �1�2�1, C3 ¼
�1�2�1
2Ps

,

C4 ¼ �
�1�2�0
8P2

s

, C5 ¼ �1�2�2, C6 ¼ �1�2�3,

C7 ¼ �
�1�2�1
8P2

s

, C8 ¼
�1�2�2
2Ps

, C9 ¼
�1�2�0
16P3

s

,

C10 ¼ �1�, �2 ¼ Cc

ffiffiffiffiffiffiffiffiffiffi
2P1
�

s
,

�n ¼
ffiffiffiffiffi
Ps

p dn �Að �qÞ

d �qn

���
qs
, n ¼ 0:3 ð55Þ

The time dependence is also expanded into multiple time
scales as:

Tn ¼ �
nt, n ¼ 0, 1, 2,

d

dt
¼ D0 þ �D1 þ �

2D2 þOð�3Þ,

d2

dt2
¼ D2

0 þ 2�D0D1 þ �
2D2

1 þ 2�2D0D2 þOð�3Þ, ð56Þ

where e is a bookkeeping parameter that will be set to
unity at the end of the analysis and Dn ¼ @=@Tn. We seek
a solution in the form:

qd ðt; �Þ ¼ q0ðT0,T1,T2Þ þ �q1ðT0,T1,T2Þ

þ �2q2ðT0,T1,T2Þ þ . . .

Vd ðt; �Þ ¼ V0ðT0,T1,T2Þ þ �V1ðT0,T1,T2Þ

þ �2V2ðT0,T1,T2Þ þ . . .

pd ðt; �Þ ¼ p0ðT0,T1,T2Þ þ �p1ðT0,T1,T2Þ

þ �2p2ðT0,T1,T2Þ þ . . . ð57Þ

We scale the terms with quadratic and cubic non-
linearity in Equation (54c), and scale the damping, z,
the voltage, Vd, and the pressure, pd in Equation (54a)
to appear at the second order of the perturbation prob-
lem. i.e., Ci¼ eCi, where i¼ 3.9, z¼ ez, �¼ e�, and
�1¼ e�1. Now, substituting Equations (56) and (57)
into Equation (54), and equating coefficients of like
power of e yields:
(e0):

D2
0q0 þ q0 ¼ 0, ð58aÞ

D0V0 � �V0 ¼ �3D0q0, ð58bÞ

D0p0 þ C1p0 ¼ � C2q0 þ C10D0q0ð Þ, ð58cÞ

(e1):

D2
0q1 þ q1 ¼ �p0 � 2D1D0q0 � 2
D0q0 � �1V0, ð59aÞ

D0V1 � �V1 ¼ �3 D0q1 þD1q0ð Þ �D1V0, ð59bÞ

D0p1 þ C1p1 ¼ �ðD1p0 þ C2q1 þ C3p0q0 þ C4p
2
0 þ C5q

2
0

þ C6p0q
2
0 þ C7p

2
0q0 þ C8p

3
0 þ C9q

3
0

þ C10D0q1 þ C10D1q0Þ, ð59cÞ

(e2):

D2
0q2 þ q2 ¼�p1 � �1V1 � 2
ðD0q1 þD1q0Þ

� ðD2
1 þ 2D2D0Þq0 � 2D1D0q1, ð60aÞ

D0V2 � �V2 ¼ �3ðD0q2 þD1q1 þD2q0Þ

�D1V1 �D2V0, ð60bÞ

D0p2 þ C1p2 ¼ �½D1p1 þD2p0 þ C2q2 þ C3ð p0q1 þ p1q0Þ

þ 2C4p0p1 þ 2C5q0q1

þ C6ð2p0q0q1 þ p1q
2
0Þ

þ C7ð p
2
0q1 þ 2p0p1q0Þ

þ 3C8p
2
0p1 þ 3C9q

2
0q1

þ C10ðD0q2 þD1q1 þD2q0Þ�, ð60cÞ
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The solution of the first-order problem, Equation (58a),
can be expressed as:

q0 ¼ AðT1,T2Þe
iT0 þ cc, ð61Þ

where A is a complex-valued function that will be deter-
mined at a later stage in the analysis and cc is the com-
plex conjugate of the preceding term. Substituting
Equation (61) into Equations (58b) and (58c), and solv-
ing for the corresponding variable, one obtains:

V0 ¼ XAeiT0 þ cc, ð62Þ

p0 ¼
C2 þ iC10

C1 þ i
AeiT0 þ cc, ð63Þ

where

X ¼
i�3
i� �

:

Substituting Equations (61), (62), and (63) into
Equation (59a) yields:

D2
0q1 þ q1 ¼ �

 
2iD1Aþ 2i
A��

C2 þ iC10

C1 þ i
A

þ �1XA

!
eiT0 þ cc: ð64Þ

Next, we eliminate any secular terms (terms having the
factor �eiT0), and obtain:

D1A ¼
1

2
i 2i
A��

C2 þ iC10

C1 þ i
Aþ �1XA

� �
: ð65Þ

Considering Equation (65), the solution of the second-
order problem, Equation (59a), is q1¼ 0. Substituting q0,
V0, p0, and q1 into Equations (59b) and (59c) and solving
for V1 and p1, respectively, yields:

V1 ¼ �
�3�

i� �ð Þ
2
D1Ae

iT0 þ cc, ð66Þ

p1 ¼ �
1

C1
C3Xþ C4X �Xþ C5

� �
A �A

�
Y1A

2 �A

C1 þ i
eiT0 �

Y2A
2

C1 þ 2i
e2iT0

�
Y3A

3

C1 þ 3i
e3iT0
ðXþ C10ÞD1A

C1 þ i
eiT0 , ð67Þ

where

Y1 ¼ 2C6Xþ C6
�Xþ 2C7X �Xþ C7X

2 þ 3C8X
2 �Xþ 3C9,

Y2 ¼ C3Xþ C4X
2 þ C5,

Y3 ¼ C6Xþ C7X
2 þ C8X

3 þ C9,

and �A and �X are the complex conjugate of A and X,
respectively. Substituting q0, q1, V1, and p1 into
Equation (60a) and eliminating the terms that lead to
secular terms yields:

D2A ¼ F1
�AA2 þ F2A, ð68Þ

where F1 and F2 are functions of 
, �, �, �1, �3, U0, and
Cn. Using the method of reconstitution (Nayfeh, 2005),
one can write:

dA

dt
ðt; �Þ ¼ �D1Aþ �

2D2Aþ . . . : ð69Þ

Substituting Equations (65) and (68) into Equation (69),
expressing A in the polar form A ¼ 1

2 ae
i�, where a and �

are real-valued amplitude and phase, separating real and
imaginary parts, and setting e¼ 1, we obtain:

_a ¼ �1a
3 þ �2a ð70Þ

_� ¼ 1a
2 þ 2 ð71Þ

where �1, �2, 1, and 2 are functions of the design
parameters and the inflow rate. Equations (70) and
(71) represent the normal form for a Hopf bifurcation
with �2 equal to zero at the critical inflow rate, Ucr. To
solve for the steady-state amplitude of the response, we
set _a ¼ 0 in Equation (70) and obtain:

a0 ¼ 0, a0 ¼ �

ffiffiffiffiffiffiffiffiffiffi
�
�2

�1

r
, when

�2

�1
5 0

and a0 ¼ 0, when
�2

�1
4 0: ð72Þ

Substituting the non-zero fixed point back into
Equation (61), we obtain the following approximate
analytical solution for the steady-state limit-cycle oscil-
lations of Equations (54) as:

qd ¼ a0 cosð!mtþ �0Þ þOða3Þ, ð73Þ

Vd ¼ a0F cosð!mtþ �0Þ þOða30Þ, ð74Þ

where �0 and F are constants, and

!m ¼ ð1þ _�Þ þOða30Þ ¼ 1þ 1a
2
0 þ 2 þOða30Þ ð75Þ

is the analytical approximation of the limit cycle’s
frequency. It is important to bear in mind that the solu-
tions acquired via the method of multiple scales are
accurate for small range of the inflow rate beyond its
critical value. Hence, the accuracy is expected to deteri-
orate as U0 becomes much larger than the critical value.
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In Figure 12, we compare the analytical approximation
(dashed lines) with the numerical solutions (solid lines)
of Equations (54) for different values of U0. The figure
demonstrates good agreement between the analytical
and numerical solutions for moderate values of U0/Ucr.
As the ratio between U0 and Ucr increases beyond 1.5 the
analytical solution starts to deviate from the numerical
integration.
To determine the nature of the Hopf bifurcation, the

stability of the steady-state solutions is determined by
evaluating the Jacobian of the modulation equations,
Equations (70) and (71) at the fixed points. This yields:

Jða0Þ �
d _a

da

����
a0

¼
�2, a0 ¼ 0

�2�2, a0 ¼ �
ffiffiffiffiffiffiffiffiffi
�
�2

�1

q(
ð76Þ

By inspecting Equation (76), it becomes evident that,
when �1 �2> 0, only the trivial solution exists and it is
stable for �2< 0 and unstable for �2> 0. On the other
hand , when �1 �2< 0, three fixed points exist; when
�2> 0 the trivial fixed point is unstable while the non-
trivial fixed points are stable resulting in a supercritical
Hopf bifurcation as illustrated in Figure 13(a). On the
other hand, when �2< 0, the zero fixed point is stable

while the non trivial fixed points are unstable yielding a
subcritical Hopf bifurcation as illustrated in Figure 13(b).

By virtue of the previous discussion, it becomes evi-
dent that the signs of�1 and�2 determine the nature of the
bifurcation at the linear stability boundary. Figure 14(a)
and (c) depict, respectively, variations of �1 and �2 for a
range of the chamber volume, Vr, and beam length, Lb.
The other design parameters and material properties of
the beam and the piezoelectric layer are kept constant as
listed in Table 1. Results indicate that �1 is always neg-
ative while �2 remains positive throughout the range
considered in the figure. This implies that a supercritical
Hopf bifurcation always occurs for the values of Lb and
Vr considered.

It is worth mentioning that the values of �1 and �2

exist only when Ucr exists. Otherwise, no Hopf bifurca-
tion occurs in the first place. Figure 14(b) and (d) repre-
sent two-dimensional projection of Figure 14(a) and (c),
respectively. The shaded regions depict the combina-
tions of (Lb, Vr) which yield a real value for Ucr, whereas
the unshaded regions represent combinations of (Lb, Vr)
for which no bifurcation occurs. In those regions, the
beam does not oscillate regardless of how large the
inflow rate is.

2

x 10–4 x 10–3

1

q d V
d

0 0

0.6

1.2

0.8 1 1.2 1.4
U0/Ucr U0/Ucr

1.6 1.8 2 0.8 1 1.2 1.4 1.6 1.8 2

Figure 12. Bifurcation diagrams constructed by the method of multiple scales (dashed) and numerically (solid): left for qd and right for Vd.

a0

m20

a0

m20

(a) (b)

Figure 13. Sketches of fixed points and their stability: (a) supercritical Hopf bifurcation �1<0 and (b) subcritical Hopf bifurcation �1> 0.
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CONCLUSION

In this effort, we developed a non-linear reduced-order
electro-mechanical model to capture the response behav-
ior of a self-excited MPG. The generator consists of a
piezoelectric uni-morph beam embedded within a cavity
to mimic vibrations of harmonica’s reeds when subjected
to air flow. To obtain the equations of motion, we
treated the problem at two levels. At the first level, we
used Hamilton’s principle combined with the non-linear
Euler�Bernoulli beam theory, the inextensibility condi-
tion, and the linear constitutive equations of piezo-
electricity to obtain the non-linear partial differential
equation governing the transversal dynamics of the
beam and the ordinary differential equation governing
the output voltage of the harvester. At the second level,
we used the steady Bernoulli’s equation in conjunction
with the continuity equation to determine the relation

between the exciting pressure at the surface of the beam,
the input flow rate of air, and the beam deflection. The
resulting system of equations was then discretized using
a Galerkin expansion into a set of non-linearly coupled
ordinary differential equations. A convergence analysis
was carried out to determine the minimum number of
modes to be kept in the reduced-order model. It was
determined that a reduced-order model consisting of a
single mode is accurate enough to predict the static and
dynamic behavior of the harvester for a large range of
inflow rate. The resulting reduced-order model was vali-
dated against experimental data showing excellent agree-
ment. Finally, using the method of multiple scales, we
developed an approximate analytical solution of the
resulting reduced-order model near the linear stability
boundary and studied the normal form of the resulting
bifurcation. We observed that a Hopf bifurcation of
the supercritical nature is responsible for the onset of
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limit-cycle oscillations. The bifurcation remains super-
critical as two of the design parameters, namely, the
beam’s length and chamber’s volume are varied. The
model obtained in this study provides the platform for
future optimization studies aiming to minimize the
cut-on wind speed and maximize the output power of
the generator.
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