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Abstract In this paper, a multilevel component mode
synthesis (MCMS) approach is presented for the calculation
of the phonon density of states (PDOS) of nanocomposite
structures. In this approach, the nanocomposite structures are
described by hierarchical levels of substructures. The pho-
non frequencies and modes are first computed for the bottom
level substructures by using the theory of lattice dynamics.
The computed component modes are then synthesized by
using a quasi-static component mode synthesis (QSM) tech-
nique to obtain the phonon modes of the upper-level substruc-
tures in a bottom-up manner. By repeating this procedure, the
PDOS of the entire nanostructure can be obtained. The pro-
posed approach, while retains the atomic description of the
nanocomposite structure, significantly reduces the computa-
tional cost of the calculation. Numerical calculations show
that the proposed approach provides accurate results with
a much less computational cost. The PDOS of several 1-D
atom chains and 2-D atom sheets are computed by using the
MCMS.

Keywords Multilevel component mode synthesis ·
Nanocomposites · Phonon density of states

1 Introduction

Nanocomposites are hybrid materials that combine two or
more material components in the nanoscale. Recent research
results have shown that nanocomposite materials can have
superior mechanical, thermal and electrical properties [1].
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Many nanocomposite materials and structures have found
applications in nanoelectromechanical systems (NEMS) [2],
thermoelectric devices [3–5], engineered bio systems [6] and
nanoelectronic circuits [7]. Accurate and efficient calcula-
tion of the material properties of nanocomposite materials
can accelerate the design and analysis of nanocomposites in
various applications as well as deepen the understanding of
the material behavior. In determining the mechanical, ther-
modynamic and electric properties of materials and struc-
tures the phonon density of states (PDOS) plays an impor-
tant role. Specifically, material constitutive relations can be
determined by the Helmholtz free energy which is a func-
tion of the PDOS [8]. The PDOS is essential in the calcula-
tion of thermodynamic properties of materials such as ther-
mal expansion coefficient, heat capacity and thermal con-
ductivity [9–11]. The phonon-limited electrical conductivity
in metals is also closely related to the PDOS [12]. Accurate
and efficient calculation of the PDOS can help the under-
standing of the behavior of nanocomposites and the design
of novel nanocomposite materials and structures. However,
calculating the PDOS of nanocomposite structures can be
challenging. Typically, the PDOS can be computed by using
the theory of lattice dynamics. Classical approximations of
the PDOS, such as the Debye-Einstein approximation [13],
only provide coarse descriptions of the phonon spectra. K-
space methods [8,9,14] may not be directly applicable for
nanocomposites because the periodicity of the crystal struc-
ture is lost in nanocomposite structures due to their small size
and non-uniform distribution of nanoparticles. Direct calcu-
lation of the PDOS in the real space [15] for a nanocomposite
structure could become computationally expensive when the
structure contains a large number of atoms.

In this work, we seek to accelerate the calculation of the
PDOS for nanocomposite structures by employing model
order reduction methods. Among various model order
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reduction methods (see [16] for a review), the component
mode synthesis method (CMS) [17–21] is a powerful tech-
nique for computing the eigen frequencies and eigen modes
of large systems. In the CMS, a large structure is discretized
into substructures or components. The component modes are
computed for each substructure. Only a small set of com-
ponent modes are retained to construct a set of Ritz basis
vectors. The basis vectors are used to approximate the dis-
placements of the substructure. The approximations of the
substructures are then assembled to obtain a global approxi-
mation of the entire system. While the CMS largely reduces
the computational cost for large system analysis, there are
drawbacks in the method. First, the degrees of freedom
(DOFs) of the substructures can still be large. It can still
be expensive to compute the component modes for the sub-
structures. Second, when there are many substructures, the
DOFs that are shared by the substructures can become very
large. Since the shared DOFs of the substructures are directly
included in the reduced-order global system, the size of the
global system can also be large. Third, the classical CMS with
static constraint mode can be inaccurate in computing inter-
mediate and high frequencies [19,20]. To overcome these
difficulties, in this paper, a multilevel component mode syn-
thesis approach (MCMS) is proposed for the calculation of
the PDOS of nanocomposite structures. This approach com-
bines a multilevel description of the nanocomposite struc-
ture and a quasi-static component mode synthesis method
(QSM) [19,20] to efficiently compute the PDOS. The first
step of this approach is the hierarchical discretization of
the nanostructure. The nanostructure is discretized into sub-
structures or components. Each substructure is then further
divided into smaller substructures. The discretization contin-
ues to the level where each of the final substructures contains
a small number of atoms. From this top-down discretiza-
tion, the nanostructure is represented by hierarchical levels
of substructures. The next step of the approach is construct-
ing the phonon models of the nanostructure in a bottom-
up fashion. For the bottom-level substructures, the phonon
modes are computed by using the lattice dynamics theory.
Since the bottom-level substructures contain only a small
number of atoms, the component frequencies and modes can
be obtained efficiently. The calculated component modes are
then used to obtain the reduced-order systems of the upper-
level substructures. In constructing the reduced-order sys-
tems, quasi-static constraint modes are computed as
described in the QSM [19,20]. The QSM improves the clas-
sical CMS to compute the intermediate and high frequencies
accurately. By solving the reduced-order systems, the com-
ponent modes of the upper-level substructures are recovered.
This bottom-up procedure continues until the top-level sub-
structure, i.e., the nanostructure itself, is reached. The phonon
spectrum of the entire nanostructure can then be obtained. In
this paper, the MCMS is applied to compute the PDOS of

several 1-D atom chains and 2-D atom sheets. It is shown
that the MCMS overcomes the difficulties encountered in
the classical CMS, retains the atomic description of the nano-
structure, and significantly reduces the computational cost.

The rest of the paper is organized as follows. Section 2
presents the theory of the MCMS, numerical examples are
presented in Sects. 3, and 4 presents the conclusions.

2 Theory

2.1 Lattice dynamics

In the theory of lattice dynamics [14], interatomic poten-
tials are employed to describe the interactions between the
atoms. Many interatomic potentials have been developed
for different materials. For example, Lennard-Jones poten-
tial [22] and Morse potential [23] are among the two-body
interatomic potentials. Popular many-body potentials include
Tersoff [24], Brenner [25] and Stillinger-Weber [26] poten-
tials. For composite materials, multiple interatomic poten-
tials may be necessary in order to describe the interactions
between the different kinds of atoms in the system [27–29].
In general. the total potential energy of a system of N atoms
can be written as

U ({x}) = 1

2

∑

α �=β

Vαβ α, β = 1, 2, . . . , N (1)

where {x} = {x1, . . . , xN }T is the position vector of the N
atoms, Vαβ is the interatomic potential energy between the
atoms α and β, and N is the number of atoms in the sys-
tem. When the system is in thermodynamic equilibrium, the
atoms of the system vibrate around their static equilibrium
positions. By using the harmonic approximation, the total
potential energy of an N -atom system can be written in a
quadratic form by neglecting the higher-order (>2) terms in
its Taylor’s series expansion, i.e.,

U ({x}) = U
({

x0
})

+ 1

2

N∑

α,β=1

3∑

i, j=1

∂2U ({x})
∂uαi∂uβ j

⏐⏐⏐⏐⏐⏐
x1,...,xN =x0

1,...,x0
N

× uαi uβ j i, j = 1, 2, 3 (2)

where
{
x0
} = {

x0
1, . . . , x0

N

}T
, uαi and uβ j are the i-th and

j-th components of the thermal vibrational displacement of
the atoms α and β, respectively. Equation (2) can be rewritten
in a matrix form as

U ({x}) = U
({

x0
})

+ 1

2
{u}T [�] {u} (3)

where {u} = {u1, . . . , uN }T , and [�] is the 3N × 3N force
constant matrix given by
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[�]3α+i−3,3β+ j−3 = ∂2U (
{
x0
}+ {u})

∂uαi∂uβ j

⏐⏐⏐⏐⏐
u=0

α, β = 1, . . . , N , i, j = 1, 2, 3.

(4)

By taking the harmonic time dependence for all the atoms,
the equation of motion can be written as [14]
(

[�] − ω2 [M]
)

{d} = 0 (5)

where {d} is the normal mode vector and [M] is the 3N ×3N
mass matrix and ω is the phonon frequency of the system.
Note that, while the masses of the filler and the matrix atoms
are typically different, the mass matrix [M] is diagonal if
the masses of the atoms are assumed to be concentrated.
The phonon frequencies can be computed directly by solv-
ing the generalized eigen problem given in Eq. (5). Once the
phonon frequencies ω are obtained, the PDOS can be readily
obtained. Due to the fact that the 3N ×3N eigen system must
be solved in the direct approach, the computational cost can
become very high when the system contains a large number
of atoms. However, since the direct approach provides the
“exact” solution of the PDOS, in this paper, the solution of
the direct approach is used as reference for comparison with
the results obtained from the MCMS.

2.2 Multilevel discretization

The first step of the MCMS is the multilevel discretization
of the nanostructure. Figure 1 illustrates the basic idea of
the multilevel discretization step in the MCMS approach
by using a simple example: a cantilever nanostructure. The
domain of the nanostructure is denoted by �. The nanostruc-
ture is discretized into 3 levels of substructures, as shown in
Fig. 1. The j-th substructure in the m-th level is denoted by
�m

j , where m = 1, 2, 3, j = 1, 2, . . . , Jm and Jm is the total
number of substructures in the m-th level. The top level is
the nanostructure itself. Therefore, �1

1 = �. The top-level
nanostructure is discretized into eight second-level compo-
nents, i.e., J2 = 8. Each of the eight components is further
discretized into four third-level substructures. The third level
is the bottom level where the substructures are sufficiently
small so that Eq. (5) can be directly solved with a small com-
putational cost. Note that, although the nanostructure shown
in Fig. 1 is divided into 3 levels of equal-size substructures,
the number of levels and the size of the substructures can be
arbitrary with the trade-off between the accuracy and effi-
ciency of the solution. Discretization parameter studies are
shown in Sect. 3.

The discretization of the nanostructure cuts through the
center of the interface atoms, i.e., the atoms on the surface of a
substructure are either on the boundary of the top-level nano-
structure or shared by other substructures in the same level.

top level: nanostructure second level

third (bottom) levelbottom level atoms

active atomsomitted atoms

Fig. 1 Multilevel discretization

By using the terminology in the CMS literature, the atoms
in each substructure are partitioned into two parts which are
referred to as the active atoms and the omitted atoms. The
active atoms are the atoms shared by connected substruc-
tures, and the omitted atoms are the atoms that are not active.
For example, as shown in Fig. 1, the boundary atoms of sub-
structure �3

1 shared by neighboring third-level substructures
are active atoms (shaded), and the remaining atoms in �3

1
are omitted atoms (empty). The active and omitted atoms are
denoted by subscripts a and o, respectively. The DOFs of the
active and omitted atoms are called active and omitted DOFs
and denoted by na and no, respectively.

2.3 Multilevel component mode synthesis

After the multilevel discretization, the MCMS procedure
computes the phonon frequencies and modes of the sub-
structures starting from the bottom level. In order to reduce
the problem size, other than breaking the nanostructure into
substructures, the CMS computes the phonon frequencies
within a small preselected frequency band [ωa, ωb]within the
entire frequency spectrum [0, ωmax], where ωmax is the high-
est frequency obtained from the bottom-level substructures.
In this paper, the frequency spectrum [0, ωmax] is divided
into 10 equal-width frequency bands, i.e., the width of each
frequency band [ωa, ωb] is a tenth of ωmax. The PDOS of
the nanostructure is computed for each of the ten frequency
bands. The computed PDOSs are then combined together to
obtain the complete PDOS. In addition, the computed fre-
quencies may fall outside of the frequency band [ωa, ωb].
Typically, the accuracy of the computed frequencies which
are outside or near the boundary of the frequency band
decreases. Therefore, for each preselected [ωa, ωb], a slightly
larger computational frequency band [ωc, ωd ] is used in the
calculation. In this work, the center of the computational fre-
quency band [ωc, ωd ] is set to be the center of [ωa, ωb] and
the width of [ωc, ωd ] is set to be 1.5×(ωb−ωa). The equation
of motion for the vibrational modes of the j-th substructure
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at the m-th level,
{
d(m, j)

}
, is give by Eq. (5), i.e.,

([
�(m, j)

]

n×n
− ω2

[
M(m, j)

]

n×n

){
d(m, j)

}

n×1
= {0}n×1

m = 1, 2, . . . , M, j = 1, 2, . . . , Jm, (6)

where [�] is the force constant matrix, [M] is the mass
matrix, ω is the phonon frequency of the substructure �m

j , the
superscript (m, j) denotes the j-th substructure in the m-th
level, M is the total number of discretization levels, and n is
the DOFs of the substructure. In the MCMS approach, except
for the bottom-level substructures, the vibrational modes{
d(m, j)

}
are not calculated by solving Eq. (6). Instead,{

d(m, j)
}

is approximated by a small set of selected com-
ponent modes and the constraint modes [17], i.e.,

{
d(m, j)

}

n×1
=
{

d(m, j)
o

d(m, j)
a

}

n×1

=
[

D̄(m, j)
o X(m, j)

o

0a I(m, j)
a

]

n×r

{
z(m, j)

r

d(m, j)
a

}

r×1

, (7)

or in short form,
{

d(m, j)
}

n×1
=
[
T(m, j)

]

n×r

{
z(m, j)

}

r×1
. (8)

In Eq. (7),
{
d(m, j)

}
is partitioned into omitted

{
d(m, j)

o

}
and

active
{

d(m, j)
a

}
parts, the transformation matrix

[
T(m, j)

]
=
[

D̄(m, j)
o X(m, j)

o

0a Ia

]
(9)

is comprised of nr selected component modes given by[
D̄(m, j)

o

0a

]

n×nr

and na constraint modes given by

[
X(m, j)

o

Ia

]

n×na

, where
[
D̄(m, j)

o

]
is the no × nr reduced com-

ponent modal matrix for the omitted atoms,
[
X(m, j)

o

]
is the

no × na constraint modal matrix for the omitted atoms, [Ia]
is the identity matrix of the active atoms, and [0a] is the null
matrix. Note that, the identity matrix [Ia] represents the unit
displacement of the active atoms in the constraint modes,
and the null matrix [0a] is the zero displacement of the active
atoms in the component modes. The combined component
and constraint modes are the r = nr + na << n Ritz basis
vectors for

{
d(m, j)

}
.
{
z(m, j)

}
in Eq. (8) is the generalized

coordinate vector which can be partitioned into a component

modal part,
{

z(m, j)
r

}
, and a constraint modal part,

{
d(m, j)

a

}
.

As shown in Eq. (7), the constraint modal part of
{
z(m, j)

}
,{

d(m, j)
a

}
, is precisely the active part of

{
d(m, j)

}
.

For a substructure �m
j , the reduced component modal

matrix,
[
D̄(m, j)

o

]
, can be obtained from Eq. (6) with the active

atoms held fixed. Equation (6) is partitioned with respect to
the active and omitted DOFs as
([

�
(m, j)
oo �

(m, j)
oa

�
(m, j)
ao �

(m, j)
aa

]
− ω2

[
M(m, j)

oo M(m, j)
oa

M(m, j)
ao M(m, j)

aa

]){
d(m, j)

o

d(m, j)
a

}

=
{

0
0

}
(10)

By fixing the active atoms, i.e., {da} = {0}, we obtain
([

�
(m, j)
oo

]

no×no
− ω2

[
M(m, j)

oo

]

no×no

){
d(m, j)

o

}

no×1

= {0}no×1 (11)

The eigen pairs
(
ω,
{

d(m, j)
o

})
can be computed from Eq.

(11). The component modes for the omitted atoms,
{

d(m, j)
o

}
,

can be assembled column-wise into the component modal

matrix
[
D(m, j)

o

]
. In the MCMS, only the modes correspond-

ing to the eigen frequencies inside the computational fre-
quency band, i.e., ωc ≤ ω ≤ ωd , are retained and the retained

modes constitute the columns of
[
D̄(m, j)

o

]
, i.e.,

[
D̄(m, j)

o

]
=
{

d(m, j)
o : ωc ≤ ω of d(m, j)

o ≤ ωd

}
(12)

Note that since the computational frequency band [ωc, ωd ]
is a small part of the entire frequency spectrum, the number
of retained modes is typically small compared to the total
DOFs of Eq. (11). However, for a substructure with large
DOFs, the computational cost of solving Eq. (11) can still be
high. In the MCMS, Eq. (11) is only solved for the bottom-

level substructures to obtain
[
D̄(M, j)

o

]
. Since the DOFs of the

bottom-level substructures is typically small, Eq. (11) can be
solved efficiently. While the DOFs of the substructures in the
upper levels becomes larger, Eq. (11) is not used to compute[
D̄(m, j)

o

]
. Instead, Eq. (7) is employed to obtain

[
D̄(m, j)

o

]
.

Thus, the higher computational cost of solving Eq. (11) for
large substructures can be avoided in the MCMS. In the fol-

lowing paragraphs, we show that once
[
D̄(m, j)

o

]
is obtained

[
D̄(m−1, j)

o

]
can be computed efficiently without solving Eq.

(11).
In the classical CMS, the constraint modal matrix is obtai-

ned by static analysis of the substructure with unit displace-
ment prescribed on the active DOFs [17]. However, it has
been shown [19] that the static constraint modes are only
effective for obtaining the lowest frequencies of the system.
For intermediate and high frequency bands, the static con-
straint modes may produce inaccurate results. In the MCMS,
a quasi-static approach proposed in [19] is adopted in the cal-
culation of the constraint modes. The quasi-static constraint
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modes are derived from solving the equation of motion:

([
�

(m, j)
oo �

(m, j)
oa

�
(m, j)
ao �

(m, j)
aa

]
− ω2

n

[
M(m, j)

oo M(m, j)
oa

M(m, j)
ao M(m, j)

aa

])[
X(m, j)

o

Ia

]

=
[

0
R(m, j)

a

]
(13)

where the na×na identity matrix [Ia] represents the boundary
conditions applied to enforce unit vibrational displacement
of each active DOF with other DOFs of the active atoms held
fixed, {Ra} is the resultant reaction force vector at the active
DOFs and ωn is the center frequency of the computational
frequency band [ωc, ωd ], i.e., ωn = (ωc+ωd)/2. The expres-

sion of the quasi-static constraint modal matrix
[
X(m, j)

o

]
for

the omitted atoms can be obtained from Eq. (13) explicitly
as

[
X(m, j)

o

]
= −

([
�

(m, j)
oo

]
− ω2

n

[
M(m, j)

oo

])−1

×
([

�
(m, j)
oa

]
− ω2

n

[
M(m, j)

oa

])
(14)

Since
[
M(m, j)

]
is diagonal, [M(m, j)

oa ] = [0]. Equation (14)
can be rewritten as

[
X(m, j)

o

]
= −

([
�

(m, j)
oo

]
− ω2

n

[
M(m, j)

oo

])−1 [
�

(m, j)
oa

]
(15)

Assuming that
[
D̄(m, j)

o

]
has already been obtained, by substi-

tuting
[
X(m, j)

o

]
computed from Eq. (15) into Eq. (9),

[
T(m, j)

]

can be obtained. Substituting Eq. (8) into Eq. (6), we obtain

([
�(m, j)

]
− ω2

[
M(m, j)

]) [
T(m, j)

] {
z(m, j)

}
= {0} (16)

Multiplying the transpose of
[
T(m, j)

]
to both sides of Eq.

(16), we obtain

[
T(m, j)

]T ([
�(m, j)

]
− ω2

[
M(m, j)

]) [
T(m, j)

] {
z(m, j)

}

= {0} (17)

Equation (17) can be rewritten in short form as

([
�̄

(m, j)
]

− ω2
[
M̄(m, j)

]) {
z(m, j)

}
= {0} (18)

where

[
�̄

(m, j)
]

=
[
T(m, j)

]T [
�(m, j)

] [
T(m, j)

]
(19)

and

[
M̄(m, j)

]
=
[
T(m, j)

]T [
M(m, j)

] [
T(m, j)

]
(20)

are the reduced component force constant and mass matri-
ces for the j-th substructure in the m-th level. Following the
standard assembly procedure, one can assemble Eq. (18) of
the connected substructures into a global system of the parent
substructure in the (m − 1)-th level, i.e.,
([

�̂
(m−1, j)

]
− ω2

[
M̂(m−1, j)

]) {
z(m−1, j)

}
= {0} (21)

where
[
�̂

(m−1, j)
]

= assemble
([

�̄
(m,p)

, �̄
(m,p+1)

, . . . , �̄
(m,q)

])
,

[
M̂(m−1, j)

]
= assemble

([
M̄(m,p), M̄(m,p+1), . . . , M̄(m,q)

])
,

∪{�m
p ,�m

p+1, . . . , �
m
q } = �m−1

j (22)

The phonon frequencies ω and generalized coordinate vec-
tor
{
z(m−1, j)

}
of the parent substructure can be computed

by solving the eigen problem given in Eq. (21). The global

transformation matrix of the parent substructure,
[
T̂(m−1, j)

]
,

can be obtained by assembling the transformation matrices
of the child substructures, i.e.,
[
T̂(m−1, j)

]
= assemble

([
T(m,p), T(m,p+1), . . . , T(m,q)

])
,

∪{�m
p ,�m

p+1, . . . , �
m
q } = �m−1

j (23)

Once
{
z(m−1, j)

}
and

[
T̂(m−1, j)

]
are obtained, the phonon

modes of the substructure �m−1
j ,

{
d(m−1, j)

}
, can then be

computed by using Eq. (7), and
{

d(m−1, j)
o

}
can be read-

ily obtained from
{
d(m−1, j)

}
. The reduced modal matrix[

D̄(m−1, j)
o

]
can then be obtained from the computed set of

{
d(m−1, j)

o

}
by using Eq. (12). By repeating this procedure,

the phonon frequencies, ω, and modes, {d}, can be computed
for the substructures in the levels (m − 2), (m − 3), …. This
procedure continues until the phonon frequencies and modes
of the top-level (m = 1) structure are obtained. Algorithm 1
summarizes the bottom-up multilevel component synthesis
procedure.

3 Examples

In this section, several numerical examples are presented.
In the first example, the MCMS methodology is illustrated
explicitly for a simple 1-D monatomic chain. The MCMS is
then applied to compute the PDOS for several 1-D and 2-D
composite nanostructures. The nanocomposite structures in
the examples are assumed to be two-phase systems. While
the MCMS is a general approach independent of interatomic
potentials, in this paper, for the purpose of demonstrating
the computational approach, a Lennard-Jones potential is
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Algorithm 1 Procedure of the bottom-up multilevel compo-
nent synthesis
1: For a given computational frequency band, start from the bottom

level, i.e., m = M ;
2: for m = M, M − 1,…,2 do
3: for each substructure �m

j in level m do
4: Construct and partition the force constant and mass matrices for

the bottom-level substructures as shown in Eq. (10).
5: if �m

j is a bottom-level substructure then

6: Compute the component normal modes
[
D(m, j)

o

]
, m = M , by

using Eq. (11).
7: else
8: Assemble the reduced force constant, mass and transformation

matrices computed from the component structures in the

(m + 1)-th level to obtain
[
�̂

(m, j)
]
,
[
M̂(m, j)

]
,
[
T̂(m, j)

]
by

using Eqs. (22,23).
9: Compute the frequencies and the generalized coordinate vec-

tor
{
z(m, j)

}
by using Eq. (21).

10: Compute the normal modes
{
d(m, j)

}
by using Eq. (7).

11: end if
12: Obtain the reduced component modes,

[
D̄(m, j)

o

]
, by using Eq.

(12).

13: Compute the quasi-static constraint modes
[
X(m, j)

o

]
by using

Eq. (15).
14: Obtain the transformation matrix

[
T(m, j)

]
by using Eq. (9).

15: Compute the reduced component force constant and mass matri-

ces,
[
�̄

(m, j)
]

and
[
M̄(m, j)

]
by using Eqs. (19,20), respectively.

16: end for
17: m=m-1.
18: end for

employed to model the interaction between the atoms, i.e.,

V (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

(24)

where ε and σ are parameters. In the examples, different
parameters are used for the interaction between two filler
atoms, the interaction between two matrix atoms and the
interaction between a filler atom and a matrix atom. For
simplicity, the size and bond configuration of the filler
atoms are assumed to be the same as the matrix atoms. In
addition, nearest neighbor interaction is assumed for the
computation.

3.1 1-D monatomic chain

In the first example, we illustrate the computational proce-
dure of the MCMS by using a simple 11-atom monatomic
chain. As shown in Fig. 2, the atom chain is fixed at both
ends. For simplicity, a unit mass of the atoms and a unit
stiffness of the bonds are assumed. The multi-level discreti-
zation of the atom chain is shown in Fig. 2. The atom chain is
represented by 3 levels of substructures. The atom chain (top-
level substructure) is discretized into two second-level sub-
structures, and the first second-level substructure is further

m=1

m=2

m=3

j=1

j=1 j=2

j=1 j=2
atctive atomsfixed

omitted atoms

Fig. 2 MCMS discretization for a 1-D atom chain

discretized into two third-level substructures. In the discreti-
zation of the top-level atom chain, the 7-th atom is split into
two active atoms of the two second-level substructures. Each
of the active atoms has half of the original atom mass and a
free boundary condition. In the discretization of �2

1, the third
atom is split into two third-level active atoms. The active atom
in �2

1 becomes a fixed atom in �3
2. In the MCMS hierarchical

discretization, it is not required that all the branches have the
same levels of substructures. In this example, the substruc-
ture �2

2 is not discretized further. Therefore, although �2
2 is

in level 2, it is a bottom-level substructure. The bottom-level
substructures �3

1, �3
2 and �2

2 contain 3,4 and 5 atoms, respec-
tively. For illustration purpose, the entire frequency spectrum
is divided into 2 equal-width frequency bands, from 0 to the
highest frequency obtained from the bottom-level solution.
In this case, �2

2 gives the highest bottom-level substructure
frequency of 1.902 rad/s. Therefore, the two frequency bands,
[ωa, ωb], are set to be [0, 0.951] and [0.951, 1.902], and their
corresponding computational frequency bands, [ωc, ωd ], are
set to be [0, 1.189] and [0.713, 2.140], respectively. In the
following, we calculate the frequencies of the atom chain
within the first frequency band.

By following Algorithm 1, we first construct and partition
the force constant and mass matrices for the bottom-level
substructures as shown in Eq. (10). The partitioned force
constant and mass matrices are obtained as

[
�(3,1)

]
=
⎡

⎣
2.0 −1.0 0

−1.0 2.0 −1.0
0 −1.0 1.0

⎤

⎦

[
M(3,1)

]
=
⎡

⎣
1.0 0 0
0 1.0 0
0 0 0.5

⎤

⎦ (25)

[
�(3,2)

]
=

⎡

⎢⎢⎣

1.0 −1.0 0 0
−1.0 2.0 −1.0 0

0 −1.0 2.0 −1.0
0 0 −1.0 2.0

⎤

⎥⎥⎦

[
M(3,2)

]
=

⎡

⎢⎢⎣

0.5 0 0 0
0 1.0 0 0
0 0 1.0 0
0 0 0 1.0

⎤

⎥⎥⎦ (26)
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[
�(2,2)

]
=

⎡

⎢⎢⎢⎢⎣

1.0 −1.0 0 0 0
−1.0 2.0 −1.0 0 0

0 −1.0 2.0 −1.0 0
0 0 −1.0 2.0 −1.0
0 0 0 −1.0 2.0

⎤

⎥⎥⎥⎥⎦

[
M(2,2)

]
=

⎡

⎢⎢⎢⎢⎣

0.5 0 0 0 0
0 1.0 0 0 0
0 0 1.0 0 0
0 0 0 1.0 0
0 0 0 0 1.0

⎤

⎥⎥⎥⎥⎦
(27)

Note that the largest blocks in the partitioned force con-

stant and mass matrices shown above are the
[
�

(m, j)
oo

]
and

[
M(m, j)

oo

]
matrices. For the 3 bottom-level substructures, the

component frequencies and modes for the omitted atoms are
calculated by using Eq. (11) as

ω(3,1) =
{

1.000
1.732

}

[
D(3,1)

o

]
=
[−0.707 −0.707

−0.707 0.707

]
(28)

ω(3,2) =
⎧
⎨

⎩

0.765
1.414
1.848

⎫
⎬

⎭

[
D(3,2)

o

]
=
⎡

⎣
−0.500 −0.707 0.500
−0.707 0 −0.707
−0.500 0.707 0.500

⎤

⎦ (29)

ω(2,2) =

⎧
⎪⎪⎨

⎪⎪⎩

0.618
1.176
1.618
1.902

⎫
⎪⎪⎬

⎪⎪⎭

[
D(2,2)

o

]
=

⎡

⎢⎢⎣

−0.372 0.602 0.602 −0.372
−0.602 0.372 −0.372 0.602
−0.602 −0.372 −0.372 −0.602
−0.372 −0.602 0.602 0.372

⎤

⎥⎥⎦ (30)

In each component modal matrix, we neglect the modes cor-
responding to the frequencies that fall out of the computa-
tional frequency band, [0, 1.189]. The retained modes for
the bottom-level substructures are obtained using Eq. (12),

[
D̄(3,1)

o

]
=
[−0.707

−0.707

]

[
D̄(3,2)

o

]
=
⎡

⎣
−0.500
−0.707
−0.500

⎤

⎦ (31)

[
D̄(2,2)

o

]
=

⎡

⎢⎢⎣

−0.372 0.602
−0.602 0.372
−0.602 −0.372
−0.372 −0.602

⎤

⎥⎥⎦

By using the partitions of the force constant and mass matri-
ces obtained in Eqs. (25–27) and the center frequency of
ωn = 0.476, the quasi-static constraint modes of the bot-
tom-level substructures are calculated by using Eq. (15),

[
X(3,1)

o

]
=
[

0.466
0.827

] [
X(3,2)

o

]
=
⎡

⎣
1.056
0.873
0.492

⎤

⎦

[
X(2,2)

o

]
=

⎡

⎢⎢⎣

1.395
1.473
1.218
0.687

⎤

⎥⎥⎦ (32)

The transformation matrices
[
T(m, j)

]
can then be easily

obtained by using Eq. (9),

[
T(3,1)

]
=
⎡

⎣
−0.707 0.466
−0.707 0.827

0 1.0

⎤

⎦

[
T(3,2)

]
=

⎡

⎢⎢⎣

1.0 0
1.056 −0.500
0.873 −0.707
0.492 −0.500

⎤

⎥⎥⎦ (33)

[
T(2,2)

]
=

⎡

⎢⎢⎢⎢⎣

1.0 0 0
1.395 −0.372 0.602
1.473 −0.602 0.372
1.218 −0.602 −0.372
0.687 −0.372 −0.602

⎤

⎥⎥⎥⎥⎦
(34)

The reduced force constant and mass matrices are computed
from Eqs. (19,20) as

[
�̄

(3,1)
]

=
[

1.000 −0.207
−0.207 0.377

]

[
M̄(3,1)

]
=
[

1.000 −0.914
−0.914 1.401

]
(35)

[
�̄

(3,2)
]

=
[

0.424 −0.315
−0.315 0.586

]

[
M̄(3,2)

]
=
[

2.621 −1.392
−1.392 1.000

]
(36)

[
�̄

(2,2)
]

=
⎡

⎣
0.981 −0.542 0.118

−0.542 0.382 0
0.118 0 1.382

⎤

⎦

[
M̄(2,2)

]
=
⎡

⎣
6.570 −2.392 0.521

−2.392 1.000 0
0.521 0 1.000

⎤

⎦ (37)

The reduced force constant matrices
([

�̄
(3,1)

]
,
[
�̄

(3,2)
])

and the reduced mass matrices
([

M̄(3,1)
]
,
[
M̄(3,2)

])
of the
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two third-level substructures are then assembled as shown in
Eq. (22),

[
�̂

(2,1)
]

=
⎡

⎣
1.000 −0.207 0

−0.207 0.802 −0.315
0 −0.315 0.586

⎤

⎦

[
M̂(2,1)

]
=
⎡

⎣
1.000 −0.914 0

−0.914 4.022 −1.392
0 −1.392 1.000

⎤

⎦ (38)

The transformation matrices (
[
T(3,1)

]
,
[
T(3,2)

]
) are assem-

bled into a global transformation matrix by using Eq. (23),

[
T̂(2,1)

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.707 0.466 0
−0.707 0.827 0

0 1.000 0
0 1.056 −0.500
0 0.873 −0.707
0 0.492 −0.500

⎤

⎥⎥⎥⎥⎥⎥⎦
(39)

The eigen frequencies and the generalized coordinate vector,{
z(2,1)

}
, for the substructure �2

1 can be obtained from Eq.
(21),

ω(2,1) =
⎧
⎨

⎩

0.445
0.869
1.359

⎫
⎬

⎭

[
z(2,1)

]
=
⎡

⎣
−0.032 0.406 0.649
−0.994 −0.205 0.371
−0.102 −0.890 0.664

⎤

⎦ (40)

The component modes of the substructure �2
1,
[
D(2,1)

o

]
, can

be calculated by using Eq. (7). The reduced component

modes,
[
D̄(2,1)

o

]
, are then obtained by selecting the compo-

nent modes in
[
D(2,1)

o

]
with respect to the computed eigen

frequencies and the computational frequency band as shown
in Eq. (12), i.e.,
[
D(2,1)

o

]
=
[
T̂(2,1)

] [
z(2,1)

]

=

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.441 −0.383 −0.286
−0.799 −0.457 −0.152
−0.994 −0.205 0.371
−0.999 0.228 0.060
−0.796 0.450 −0.145
−0.439 0.344 −0.149

⎤

⎥⎥⎥⎥⎥⎥⎦

[
D̄(2,1)

o

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.441 −0.383
−0.799 −0.457
−0.994 −0.205
−0.999 0.228
−0.796 0.450
−0.439 0.344

⎤

⎥⎥⎥⎥⎥⎥⎦
(41)

Note that, as shown in Eq. (41), the component modes of
the upper-level substructure �2

1 are not directly computed by

solving Eq. (11), which can be expensive if the substructure
contains many DOFs. In the MCMS, the upper-level compo-
nent modes are computed more efficiently from the results
obtained from the lower-level substructures. The quasi-static

constraint modes of �2
1,
[
X(2,1)

o

]
, are computed by using Eq.

(15) in the same manner as the bottom-level substructures.

Combining
[
X(2,1)

o

]
with the retained component modes cal-

culated in Eq. (41), the transformation matrix
[
T(2,1)

]
can be

obtained from Eq. (9). In this example,
[
X(2,1)

o

]
and

[
T(2,1)

]

are obtained as

[
X(2,1)

o

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

−2.093
−3.712
−4.490
−4.251
−3.048
−1.155

⎤

⎥⎥⎥⎥⎥⎥⎦

[
T(2,1)

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.441 −0.382 −2.093
−0.799 −0.457 −3.712
−0.994 −0.205 −4.490
−0.999 0.228 −4.251
−0.796 0.450 −3.048
−0.439 0.344 −1.155

0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

The reduced force constant and mass matrices of �2
1 are com-

puted from Eqs. (19,20) as

[
�̄

(2,1)
]

=
⎡

⎣
0.722 0 3.520

0 0.582 0.154
3.520 0.154 17.340

⎤

⎦

[
M̄(2,1)

]
=
⎡

⎣
3.647 0 15.537

0 0.771 0.678
15.537 0.678 67.519

⎤

⎦ (43)

Assembling the reduced force constant and mass matrices of
�2

1 and �2
2 given in Eqs. (43, 37), the reduced system of the

top-level atom chain is obtained, i.e.,

[
�̂

(1,1)
]

=

⎡

⎢⎢⎢⎢⎣

0.722 0 3.520 0 0
0 0.582 0.154 0 0

3.520 0.154 18.320 −0.542 0.118
0 0 −0.542 0.382 0
0 0 0.118 0 1.382

⎤

⎥⎥⎥⎥⎦

(44)

[
M̂(1,1)

]
=

⎡

⎢⎢⎢⎢⎣

3.647 0 15.537 0 0
0 0.771 0.678 0 0

15.537 0.678 74.088 −2.392 0.521
0 0 −2.392 1.0 0
0 0 0.521 0 1.0

⎤

⎥⎥⎥⎥⎦

(45)

The eigen frequencies of the top-level atom chain can be
obtained by solving Eq. (21) using the reduced force con-
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Table 1 Comparison of the eigen frequencies obtained from the MCMS
and the direct approaches

Freq. MCMS Direct

ω1 1st freq. band 0.261847 0.261052

ω2 0.517707 0.517638

ω3 0.769515 0.765367

ω4 2nd freq. band 0.992882 1.000000

ω5 1.217441 1.217523

ω6 1.414211 1.414214

ω7 1.586682 1.586707

ω8 1.731214 1.732051

ω9 1.846841 1.847759

ω10 1.931241 1.931852

ω11 1.980417 1.982890

stant and mass matrices given in Eqs. (44,45), i.e.,

ω(1,1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.261847
0.517707
0.769515
1.012656
1.370292

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(46)

Since the first frequency band is [0, 0.902], we only keep
the calculated frequencies within this frequency band, i.e.,
ω = {0.261847, 0.517707, 0.769515}T . This calculation
procedure is repeated for the second frequency band. Table 1
summarizes the results obtained from the MCMS approach
compared with the results from the direct approach. It is
shown in the table that the MCMS results are quite accurate
and the maximum error in the eigen frequencies is
within 0.8% of the “exact” solution obtained from the direct
approach.

3.2 1-D composite atom chain

The second example is an 1-D composite atom chain fixed at
the two ends. The total number of atoms is 1,601 (including
both the filler and matrix atoms). There are 32 nanoparticles
uniformly distributed in the atom chain. Each nanoparticle is
comprised of ten filler atoms. The masses of the matrix and
filler atoms are set to be 2×10−26 and 8×10−26 kg, respec-
tively. The coefficients in the Lennard-Jones potential for the
interaction between two matrix atoms are set to be ε = 0.2
eV and σ = 0.3 nm with an equilibrium bond length of
0.337 nm. For the interaction between two filler atoms, we
set ε = 0.153 eV and σ = 0.25 nm with an equilibrium bond
length of 0.281 nm. For the interaction between a matrix atom
and a filler atom at the material interface, we set ε = 0.48
eV and σ = 0.38 nm with an equilibrium bond length of
0.427 nm. As described in Sect. 2, in the MCMS calculation,

the entire frequency spectrum is divided into ten equal-width
frequency bands, from 0 to the highest frequency obtained
from the bottom-level solution.

In the PDOS calculations by using the MCMS approach,
one can choose various substructure discretization schemes
with different discretization levels and substructure sizes. In
this example, we show the effect of the discretization schemes
on the accuracy and efficiency of the MCMS approach. We
discretize the entire atom chain by using 11 schemes. In
Scheme 1, the atom chain is discretized into 5 levels of sub-
structures: the top level is the atom chain itself which is dis-
cretized into two second-level substructures each containing
801 atoms; each second-level substructure is then discret-
ized into 2 third-level substructures of 401 atoms, and so
on so forth. Each of the bottom-level (the fifth level) sub-
structures contains 101 atoms. In Scheme 2, we discretize
the atom chain in the same manner as described in Scheme 1
except that the discretization stops at the fourth level. There-
fore, each of the bottom-level substructures in Scheme 2 con-
tains 201 atoms. We repeat the same procedure in Scheme
3 and stop at the third level. In Scheme 4, each upper-level
substructure is discretized into four equal-size lower-level
substructures, i.e., the atom chain is discretized into four sec-
ond-level substructures each containing 401 atoms and each
second-level substructure is then discretized into four third-
level (bottom-level) substructures of 101 atoms. In Schemes
5–8, we choose a two-level description of the atom chain
and discretize the atom chain into 2, 4, 8 and 16 equal-size
second-level substructures, respectively. In Schemes 9–11,
the top-level atom chain is discretized into two second-level
substructures with the ratio between the substructure sizes
varying from 1:15 to 1:3. The schemes are summarized in
Table 2.

The PDOS of the composite atom chain is calculated by
using the 11 MCMS schemes. Very accurate PDOS results are
observed for all the MCMS schemes. Figure 3 shows the atom
configuration of the 1-D atom chain and the PDOS obtained
by using the direct method and the MCMS with Scheme
1. The PDOS obtained from the MCMS is almost identical
to that obtained by using the direct method. The PDOS plots
obtained from other discretization schemes are indistinguish-
able from the curves shown in Fig. 3. For the clarity of the
figure, these plots are not shown. Although all the 11 MCMS
schemes give very accurate PDOS of the composite atom
chain, small errors exist for individual eigen frequencies.
Figure 4 shows the eigen frequencies within the frequency
band [7.098 THz, 8.112 THz] obtained from Schemes 5 (2
levels), 3 (3 levels), 2 (4 levels) and 1 (5 levels) compared
with the direct solution. The MCMS schemes give identi-
cal number of eigen frequencies within the frequency band.
However, as shown in Fig. 4, the eigen frequencies obtained
from the MCMS schemes are slightly different from the exact
solution near the ends of the frequency band. From the inset
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Table 2 Computational cost
comparison of various MCMS
discretization schemes and the
direct approach

Approach Discretization scheme CPU time (s)

Scheme ID Levels Number of substructures Substructure sizes (atoms)
(from top level to
bottom level)

MCMS 1 5 1→ 2→ 4→ 8→16 1,601→ 2 × 801→ 4 × 401 83

→ 8 × 201 → 16 × 101

2 4 1→ 2→ 4→8 1,601→ 2 × 801→ 4 × 401 121

→ 8 × 201

3 3 1→ 2→ 4 1,601→ 2 × 801→ 4 × 401 155

4 1→ 4→ 16 1,601→ 4×401 → 16 × 101 19

5 2 1→ 2 1,601→ 2 × 801 294

6 1→ 4 1,601→ 4 × 401 62

7 1→ 8 1,601→ 8 × 201 26

8 1→ 16 1,601→ 16 × 101 11

9 1→2 1,601 → 101 + 1,501 1,087

10 1→2 1,601 → 201 + 1,401 930

11 1→2 1,601 → 401 + 1,201 534

Direct 1 1 1,601 54
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Fig. 3 PDOS of a 1-D composite atom chain with a uniform distribu-
tion of the filler nanoparticles

of Fig. 4, we observe that the number of frequencies that
are off from the exact solution increases as the discretization
levels increase. This implies that, as the discretization levels
increase, the MCMS results can be less accurate, although
the error is within 0.1% of the direct solution and is only
observed near the ends of the frequency band.
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Fig. 4 Comparison of the eigen frequencies obtained from different
MCMS discretization schemes

The computational cost of the 11 MCMS schemes is listed
in Table 2. The calculations show that, when all the other dis-
cretization parameters are kept the same, reducing discreti-
zation levels from 5 levels to 2 levels causes an increase in
computational cost from 83 to 294 s in this case (compare
Schemes 1–3 and 5 in Table 2). Comparing the CPU time
for Schemes 5–8 shows that the computational cost can be
reduced by discretizing a substructure into many lower-level
substructures. However, as will be shown in Sect. 3.3, this
may not be true in other cases. When a substructure is discret-
ized into many substructures, the number of active atoms that
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Fig. 5 PDOS of a 1-D composite atom chain with a pseudo random
distribution of the filler nanoparticles

are shared by lower-level substructures can become large.
Since the DOFs of the active atoms are included in the cal-
culations, a large number of active DOFs can significantly
increase the computational cost. The CPU time results for
Schemes 9–11 show that when a substructure is discretized
into lower-level substructures with a high size ratio, the com-
putational cost increases significantly. This is due to the fact
that the computational cost is dominated by the larger sub-
structure. Therefore, discretizing the substructures into simi-
lar sized lower-level substructures is recommended to obtain
a balanced efficiency of the computational analysis. Note
that, in this example, the CPU time of the direct approach is
54 s. As shown in Table 2, only MCMS Schemes 4, 7 and 8
are more efficient than the direct approach in this case. This
result shows that, when the DOFs of the system is small, the
efficiency of the MCMS is not significant due to the overhead
of the matrix operations.

The third example is an 1-D composite atom chain with a
pseudo random distribution of 32 filler nanoparticles. All the
other parameters used in the calculation are the same as those
used in the second example. The atom chain is discretized by
using Scheme 1 described in the second example. The pseudo
random distribution of the filler nanoparticles is generated by
a random perturbation of the positions of the uniformly dis-
tributed nanoparticles. Figure 5 shows the atom configuration
of the 1-D atom chain and the PDOS obtained by using the
direct method and the MCMS. As shown in Fig. 5, due to the
splitting of the degenerate phonon modes, the high frequency
part of the PDOS of the atom chain with randomly distrib-

uted nanoparticles shows a significant change compared to
the PDOS of the atom chain with uniformly distributed nano-
particles. It is shown that the MCMS accurately reproduces
the PDOS of the composite atom chain.

3.3 2-D composite atom sheet

In the fourth example, the MCMS is applied to calculate the
PDOS of a square atom sheet. Figure 6a shows the configu-
ration of the atoms. The square sheet contains 81×81 atoms.
The top and right edges of the square sheet are fixed. The left
and bottom edges of the atom sheet are free. There are 64
(8×8) nanoparticles uniformly distributed in the atom sheet.
Each nanoparticle is comprised of 12 filler atoms as shown in
Fig. 6a. The masses of the matrix and filler atoms are set to be
2×10−26 and 1×10−26 kg, respectively. The coefficients of
the Lennard-Jones potential for the interaction between two
matrix atoms are set to be ε = 0.2 eV and σ = 0.3 nm. For
the interaction between two filler atoms, we set ε = 0.146 eV
and σ = 0.27 nm. For the interaction between a matrix atom
and a filler atom at the material interface, we set ε = 0.14 eV
and σ = 0.28 nm. The atom sheet is discretized into four lev-
els: one top-level 81 × 81-atom structure, four 41 × 41-atom
second-level substructures, 16 (21×21)-atom third-level sub-
structures and 64 (11 × 11)-atom fourth-level (bottom-level)
substructures. The frequency spectrum is again divided into
ten equal-width frequency bands in the MCMS. Figure 6b
shows the comparison of the PDOS obtained from the direct
and the MCMS approaches. The PDOS obtained from the
MCMS is very close to that obtained by using the direct
method. In this example, the CPU time of the direct method
is 11,235 s and the total computational cost of the MCMS
is 538 s. To obtain the computational cost as a function of
the system size for the two approaches, the PDOS is cal-
culated for two additional square atom sheets with 21 × 21
and 41 × 41 atoms. The 21 × 21 and the 41 × 41 atom
sheets contain four and 16 uniformly distributed nanoparti-
cles, respectively. The MCMS discretizes the 21 × 21 and
the 41 × 41 atom sheets into 2 and 3 levels, respectively.
The computational cost of the direct and MCMS approaches
is summarized in Table 3. It is again shown that, when the
DOFs of the system is small, the efficiency of the MCMS
is not significant due to the overhead of the matrix opera-
tions in the MCMS. However, for large systems, the com-
putational cost is largely reduced by using the MCMS. The
reduction of the CPU time becomes larger as the system size
grows. To further reduce the computational cost, one could
discretize an upper-level substructure into more smaller size
lower-level substructures. However, as discussed in the sec-
ond example, a large number of lower-level substructures
discretized from an upper-level substructure can introduce
a large number of active DOFs and cause higher computa-
tional cost. In this example, we discretize the atom sheet into
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Table 3 Computational cost comparison of the direct and the MCMS
approaches

Atoms DOFs CPU time of the CPU time of the
direct approach (s) MCMS approach (s)

21×21 882 5.12 4.5

41×41 3,362 198 52

81×81 13,122 11,235 538

2 levels and compare the computational cost of the discret-
ization schemes with different number of substructures. As
shown in Table 4, when the atom sheet is discretized into
16 (21 × 21)-atom substructures, the CPU time is 1,785 s.
The CPU time increases to 2,221 s when the atom sheet is
discretized into 64 (11 × 11)-atom substructures. Both are
larger than the CPU time of the 4-level discretization.

The fifth example is a 2-D composite atom sheet with
a pseudo random distribution of 64 filler nanoparticles, as
shown in Fig. 7a. All the other parameters used in the calcu-
lation are the same as those used in the third example. In this
example, the CPU time of the direct method is 10,370 s and
the total computational cost of the MCMS is 391 s. As shown
in Fig. 7b, the PDOS obtained from the MCMS approach
once again accurately reproduces the result obtained from
the direct approach with a much less computational cost.
The effect of the random distribution of the nanoparticles is
clearly shown by comparing the PDOS in Figs. 6b and 7b.

The last example is an “L”-shaped 2-D nanostructure con-
taining 104 pseudo randomly distributed nanoparticles. The
total number of atoms is 10,400. In the MCMS, the struc-
ture is discretized into four levels. The multilevel discretiza-
tion and the boundary conditions of the structure is shown
in Fig. 8. In this example, the masses of the matrix and filler
atoms are set to be 2 × 10−26 and 8 × 10−26 kg, respec-
tively. The coefficients in the Lennard-Jones potential are set
to be the same as those in the third and the fourth exam-
ples. Figure 9 shows the PDOS obtained from the direct and
the MCMS approaches. The MCMS once again provides a
very accurate result. The CPU time of the direct approach is
46,986 s while the MCMS requires 1,611 s, which is about
30 times faster than the direct approach.

4 Conclusion

In this paper, a multilevel component mode synthesis
approach is presented for the calculations of the PDOS of
nanocomposite structures. In this approach, nanocomposite
structures are discretized into multiple levels of substruc-
tures in a top-down manner. For a given frequency band, the
phonon frequencies and modes are first computed for the
bottom-level substructures. The obtained component modes
are then synthesized by using a quasi-static CMS technique
to obtain the phonon frequencies and modes of upper-level

Fig. 6 a A square atom sheet
containing uniformly distributed
filler nanoparticles. b PDOS of
the square atom sheet
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Fig. 7 a A square atom sheet
with a pseudo random
distribution of the filler
nanoparticles. b PDOS of the
square atom sheet
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Fig. 8 Multilevel discretization
of an “L”-shaped composite
atom sheet

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

atoms

at
om

s

level 1 level 3

level 4

level 2

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

ω(THz)

D
O

S
 (

1/
T

H
z)

Direct method
MCMS

Fig. 9 PDOS of the “L”-shaped composite atom sheet

Table 4 Computational cost comparison of the MCMS discretization
schemes

Direct 2 levels with 2 levels with 4 levels with 4
approach 16 (21 × 21) 64 (11 × 11) equal-size

atom atom substructures
substructures substructures per level

CPU time (s) 11,235 1,785 2,221 538

substructures in a bottom-up manner. By repeating this proce-
dure, the PDOS of the top-level nanostructure can be
obtained. The proposed approach, while retains the atomic
description of the nanocomposite structure, significantly
reduces the computational cost of the calculation. The pro-
posed MCMS is applied to compute the PDOS of 1-D com-
posite atom chains and 2-D composite atom sheets. The
results obtained from the MCMS are compared to those
obtained from the direct method. It is shown that for a typical

system of 20,000 DOFs the proposed approach reduces the
CPU time by about 30 times.
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