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In this paper, we propose an efficient approach, namely the hybrid BIE/Poisson/Schrödinger
approach, for electrostatic analysis of nanoelectromechanical systems. In this approach, the interior
and the exterior domain electrostatics are described by Poisson’s equation(or Poisson’s equation
coupled with Schrödinger’s equation when quantum-mechanical effects are dominant) and the
boundary integral formulation(BIE) of the potential equation, respectively. We employ a meshless
finite cloud method and a boundary cloud method to solve the coupled BIE/Poisson/Schrödinger’s
equations self-consistently. The proposed approach significantly reduces the computational cost and
provides a higher accuracy of the solution. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1769608]

I. INTRODUCTION

A number of nanoelectromechanical device and system
(NEMS) applications have been proposed recently.1 These
applications range from molecular memory, computing, low-
power switches, actuators, and a variety of chemical, me-
chanical, and biological sensors. Even though a variety of
forces can be used to actuate nanostructures, electrostatic
potentials are gaining a lot of interest because of some ad-
vantages in nanostructure fabrication and control. As the size
of the mechanical component(typically a semiconductor ma-
terial, such as silicon) continues to shrink to nanoscale and
subnanoscales, quantum effects become more significant and
can even dominate the entire device behavior. The carrier
quantum confinement in the semiconductor structure can im-
pose a significant effect on the charge distribution in the
mechanical components of NEMS. As a result, classical elec-
trostatic analysis is inaccurate at nanoscales. For nanometer
scale semiconductor devices, coupled Poisson/Schrödinger
equations need to be solved self-consistently to obtain the
electronic properties such as the potential field and the
charge distribution of the system.2–6 However, in contrast to
classical semiconductor devices(e.g., MOSFETs), NEMS
typically contain structures with complex geometries and
configurations. The electrostatic analysis of NEMS must in-
clude both the exterior and the interior regions of the NEM
structures—this is referred to as an open boundary problem.
Conventionally, to solve such an open boundary problem, a
spatial region(cutoff box)7–12 covering the system of interest
is selected such that the potential variation outside the region
has little influence on the system. The region is then dis-
cretized into elements or points depending on the numerical
method used. An issue with the conventional approach is that
the equations need to be solved over a quite large area of the
dielectric medium while only the electronic properties within

the semiconductor are of interest. For this reason, solving
Poisson’s and Schrödinger’s equations over the entire cutoff
box is quite inefficient and very expensive.

Boundary integral formulations and boundary element
methods(BEM)13 are attractive computational techniques for
linear and exterior problems as they reduce the dimensional-
ity of the original problem. For example, for three-
dimensional(3D) problems, the boundary element method
requires discretization of the two-dimensional surface of the
3D object and for 2D problems, the boundary element
method requires discretization of the one-dimensional
boundary. For exterior problems, the use of classical meth-
ods, such as the finite difference(FDM),14 or the finite ele-
ment method(FEM),15 requires discretization of the entire
exterior, whereas with a boundary element method only the
surface needs to be discretized. For this reason, the boundary
integral formulations are advantageous for exterior electro-
static analysis. The boundary integral equations(BIEs) for
exterior electrostatic analysis have been proposed in the
literature.16,17 A coupled FEM/BEM approach for electro-
static analysis of semiconductor MOSFETs has been pro-
posed in Ref. 18. However, in Ref. 18, an artifical boundary
(cutoff box) is still constructed and discretized in the dielec-
tric medium. Since multiple large surface areas of NEMS
structures can be exposed to the dielectric medium, the con-
struction of artificial boundaries for NEMS structures could
be awkward.

In this paper, we propose an approach, referred to as the
hybrid BIE/Poisson/Schrödinger approach, for electrostatic
analysis of NEMS. The key idea in this approach is to solve
Laplace’s equation in the exterior domain of the NEM struc-
tures using a boundary integral formulation, and then to
combine the BIEs with Poisson’s equation or Poisson/
Schrödinger equations for the interior domain analysis of the
semiconductor structures. The BIEs are defined only on the
surface of the semiconductors/conductors with no artificial
boundaries. We employ meshless numerical methods,
namely the finite cloud method for interior analysis(i.e., for
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the solution of Poisson’s equation or Poisson/Schrödinger
equations in the semiconductor) and the boundary cloud
method for exterior analysis(i.e., for the solution of the
boundary integral equations of the exterior potential equa-
tion). The potential and the charge distributions are obtained
by solving the coupled system of equations self-consistently.
It is shown in the paper that the proposed approach is more
efficient and more accurate compared to the conventional
cutoff box approach.

The rest of the paper is organized as follows: Sec. II
introduces the electrostatic analysis of NEMS, Sec. III pre-
sents the BIEs for semiconductors, Sec. IV describes the hy-
brid BIE/Poisson approach, Sec. V describes the hybrid BIE/
Poisson/Schrödinger approach, Sec. VI presents numerical
results, and Sec. VII presents conclusions.

II. ELECTROSTATIC ANALYSIS OF
NANOELECTROMECHANICAL SYSTEMS (NEMS)

To illustrate the electrostatic analysis of NEMS, we con-
sider a nanoswitch example as shown in Fig. 1. The
nanoswitch consists of a semiconductor beam structure that
is clamped at the ends and the beam is separated from a
bottom conductor/electrode by a small gap. When a voltage
is applied between the fixed-fixed beam and the bottom con-
ductor, electrostatic charges are induced in the semiconduc-
tor beam. These charges give rise to an electrostatic force,
which acts on the entire(surface as well as the interior) semi-
conductor beam. Since the bottom conductor is fixed and can
not move, the electrostatic forces deform the fixed-fixed
beam. In this paper, we focus on the electrostatics analysis of
NEMS, i.e., we would like to compute the electrostatic
charge distribution in the semiconductor NEM structures.

The nanoswitch shown in Fig. 1 contains three regions:
the semiconductor structure, the bottom conductor, and the
infinite dielectric medium. The bottom conductor region is
treated as an equipotential region. Based on the idealization
that the dielectric medium is a perfect insulator, i.e., there is
no charge in the entire dielectric medium, the electric poten-
tial satisfies the Laplace equation in the dielectric medium
(the region exterior to the semiconductor and the conductor
structures). When the critical length(e.g., the width) of the
semiconductor structure is comparable to the Debye length
or the screening length,19 the potential inside the semicon-
ductor satisfies Poisson’s equation. As the size of the semi-
conductor structure continues to shrink to nanoscale and sub-
nanoscales, quantum effects become more significant and
can even dominate the entire device behavior.20 The carrier
quantum confinement in the semiconductor structure can im-

pose a significant effect on the charge distribution in the
mechanical components of NEMS. In this case, Poisson/
Schrödinger equations need to be solved self-consistently on
the semiconductor structure to obtain the potential field and
the charge distribution.

In typical semiconductor MOSFET simulations, an ap-
proximated Dirichlet, Neumann, or impedance-type bound-
ary condition3,21–23can be applied at the dielectric medium/
semiconductor interface to avoid discretizing the exterior
domain. However, in NEMS applications, the approximated
boundary conditions are not valid since a large portion of the
semiconductor structure is exposed to the dielectric medium,
the gap between the semiconductor structures and the elec-
trodes can be large and NEM structures can be complex.
Alternatively, to solve the Laplace/Poisson/Schrödinger
equations, one can adopt the conventional approach, in
which a spatial region(cutoff box) covering the system of
interest is selected such that the potential variation outside
the region has little influence on the system. The region is
then discretized into elements or points depending on the
numerical method used. Figure 2 shows a typical discretiza-
tion of the nanoswitch shown in Fig. 1. Potential boundary
conditions are prescribed on the bottom conductor and at the
ends of the fixed-fixed semiconductor beam. Based on the
assumption that the potential variation outside the cutoff box
is negligible, a zero electric field normal to the boundary is
applied as the boundary condition at the outer boundary of
the cutoff box. The next step is to use a numerical method
(typically a finite difference or a finite element method) to
solve for the potential in the entire discretized region. After
the potential is obtained, the charge distribution in the NEM
structure can be computed. Although the conventional ap-
proach is straightforward, it has several disadvantages.

(1) The cutoff box is an approximation and the definition
of the cutoff box needs a good judgment. Inaccurate results
could be obtained if the cutoff box is too small. However,
computational cost could be very high if the cutoff box is too
large.

(2) The entire spatial region needs to be discretized even
if the cutoff box is properly chosen. For this reason, the
system has many degrees of freedom(DOF), which means a

FIG. 1. A typical nanoswitch consisting of a fixed-fixed semiconductor and
a bottom conductor.

FIG. 2. Typical domain discretization for electrostatic analysis of the
nanoswitch shown in Fig. 1.
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large nonlinear system needs to be solved numerically. Fur-
thermore, the DOF scale asOsN3d in 3D whereN is the
number of points/elements in a single dimension. Computa-
tional cost is a major issue in this approach.

In this paper, we propose a hybrid technique to solve the
open boundary problem efficiently. The key idea is to em-
ploy a boundary integral formulation, which is defined only
on the boundary of the NEM structures, for the exterior elec-
trostatic analysis, and to solve the coupled BIE/Poisson/
Schrödinger equations self-consistently. The proposed tech-
nique is referred to as the hybrid BIE/Poisson/Schrödinger
approach.

III. BOUNDARY INTEGRAL EQUATIONS FOR
SEMICONDUCTORS

We will deal with two-dimensional electrostatic prob-
lems in this paper, but the approach can be extended easily
for three-dimensional problems. Consider a system of ob-
jects including semiconductors and conductors
sV1,V2, . . . ,VNo

d, whereNo is the number of objects, em-

bedded in a uniform dielectric mediumV̄ as shown in Fig. 3,
potentialgisxd, i =1,2, . . . ,No, and the normal derivative of
the potentialhisxd, i =1,2, . . . ,No are applied on certain por-
tions of the boundary of each semiconductor,Ggi and Ghi, i

=1,2, . ..... ,No, respectively. The potential field in the di-

electric mediumV̄ can be determined by the potential theory.
The governing equation along with the boundary conditions
for the exterior electrostatic problem are given by24

¹2f = 0 in V̄ s1d

f = gisxd on Ggi i = 1,2, . . . ,No, s2d

q =
]f

]n
= hisxd on Ghi i = 1,2, . . . ,No, s3d

wherex=hx,yj is the position vector of a point,gisxd and
hisxd are the potential and its normal derivative specified on
the boundary portionsGgi and Ghi of the semiconductori, i

=1,2, . . . ,No, respectively. Note that the exterior domainV̄

is an open domain. Typically, a reference potentialfref needs
to be specified on a reference planeGref far away from the
conductors. For a 2D system, as shown in Fig. 3, a circular
reference plane can be used, i.e.,

f = fref on Gref s4d

Note thatfref becomes the reference potentialf` when the
radius of the reference planeRref→`.

An efficient approach to treat the exterior electrostatic
problem given in Eqs.(1)–(4) is to use the boundary integral
formulation. Boundary integral formulations for exterior
electrostatic analysis have been well developed and pub-
lished in the literature(see, e.g., Refs. 16 and 12 for an
overview). In this section, we derive the boundary integral
equations for a system containing multiple semiconductors
by using some results given in Refs. 16 and 17.

The boundary integral equation for a general exterior
potential problem is given by Ref. 13,

FIG. 4. Hybrid BIE/Poisson discretization of the domain. There areNSpoints on the semiconductor beam which includeNI interior points andNBSboundary
points. There are alsoNBCpoints on the boundary of the bottom conductor. Therefore, the total number of points on the boundary of the structures, including
the semiconductor beam and the bottom conductor, isNBS+NBC=NB. Note that no exterior discretization is necessary.

FIG. 3. A system of semiconductors.
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asxdfsxd = o
j=1

No E
G j

fsx8d
]Gsx,x8d

]n8
dGsx8d

+ frefE
Gref

]Gsx,x8d
]n8

dGsx8d

− o
j=1

No E
G j

qsx8dGsx,x8ddGsx8d

−E
Gref

qsx8dGsx,x8ddGsx8d, s5d

wherex is the source point,x8 is the field point,Gsx ,x8d is
the Green’s function,n8 is the outward normal atx8, qsx8d
=]fsx8d /]n8 is the flux at the field pointx8, asxd is the
corner tensor[asxd=1/2 for smooth boundaries, see Ref. 13
for more details] and G j =GgjøGhj. In two-dimensions,
Gsx ,x8d=lnux−x8u / s2pd, where ux−x8u is the distance be-
tween the source pointx and the field pointx8. It can be
shown that when the source point is on a semiconductorj ,
i.e.,x[G j, j =1,2, . . . ,No, the second term on the right-hand
side of Eq.(5) can be rewritten as16

frefE
Gref

]Gsx,x8d
]n8

dGsx8d = fref 3 1 = fref. s6d

When the radius of the reference plane goes to the infinity,
Rref→`, the reference planeGref goes toG` and the Green’s
function Gsx ,x8d→G`. SinceG` is a constant for any field
point x8[G j, j =1,2, . . . ,No, the fourth term on the right-
hand side of Eq.(5) becomes

lim
Rref→`

E
Gref

qsx8dGsx,x8ddGsx8d = Gs`dE
G`

qsx8ddGsx8d.

s7d

Assuming the variation of the potential vanishes, i.e.,qsx8d
=0 on G`, it can be shown that16

o
j=1

No E
G j

qsx8ddGsx8d = 0. s8d

Substituting Eqs.(6)–(8) into Eq. (5), one obtains

asxdfsxd = o
j=1

No E
G j

fsx8d
]Gsx,x8d

]n8
dGsx8d

− o
j=1

No E
G j

qsx8dGsx,x8ddGsx8d + f`, s9d

where f` is the constant reference potential onG`. Equa-
tions (8) and (9) are the boundary integral equations for ex-
terior electrostatic analysis of semiconductors.

IV. HYBRID BIE/POISSON APPROACH FOR
SEMICLASSICAL ELECTROSTATIC ANALYSIS

Since the quantities in Eqs.(8) and (9) are defined only
on the boundary of the semiconductors or conductors, using
the boundary integral equations for the exterior domain
eliminates the need to discretize the region exterior to the
NEM structures and the requirement of a cutoff box. For the
interior domain of the semiconductor structure, the electric
potential typically satisfies Poisson’s equation. The govern-
ing equations in the semiclassical model are given by19

= · s«s = fd = − esp − n + ND
+ − NA

−d, s10d

wheree is the elementary charge,«s is the permittivity of the
semiconductor material,N D

+ andN A
− are the density of ion-

ized donor and acceptor dopants, respectively, andp and n
are the hole and electron concentrations given by

psfd = 2Smp
* kBT

2p "2 D3/2

F1/2SEV − EF

kBT
D , s11d

nsfd = 2Smn
*kBT

2p "2 D3/2

F1/2SEF − EC

kBT
D , s12d

whereEF is the Fermi level energy," is Planck’s constant,kB

is the Boltzmann constant,T is the temperature,F1/2 is the
complete Fermi-Dirac integral of order 1/2,EC and EV are
the conduction/valence band energy, respectively, andmn

* and
mp

* are the density-of-state masses of the conduction and the
valence band, respectively. Combining the boundary integral
equations[Eqs.(8) and(9)] for the exterior domain and Pois-

FIG. 5. Hybrid BIE/Poisson/Schrödinger discretization of the nanoswitch
domain.

FIG. 6. Potential profile obtained by using the conventional cutoff box
approach.
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son’s equation[Eq. (10)] for the interior domain of the semi-
conductor structures, we propose a hybrid BIE/Poisson ap-
proach for semiclassical electrostatic analysis. Figure 4
shows the domain discretization scheme of the nanoswitch
by using the hybrid approach. The fixed-fixed semiconductor
beam and the boundary of the bottom conductor are repre-
sented by a set of nodes. In the hybrid approach, we enforce
that the boundary integral equations are satisfied at the
boundary nodes and Poisson’s equation is satisfied at the
interior nodes of the semiconductor beam. Schottky contacts
are applied at the two ends of the semiconductor beam and
the potential is known, i.e.,

f = g on Gg1 andGg2 s13d

At the interface between the semiconductor beam and the
dielectric medium, the boundary integral equation and Pois-
son’s equation are coupled by the interface conditions24

ufuBIE = ufuPoisson on Gint, s14d

u«squPoisson+ u«dquBIE = s on Gint, s15d

wherefuBIE andfuPoissonare the potentials from the bound-
ary integral equation and Poisson’s equation, respectively,
quBIE andquPoissonare the normal derivatives of the potential
from the boundary integral equation and Poisson’s equation,
respectively,«d is the permittivity of the dielectric medium,
and s is the charge density on the exposed surface of the
semiconductor. In this paper, for the purpose of illustration of
the hybrid approach, the charge density on the surface is
assumed to be zero. However, other models for the interface
charge densitys can also be implemented.

In the hybrid BIE/Poisson approach, we employ a finite
cloud method(FCM) (Refs. 25–27) for solving Poisson’s
equation[Eq. (10)] at the interior nodes of the semiconductor
beam and a boundary cloud method(BCM) (Refs. 28 and
29) for solving the boundary integral equations given in Eqs.

FIG. 7. Potential profile obtained from the hybrid BIE/Poisson approach.

FIG. 8. Degree of freedom comparison between the Poisson and the hybrid
BIE/Poisson approaches(Dh is the point spacing).

FIG. 9. CPU time comparison between the Poisson and the hybrid BIE/
Poisson approaches.

FIG. 10. Convergence comparison between the Poisson and the hybrid BIE/
Poisson approaches(Dh is the point spacing). The error is defined by
error=1/sufumax

ref dÎs1/NSdoi=1
NSffrefsxid−fasxidg2, wherefref is the reference

solution obtained by using a fine point distribution andfa is the computed
solution obtained from the coarser point distributions.

J. Appl. Phys., Vol. 96, No. 4, 15 August 2004 G. Li and N. R. Aluru 2225

Downloaded 21 Feb 2005 to 130.126.121.201. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



(8) and(9) at the boundary nodes. The finite cloud method is
a true meshless method(see Ref. 30 for an overview of
meshless methods) in which only points are needed to cover
the structural domain and no connectivity information among
the points is required. The finite cloud method uses a fixed
kernel technique to construct the approximation functions
and a point collocation technique to discretize the governing
partial differential equations. In a 2D fixed kernel approach,
the approximationfasxd to the unknown potentialfsxd is
given in discrete form as

fasxd = o
I=1

NS

NIsxdf̂I s16d

and the derivatives offsxd are approximated by

]fa

]x
sxd = o

I=1

NS
]NI

]x
sxdf̂I , s17d

] 2fa

]x 2 sxd = o
I=1

NS
] 2NI

]x2 sxdf̂I , s18d

whereNS is the total number of nodes on the semiconductor
beam,f̂I is the nodal parameter for nodeI, andNIsxd is the
fixed kernel meshless approximation function of nodeI
evaluated atx (see Refs. 25–27 for details). In a boundary
cloud method, the unknown potentialfsxd and its normal
derivativeqsxd at a boundary point can be approximated by
either a Hermite-type approximation28 or a varying basis
least-squares approximation.29 The approximation functions
are constructed over the boundary nodes without using a
mesh. In this paper, we employ a varying basis least-squares
approach to approximate the unknown quantities in the BIEs.
The discrete form of the varying basis approximation for the
unknowns is given by

fasxd = o
I=1

NB

N̄Isxdf̃I , s19d

qasxd = o
I=1

NB

N̄Isxdq̃I , s20d

whereNB is the number of boundary points,f̃I andq̃I are the
BCM nodal parameters off andq for nodeI, respectively,

and N̄Isxd is the varying basis approximation function of
node I (see Ref. 29 for details). After the approximation
functions are constructed, the boundary of the structure is
discretized intoNC cells for integration purpose. Each cell
contains a certain number of nodes and the number of nodes
can vary from cell to cell. Different from an element or a
panel in boundary-element methods,13 the cell can be of any
shape or size and the only restriction is that the union of all
the cells equal the boundary of the domain.

After the approximation functions are constructed, both
the FCM and the BCM use a point collocation technique to
discretize the governing equations. In a point collocation ap-
proach, the governing equations are satisfied at every node
which does not carry a boundary condition, and for nodes

with boundary conditions the approximate solution or the
derivative of the approximate solution are set to the given
Dirichlet and Neumann boundary conditions, respectively.
As shown in Fig. 4, we assume that the fixed-fixed semicon-
ductor beam is discretized intoNSpoints where the number
of boundary points is denoted byNBS and the number of
interior points is denoted byNI sNI=NS−NBSd. Similarly,
the bottom conductor is assumed to be discretized intoNBC
boundary points. The total number of points is denoted by
NT sNT=NS+NBC=NI+NBS+NBCd and the total number
of boundary points alone is denoted byNB sNB=NBS
+NBCd. We define theNS points on the beam as the FCM
points, and theNB points on the boundaries as the BCM
points. Note that theNBS points on the boundary of the
semiconductor beam are both FCM and BCM points. The
FCM substitutes the fixed kernel approximations[Eqs.
(16)–(18)] into Eqs.(10) and (13)–(15) to satisfy Poisson’s
equation or the boundary/interface conditions at the FCM
points. The BCM substitutes the varying basis approxima-
tions [Eqs.(19) and(20)] into Eqs.(8), (9), (14), and(15) to
satisfy the boundary integral equations and the boundary/
interface conditions at the BCM points. The discretized Pois-
son’s equation, Eq.(10), for an interior nodexi is given by

= ·F«s=So
I=1

NS

NIsxidf̂IDG = − eHpFF1/2So
I=1

NS

NIsxidf̂IDG
− nFF1/2So

I=1

NS

NIsxidf̂IDG
+ ND

+ − NA
−J , s21d

the discretized boundary integral equation, Eq.(9), for a
boundary nodexi is given by

o
J=1

NB FasxidN̄Jsxid − o
k=1

NC E
Gk

N̄Jsx8d
]Gsxi,x8d

]n8
dGsx8dGf̃J

= − o
J=1

NB Fo
k=1

NC E
Gk

N̄Jsx8dGsxi,x8ddGsx8dGq̃J + f`, s22d

where Gk is the kth cell on the boundary. The discretized
Dirichlet potential boundary condition, Eq.(13), for an FCM
boundary nodexi is given by

o
I=1

NS

NIsxidf̂I = gsxid, s23d

the discretized Dirichlet potential boundary condition, Eq.
(13), for a BCM boundary nodexi is given by

o
J=1

NB

N̄Jsxidf̃J = gsxid, s24d

the discretized interface conditions, Eqs.(14) and(15), for a
boundary nodexi are given by

o
J=1

NB

N̄Jsxidf̃J = o
I=1

NS

NIsxidf̂I , s25d
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«so
I=1

NS
]NI

]n
sxidf̂I + «do

J=1

NB
]N̄J

]n
sxidq̃J = ssxid, s26d

and the discretized boundary integral equation, Eq.(8), is
given by

o
J=1

NB Fo
k=1

NC E
Gk

N̄Jsx8ddGsx8dGq̃J = 0. s27d

As shown in Fig. 4, for an interior node of the beam, Eq.(21)
is enforced, for a boundary node of the beam with a specified
potential boundary condition, Eqs.(22)–(24) are satisfied, for
a boundary node on the beam at the dielectric medium inter-
face, Eqs.(22), (25), and (26) are satisfied, for a boundary
node on the bottom conductor, Eqs.(22) and (24) are en-
forced, and finally, Eq.(27) is satisfied separately. It can be
easily verfied that Eqs.(21)–(27) give rise to a nonlinear
system ofNS+2NB+1 unknowns andNS+2NB+1 equa-
tions, which can be rewritten in a general form as

Risf̂I,f̃J,q̃J,Cd = 0 i = 1,2, . . ,NS+ 2NB+ 1,

I = 1,2, . . . ,NS, J = 1,2, . . . ,NB s28d

A Newton’s method with line search31 is used in this paper to
solve the nonlinear system given in Eq.(28). The linearized
system is given by

F ]R

]f̂

]R

]f̃

]R

] q̃

]R

] C G5 df̂

d f̃

d q̃

d C
6 = h− Rj. s29d

In short form, Eq.(29) can be rewritten as

fJghduj = h− Rj, s30d

whereJ is the Jacobian matrix,du is the vector of unknown
increments, andR is the residual vector. The nodal param-
etersf̂, f̃, and q̃ can be obtained by iteratively solving the
nonlinear system. Note that only Eq.(21) is nonlinear. There-
fore, only the entries corresponding to Eq.(21) in the Jaco-
bian matrix need to be updated in each iteration. Once the
nodal parameters are obtained, the potentialf and its normal
derivativeq can be computed by using Eqs.(16), (19), and
(20). The charge distribution in the semiconductor beam
structure can be then computed by evaluating the right-hand
side of Eq.(10).

Remarks

(1) In the proposed hybrid Poisson/BIE approach, there
is no cutoff box and hence no discretization of the exterior
dielectric medium is required. Only the boundary of the
NEM structures is discretized for the boundary integral equa-
tions. As a result, the degrees of freedom of the system are
largely reduced.

(2) The boundary integral formulations typically provide
accurate results due to the introduction of the fundamental
solution, i.e., the Green’s function, into the problem formu-
lation. Furthermore, the hybrid approach eliminates the error
introduced by the approximated cutoff box boundary condi-
tion. The numerical experiments in the paper show that the

hybrid BIE/Poisson approach gives a higher accuracy of the
solution compared to the conventional approach.

V. HYBRID BIE/POISSON/SCHRÖDINGER APPROACH
FOR QUANTUM ELECTROSTATIC ANALYSIS

As the size of the nanoswitch continues to shrink, due to
the abrupt change of the potential on the surface of the semi-
conductor, the semiconductor structure behaves as a quantum
well where the carrier concentration at the boundary is much
smaller than the concentration in the bulk. To account for the
quantum effects in the system, Poisson’s equation given in
the preceding section is combined with Schrödinger’s equa-
tion. By solving these two equations self-consistently over
the entire semiconductor structure, the potential field and the
charge distribution in the system can be determined more
accurately. In this section, we extend the hybrid BIE/Poisson
approach introduced in Sec. IV to include the solution of
Schrödinger’s equation. The two dimensional effective mass
Schrödinger’s equation is given by32

Ĥscnd = −
"2

2m*
¹2cn + UsVh,efdcn = Encn, s31d

whereĤ is the Hamiltonian,U is the potential energy,m* is
the effective mass of electrons or holes,cn is the wave func-
tion corresponding to the energy levelEn, andVh is the het-
erojunction step potential at the side contacts. By solving
Schrödinger’s equation[Eq. (31)], the energy levelsEn and
the corresponding wave functionscn can be obtained for
electrons and holes.

The Poisson’s equation is coupled with Schrödinger’s
equation through the quantum electron and hole densities,

nqsfd = Nno
n

c n
2F−1/2SEF − En

kBT
D , s32d

pqsfd = Npo
n

c n
2F−1/2SEn − EF

kBT
D , s33d

where the summation is over all the energy levels and

Nn =
1

p
S2mnv

* kBT

"2 D1/2

Np =
1

p
S2mpv

* kBT

"2 D1/2

, s34d

wheremnv
* and mpv

* are the density-of-state masses of elec-
trons and holes, respectively. Assuming the semiconductor
structure to be an ideal quantum well, we enforce the Dirich-
let boundary condition for the wave function,cn=0, at the
boundary of the semiconductor beam. The discretization of
the nanoswitch is shown in Fig. 5. We solve Schrödinger’s
equation on the same set of points used to solve Poisson’s
equation (see Sec. IV). The fixed-kernel approximations
given in Eqs.(16)–(18) are employed to approximate the
unknown wave functioncn and its derivatives, i.e.,

c n
asxd = o

I=1

NS

NIsxdĉnI, s35d
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¹2c n
asxd = o

I=1

NS

¹2NIsxdĉnI. s36d

Substituting Eqs.(35) and (36) into Eq. (31), Schrödinger’s
equation can be rewritten in the matrix form

Hĉn = Enĉn, s37d

where

HIJ = −
"2

2m*
¹2NJsxId + UfVh,efsxIdgNJsxId

I,J = 1,2, . . . ,NS. s38d

The discretized eigenvalue problem, Eq.(37), is then solved
by using the sparse eigensolver ARPACK(Ref. 33) to obtain
the energy levels and the wave functions of electrons and
holes. By using Eqs.(32) and(33), the quantum electron and
hole densities can be computed.

To obtain a self-consistent solution of Poisson/
Schrödinger equations, one needs to iterate between Pois-
son’s and Schrödinger’s equations. Since simple under-
relaxation scheme usually gives a low convergence rate, in
this paper, we employ the predictor-corrector scheme pro-
posed in(Ref. 6). The Poisson’s equation is rewritten as

= · s«s = fd = − esp̃q − ñq + N D
+ − N A

−d, s39d

where the quantum electron and hole densities are replaced
by the predictors

ñq = Nno
n

cn
skd2F−1/2SEF − E n

skd + esf − fskdd
kBT

D , s40d

p̃q = Npo
n

cn
skd2F−1/2SE n

skd − esf − fskdd − EF

kBT
D , s41d

where the superscriptk denotes the quantities obtained from
the previous iteration. The potentialfsk+1d is computed by
solving the modified Poisson’s equation[Eq. (39)]. The wave
functionscn

sk+1d and the energy levelsEn
sk+1d can be obtained

by solving Schrödinger’s equation usingfsk+1d. Algorithm 1
summarizes the procedure for self-consistent electrostatic
analysis of NEM structures by using the hybrid BIE/Poisson/
Schrödinger approach.

VI. NUMERICAL EXAMPLES

In this section we perform electrostatic analysis of
several nanoswitch devices by using the hybrid approaches.
The results obtained by using the hybrid approaches
are compared with the results obtained by using the cutoff
box approach. Note that, since the focus of this paper is
on the development of efficient computational techniques,
rather than the investigation of quantum physics in NEM
structures, Schrödinger’s equation with a simple effective
mass approximation is used in all the examples. However,
the hybrid approach can be employed for more advanced
physical models within the framework of Poisson/
Schrödinger equations.

Algorithm 1 Hybrid BIE/Poisson/Schrödinger approach for self-consistent NEMS electrostatic analysis

(1) Discretize the domain of the semiconductor structures and the boundary of the bottom conductors.
(2) Compute the approximation functionNIsxJd, I ,J=1,2, . . . ,NSand its derivatives for the FCM points.

(3) Compute the approximation functionN̄IsxJd, I ,J=1,2, . . . ,NB for the BCM points.
(4) At the initial stepk=0, set the initial value of the potential to befs0d=0
(5) Solve Schrödinger’s equation[Eq. (31)] by usingfs0d to computecn

s0d andEn
s0d for electrons and holes.

(6) Repeat.
(7) Following the procedure described in Sec. IV, solve the coupled BIE/Poisson equations[Eqs.(8), (9), and(39)] using

the predictorsñqscn
skd ,En

skdd and p̃qscn
skd ,E n

skdd to obtain potentialfsk+1d.
(8) Solve Schrödinger’s equation[Eq. (31)] by usingfsk+1d to computecn

sk+1d andE n
sk+1d for electrons and holes.

(9) Compute the corrected quantum electron densitynq
sk+1d and hole densitypq

sk+1d by using Eqs.(32) and (33), respec-
tively.
(10) until unq

sk+1d−nq
skdu and upq

sk+1d−pq
skdu,error tolerance«t

A. Semiclassical analysis

The first example is a nanoswitch containing a 20 nm
long and 10 nm wide fixed-fixed silicon beam. The gap be-
tween the beam and the bottom conductor is 10 nm. The
beam has anN-type doping density of 1015/cm3. The poten-
tial at the ends of the beam is specified as 0 V. The applied
potential on the bottom conductor is 5 V. The bottom con-
ductor is 40 nm long and 2 nm wide. In this configuration,
only the quantization of the electrons needs to be considered

and the quantum effect of the holes can be neglected. The
system is solved by using both the conventional cutoff box
approach and the proposed hybrid BIE/Poisson approach.
The discretization of the cutoff box and the potential profile
obtained by using the conventional approach is shown in Fig.
6. Figure 7 shows the potential variation in the fixed-fixed
silicon beam computed by using the hybrid approach. Note
that in the hybrid approach, there is no cutoff box and the
exterior dielectric medium is not discretized. Only the
boundary of the structure(s) is discretized for the boundary
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integral equations. Therefore, the hybrid approach
significantly reduces the system size and consequently
the computational cost. As shown in Fig. 8, for this example,
the system DOFs are reduced by about ten times. Figure 9
shows the CPU time comparison between the two
approaches: the hybrid approach is about five times
faster compared to the conventional approach. Note that
the Jacobian matrix given in Eq.(30) contains dense
blocks generated by the boundary integral equations.
The computational cost of the hybrid approach can be further
reduced by employing acceleration techniques34 to solve
the linear system[Eq. (30)]. On the other hand, the introduc-
tion of the Green’s function in the BIEs and the elimination
of the cutoff box boundary condition improves the accuracy
and convergence of the solution. The convergence
comparison between the two approaches, shown in Fig. 10,
indicates that, by using the BIEs, the hybrid approach
achieves a higher accuracy compared to the conventional
approach.

B. Quantum-mechanical analysis

The second example is a nanoswitch with a 4 nm
32 nm fixed-fixed silicon beam. The gap between the beam

and the bottom conductor is 1 nm. The beam has anN-type
doping density of 1015/cm3. The potential at the ends of the
beam is specified as 0V. The applied potential on the bottom
conductor is 5 V. The bottom conductor is 8 nm long and
1 nm wide. The system is solved by using both the semiclas-
sical hybrid BIE/Poisson approach and the quantum-
mechanical hybrid BIE/Poisson/Schrödinger approach. Fig-
ures 11 and 12 show the charge density profiles obtained
from the semiclassical and the quantum-mechanical analysis,
respectively. Figures 13 and 14 shows the cross section view
(along the width and at the center of the beam) of the charge
density and potential profiles, respectively, obtained from the
semiclassical and quantum-mechanical analysis. It is clear
from the results that when the critical dimension of the NEM
structure is just a few nanometers, electron quantum confine-
ment effect is so significant that the quantum-mechanical
analysis is necessary.

In the third example, we increase the size of the
nanoswitch beam to be 10 nm310 nm and the gap is 2 nm.

FIG. 11. Charge density profile obtained from the semiclassical analysis.

FIG. 12. Charge density profile obtained from the quantum-mechanical
analysis.

FIG. 13. Comparison of the variation of the charge density along the width
obtained from semiclassical and quantum-mechanical analysis.

FIG. 14. Comparison of the variation of the potential along the width ob-
tained from semiclassical and quantum-mechanical analysis.
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A potential of 2.5 V is applied on the bottom conductor. The
beam isN doped with a density of 1015/cm3. The potential at
the ends of the beam is specified as 0 V. Figures 15 and 16
show the cross section view(along the width) of the charge
density and the potential profiles at the center of the beam
obtained from the semiclassical and quantum-mechanical
analysis. In this case, even though the quantum effects are
significant only within a 3 nm region from the boundary of
the beam, a quantum-mechanical analysis is still necessary to
obtain an accurate charge distribution in the beam structure.
As shown in Figs. 17 and 18, in this example, the hybrid
BIE/Poisson/Schrödinger again reduces the system size
(DOFs) by about ten times and gives a higher accuracy com-
pared to the conventional approach.

VII. CONCLUSIONS

The critical dimension in NEMS can vary from several
hundred nanometers to just a few nanometers. The semiclas-

sical model can be applied when the critical length of NEM
structures is large(typically .30 nm. When the critical di-
mension of NEM structures is below several tens of nanom-
eters, electron quantum confinement effect can impose a sig-
nificant effect on the charge distribution in the mechanical
components of NEMS and the quantum-mechanical analysis
is necessary. In this paper, we propose a hybrid BIE/Poisson
approach and a hybrid BIE/Poisson/Schrödinger approach
for the semiclassical and quantum-mechanical electrostatic
analysis of nanoscale electromechanical systems. We com-
bine the boundary integral equations with the interior Pois-
son’s equation and Schrödinger’s equation, along with the
meshless finite cloud method and the boundary cloud
method, to provide an efficient approach for electrostatic
analysis of NEMS. The hybrid approaches significantly re-
duce the computational cost and provide a higher accuracy of
the solution.

FIG. 15. Comparison of the variation of the charge density along the width
obtained from semiclassical and quantum-mechanical analysis.

FIG. 16. Comparison of the variation of the potential along the width ob-
tained from semiclassical and quantum-mechanical analysis.

FIG. 17. Degree of freedom comparison between the standard and the hy-
brid approaches(Dh is the grid spacing).

FIG. 18. Convergence comparison between the standard and the hybrid
approaches(Dh is the grid spacing). Error is defined the same way as given
in the caption of Fig. 10.
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