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Hybrid techniques for electrostatic analysis of nanoelectromechanical
systems
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In this paper, we propose an efficient approach, namely the hybrid BIE/Poisson/Schrodinger
approach, for electrostatic analysis of hanoelectromechanical systems. In this approach, the interior
and the exterior domain electrostatics are described by Poisson’s eq@tiBnisson’s equation
coupled with Schrédinger’s equation when quantum-mechanical effects are domamainthe
boundary integral formulatio(BIE) of the potential equation, respectively. We employ a meshless
finite cloud method and a boundary cloud method to solve the coupled BIE/Poisson/Schrddinger’s
equations self-consistently. The proposed approach significantly reduces the computational cost and
provides a higher accuracy of the solution.2804 American Institute of Physics
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I. INTRODUCTION the semiconductor are of interest. For this reason, solving
Poisson’s and Schrddinger’s equations over the entire cutoff
A number of nanoelectromechanical device and systemyox is quite inefficient and very expensive.
(NEMS) applications have been proposed recehff)_hese Boundary integral formulations and boundary element
applications range from molecular memory, computing, low-methodgBEM)"® are attractive computational techniques for
power switches, actuators, and a variety of chemical, mefinear and exterior problems as they reduce the dimensional-
chanical, and biological sensors. Even though a variety ofy of the original problem. For example, for three-
forces can be used to actuate nanostructures, electrostafignensional(3D) problems, the boundary element method
potentials are gaining a lot of interest because of some adgquires discretization of the two-dimensional surface of the
vantages in nanostructure fabrication and control. As the sizgp object and for 2D problems, the boundary element
of the mechanical componeftypically a semiconductor ma- ethod requires discretization of the one-dimensional

terial, such as siliconcontinues to shrink to nanoscale and boundary. For exterior problems, the use of classical meth-
subnanoscales, quantum effects become more significant ataﬁs such as the finite diﬂerencéDM) 14 01 the finite ele-

can even dominate the entire device behavior. The carrief o method(FEM),ls requires discretization of the entire

qugtl;ms_connpzee”r:egftf;r;tth:ns;ehnglcct)hn;ugto(;_sét:_lgct?gi C_Emt;]n;éxterior, whereas with a boundary element method only the
P signin ge distribution 1 surface needs to be discretized. For this reason, the boundary
mechanical components of NEMS. As a result, classical elec- . :

. o integral formulations are advantageous for exterior electro-
trostatic analysis is inaccurate at nanoscales. For nanometgtra tic analysis. The boundary integral equati¢BiEs) for
scale semiconductor devices, coupled Poisson/Schrodinger ySIS. Y 9 N

equations need to be solved self-consistently to obtain thexterlor electrostatic analysis have been proposed in the

16,17 -
electronic properties such as the potential field and thgfterature. A coupled FEM/BEM approach for electro

charge distribution of the systefi® However, in contrast to  S:C analysis of semiconductor MOSFETs has been pro-
classical semiconductor devicgs.g., MOSFETs NEMS posed in Ref. 18. However, in Ref. 18, an artifical boundary

typically contain structures with complex geometries and(cutoff box is still constructed and discretized in the dielec-

configurations. The electrostatic analysis of NEMS must intc medium. Since multiple large surface areas of NEMS

clude both the exterior and the interior regions of the NEMSIUCIUres can be exposed to the dielectric medium, the con-
structures—this is referred to as an open boundary problen?trucnon of artificial boundaries for NEMS structures could

Conventionally, to solve such an open boundary problem, € awkward.
spatial regior(cutoff box)7‘12 covering the system of interest In this paper, we propose an approach, referred to as the

is selected such that the potential variation outside the regioffyPrid BIE/Poisson/Schrodinger approach, for electrostatic
has little influence on the system. The region is then dis@nalysis of NEMS. The key idea in this approach is to solve
cretized into elements or points depending on the numericdtaPlace’s equation in the exterior domain of the NEM struc-
method used. An issue with the conventional approach is th4trés using a boundary integral formulation, and then to
the equations need to be solved over a quite large area of tig@mbine the BIEs with Poisson’s equation or Poisson/

dielectric medium while only the electronic properties within Schrodinger equations for the interior domain analysis of the
semiconductor structures. The BIEs are defined only on the

2 surface of the semiconductors/conductors with no artificial
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FIG. 1. Atypical nanoswitch consisting of a fixed-fixed semiconductor and
a bottom conductor.

the solution of Poisson’s equation or Poisson/Schrodinge
equations in the semiconductoand the boundary cloud [
method for exterior analysigi.e., for the solution of the
boundary integral equations of the exterior potential equaFIG. 2. Typical domain discretization for electrostatic analysis of the
tion). The potential and the charge distributions are obtaine@anoswitch shown in Fig. 1.

by solving the coupled system of equations self-consistently.

It is shown in the paper that the proposed approach is morﬁose a significant effect on the charge distribution in the

efficient and more accurate compared to the Convemion%echanical components of NEMS. In this case, Poisson/

cuto_lf_fhbox afprfo?hch. . ved foll g IISchrt')dinger equations need to be solved self-consistently on
€ rest of the paper 1S organized as Iollows: S€C. lhyao semiconductor structure to obtain the potential field and

introduces the electrostatic analysis of NEMS, Sec. Il prey, charge distribution.

sents the BIEs for semiconductors, Sec. IV describes the hy- In typical semiconductor MOSEET simulations, an ap-

S o S st T Bt DL e e
ger app : - VI P ary conditior?**?3can be applied at the dielectric medium/

results, and Sec. VIl presents conclusions. semiconductor interface to avoid discretizing the exterior
I ELECTROSTATIC ANALYSIS OF Doundiary conditons are no vald since a arge porion o he
NANOELECTROMECHANICAL SYSTEMS (NEMS) . . ; . .
semiconductor structure is exposed to the dielectric medium,
To illustrate the electrostatic analysis of NEMS, we con-the gap between the semiconductor structures and the elec-
sider a nanoswitch example as shown in Fig. 1. Thearodes can be large and NEM structures can be complex.
nanoswitch consists of a semiconductor beam structure th@liternatively, to solve the Laplace/Poisson/Schrédinger
is clamped at the ends and the beam is separated fromeguations, one can adopt the conventional approach, in
bottom conductor/electrode by a small gap. When a voltag@hich a spatial regiorfcutoff box) covering the system of
is applied between the fixed-fixed beam and the bottom connterest is selected such that the potential variation outside
ductor, electrostatic charges are induced in the semicondugne region has little influence on the system. The region is
tor beam. These charges give rise to an electrostatic forcgaen discretized into elements or points depending on the
which acts on the entiresurface as well as the interjgsemi-  numerical method used. Figure 2 shows a typical discretiza-
conductor beam. Since the bottom conductor is fixed and cafion of the nanoswitch shown in Fig. 1. Potential boundary
not move, the electrostatic forces deform the fixed-fixedconditions are prescribed on the bottom conductor and at the
beam. In this paper, we focus on the electrostatics analysis @hds of the fixed-fixed semiconductor beam. Based on the
NEMS, i.e., we would like to compute the electrostatic assumption that the potential variation outside the cutoff box
charge distribution in the semiconductor NEM structures. g negligible, a zero electric field normal to the boundary is
The nanoswitch shown in Fig. 1 contains three regionsgpplied as the boundary condition at the outer boundary of
the semiconductor structure, the bottom conductor, and thgye cutoff box. The next step is to use a numerical method
infinite dielectric medium. The bottom conductor region is typically a finite difference or a finite element methdd
treated as an equipotential region. Based on the idealizatiogy|ve for the potential in the entire discretized region. After
that the dielectric medium is a perfect insulator, i.e., there ighe potential is obtained, the charge distribution in the NEM
no charge in the entire dielectric medium, the electric potenstycture can be computed. Although the conventional ap-

tial satisfies the Laplace equation in the dielectric mediunproach s straightforward, it has several disadvantages.
(the region exterior to the semiconductor and the conductor

structures When the critical lengtlie.g., the width of the (1) The cutoff box is an approximation and the definition
semiconductor structure is comparable to the Debye lengthf the cutoff box needs a good judgment. Inaccurate results
or the screening lengtti, the potential inside the semicon- could be obtained if the cutoff box is too small. However,
ductor satisfies Poisson’s equation. As the size of the semtomputational cost could be very high if the cutoff box is too
conductor structure continues to shrink to nanoscale and sulkarge.

nanoscales, quantum effects become more significant and (2) The entire spatial region needs to be discretized even
can even dominate the entire device behatfidrhe carrier if the cutoff box is properly chosen. For this reason, the
quantum confinement in the semiconductor structure can imsystem has many degrees of freed@®F), which means a
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"""" . =1,2,.....,N,, respectively. The potential field in the di-
O et electric medium() can be determined by the potential theory.
AN The governing equation along with the boundary conditions
5, Ry for the exterior electrostatic problem are given zﬁy
T \‘\ J—
B & L, ' V2$=0 inQ 1)
g ';
Ty
@ {(/I ¢=gi(X) on ng i=1,2,... Nov (2)
1—‘gl l—;;2 /I
v2%=0 o
//'/ q:_:hi(X) on Fhi i =1,2,... NO! (3)
r an

ref

FIG. 3. A system of semiconductors. . .. .
where x={x,y} is the position vector of a poing;(x) and

. . h,(x) are the potential and its normal derivative specified on
large nonlinear system needs to be solved numerically. Fur-

thermore, the DOF scale @(N% in 3D whereN is the the boundary portion§y; andI'y; of the semiconducto’r,_i
number of points/elements in a single dimension. Computa=1.2. ... No, respectively. Note that the exterior domain
tional cost is a major issue in this approach. is an open domain. Typically, a reference potenfig} needs

to be specified on a reference plahg; far away from the

In this paper, we propose a hybrid technique to solve theonquctors. For a 2D system, as shown in Fig. 3, a circular
open boundary problem efficiently. The key idea is to eM-aference plane can be used, i.e.

ploy a boundary integral formulation, which is defined only
on the boundary of the NEM structures, for the exterior elec-
trostatic analysis, and to solve the coupled BIE/Poisson/
Schrédinger equations self-consistently. The proposed tech- &= ¢rer 0N g (4)
nique is referred to as the hybrid BIE/Poisson/Schrédinger
approach.
Note that¢,.; becomes the reference potenti@l when the

Ill. BOUNDARY INTEGRAL EQUATIONS FOR radius of the reference plari®q;— .
SEMICONDUCTORS An efficient approach to treat the exterior electrostatic

We will deal with two-dimensional electrostatic prob- Problem given in Eqsi1)«4) is to use the boundary integral
lems in this paper, but the approach can be extended easifgprmulation. Boundary integral formulations for exterior
for three-dimensional problems. Consider a system of obelectrostatic analysis have been well developed and pub-
jects including  semiconductors and  conductorslished in the literatureg(see, e.g., Refs. 16 and 12 for an
(Q4,Q5, ... ,QNO), whereN, is the number of objects, em- overview. In this section, we derive the boundary integral
bedded in a uniform dielectric mediufd as shown in Fig. 3, equations for a system containing multiple semiconductors
potentialg;(x), i=1,2,... N,, and the normal derivative of by using some results given in Refs. 16 and 17.
the potentiah;(x), i=1,2,... N, are applied on certain por- The boundary integral equation for a general exterior
tions of the boundary of each semiconducidy, and Ty, i potential problem is given by Ref. 13,

NI interior points

Poisson equation

total NS points on beam
NBS boundary points
/l‘ 2 ]—— total NB boundary points
- NBC boundary points
2

FIG. 4. Hybrid BIE/Poisson discretization of the domain. ThereNBgoints on the semiconductor beam which incliddnterior points andN\BSboundary
points. There are alsdBC points on the boundary of the bottom conductor. Therefore, the total number of points on the boundary of the structures, including
the semiconductor beam and the bottom conductddBS+NBC=NB. Note that no exterior discretization is necessary.

‘ > Boundary integral equations
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FIG. 5. Hybrid BIE/Poisson/Schrodinger discretization of the nanoswitch 0.
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+ Pret ———dI'(x") FIG. 6. Potential profile obtained by using the conventional cutoff box
r an approach.
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NO
-2 | q(x)Gx,x")dr(x")
=171,

_fr

wherex is the source pointx’ is the field point,G(x,x’) is
the Green’s functionp’ is the outward normal at’, q(x’)
=dp(x")/on’ is the flux at the field poink’, a(x) is the
corner tensofa(x)=1/2 for smooth boundaries, see Ref. 13
for more detaily and I'j=Iy;UT’,;. In two-dimensions,
G(x,x")=In|x=x'|/(2m), where |[x—-x'| is the distance be-
tween the source point and the field pointx’. It can be
shown that when the source point is on a semicondugtor
ie.,xel'}, j=1,2,... Ny, the second term on the right-hand
side of Eq.(5) can be rewritten a8

¢reff
r

q(x")G(x,x")dI'(x"),

ref

©)

IG(x,x")

Py (6)

dF( ,) = d’ref xX1= d’ref

ref

When the radius of the reference plane goes to the infinity,

Re— 2, the reference plank,s goes tol',, and the Green’s
function G(x,x’) — G,.. SinceG,, is a constant for any field
point x' €T, j=1,2,... N,, the fourth term on the right-
hand side of Eq(5) becomes

)

Assuming the variation of the potential vanishes, iggx')
=0 onT.,, it can be shown th&t

lim

Rref—mc

q(x")G(x,x")dl'(x") = G(m)f q(x")dI'(x").
r,

ref

)

q(x")dl’(x") =

Y

NO
> (8)
=1

Substituting Eqs(6)—(8) into Eg. (5), one obtains
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a(x)p(x) = E

j=1
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>
=1

dl’(x’)

a(x")G(x,x")dl'(xX") + ¢, 9)
where ¢, is the constant reference potential bn. Equa-
tions (8) and(9) are the boundary integral equations for ex-
terior electrostatic analysis of semiconductors.

IV. HYBRID BIE/POISSON APPROACH FOR
SEMICLASSICAL ELECTROSTATIC ANALYSIS

Since the quantities in Eq&3) and(9) are defined only

on the boundary of the semiconductors or conductors, using
the boundary integral equations for the exterior domain
eliminates the need to discretize the region exterior to the
NEM structures and the requirement of a cutoff box. For the
interior domain of the semiconductor structure, the electric
potential typically satisfies Poisson’s equation. The govern-
ing equations in the semiclassical model are give}'? by

V- (esV@)=-e(p-n+N5—-Ny, (10)

wheree is the elementary charge, is the permittivity of the
semiconductor material ; andN  are the density of ion-
ized donor and acceptor dopants, respectively, @@ohd n
are the hole and electron concentrations given by

my ksT > E,-E

ot =2| T ), B ) g
keT\¥? _ (E-E

=2 5]l ) a2

whereE is the Fermi level energy; is Planck’s constankg

is the Boltzmann constant; is the temperaturef;, is the
complete Fermi-Dirac integral of order 1/E¢ andE,, are

the conduction/valence band energy, respectively,rquhd

m; are the density-of-state masses of the conduction and the
valence band, respectively. Combining the boundary integral
equationgEgs.(8) and(9)] for the exterior domain and Pois-
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FIG. 7. Potential profile obtained from the hybrid BIE/Poisson approach. og(a )

FIG. 9. CPU time comparison between the Poisson and the hybrid BIE/

son’s equatiofEg. (10)] for the interior domain of the semi- Poisson approaches.

conductor structures, we propose a hybrid BIE/Poisson ap-
proach for semiclassical electrostatic analysis. Figure 4  e(|poissont €qOleie=0c on Ty, (15
shows the domain discretization scheme of the nanoswitch
by using the hybrid approach. The fixed-fixed semiconductorhere ¢|g ;e and ¢|pgissonare the potentials from the bound-
beam and the boundary of the bottom conductor are repredry integral equation and Poisson’s equation, respectively,
sented by a set of nodes. In the hybrid approach, we enford@sie andq|peisson@re the normal derivatives of the potential
that the boundary integral equations are satisfied at th&om the boundary integral equation and Poisson’s equation,
boundary nodes and Poisson’s equation is satisfied at tH@spectivelyeq is the permittivity of the dielectric medium,
interior nodes of the semiconductor beam. Schottky contactdnd o is the charge density on the exposed surface of the
are applied at the two ends of the semiconductor beam arggmiconductor. In this paper, for the purpose of illustration of
the potential is known, i.e., the hybrid approach, the charge density on the surface is
assumed to be zero. However, other models for the interface
charge densityr can also be implemented.

In the hybrid BIE/Poisson approach, we employ a finite
) ) cloud method(FCM) (Refs. 25-2Y for solving Poisson’s
At the interface between the semiconductor beam and thgqyationfEq. (10)] at the interior nodes of the semiconductor
dielectric mgdlum, the boundary mFegraI equatloq and Poispaam and a boundary cloud meth@BICM) (Refs. 28 and
son’s equation are coupled by the interface condifibns 29) for solving the boundary integral equations given in Egs.

¢=g onlyandly, (13

¢|BIE: d"Poisson on l_‘intv (14) -3 T
=@~ Cut-off box
=&~ Hybrid BIE/Poisson
11 T T T T =35}
=0~ Cut-off box
=B~ Hybrid BIE/Poisson
10 Y ] 4t
9l "9:-4.5
3
8

—~ ol 2 st
I-Cl3 8
g,
g ;L -5.5

6t —Sr

-6.5
5r 1 1.5 -1 -05 0 05 1
log(A h)
_Ai 5 -1 -05 0 05 1 FIG. 10. Convergence comparison between the Poisson and the hybrid BIE/
log(A h) Poisson approacheg\h is the point spacing The error is defined by

error=14] 1) V(L/INSENS[ #'(x;) - $(x) ]2, where ¢ is the reference
FIG. 8. Degree of freedom comparison between the Poisson and the hybriblution obtained by using a fine point distribution agtlis the computed
BIE/Poisson approaché&ah is the point spacing solution obtained from the coarser point distributions.
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(8) and(9) at the boundary nodes. The finite cloud method iswith boundary conditions the approximate solution or the
a true meshless methodee Ref. 30 for an overview of derivative of the approximate solution are set to the given
meshless methog# which only points are needed to cover Dirichlet and Neumann boundary conditions, respectively.
the structural domain and no connectivity information amongAs shown in Fig. 4, we assume that the fixed-fixed semicon-
the points is required. The finite cloud method uses a fixedluctor beam is discretized intdS points where the number
kernel technique to construct the approximation functionof boundary points is denoted BYBS and the number of
and a point collocation technique to discretize the governingnterior points is denoted bl (NI=NS-NBS. Similarly,
partial differential equations. In a 2D fixed kernel approachthe bottom conductor is assumed to be discretized NB&

the approximationg?(x) to the unknown potential(x) is  boundary points. The total number of points is denoted by

given in discrete form as NT (NT=NS+NBC=NI+NBS+NBC) and the total number
NS of boundary points alone is denoted B (NB=NBS
0 =S N(X) (16) +NBC). We define theNS points on the beam as the FCM

points, and theNB points on the boundaries as the BCM
points. Note that theNBS points on the boundary of the

and the derivatives op(x) are approximated by semiconductor beam are both FCM and BCM points. The
FCM substitutes the fixed kernel approximatiofiggs.
¢ ( )= 2 _( )¢|, (17) (16)—«(18)] into EQgs.(10) and (13)—«15) to satisfy Poisson’s
1=1 X equation or the boundary/interface conditions at the FCM
points. The BCM substitutes the varying basis approxima-
9242 tions[EQs.(19) and(20)] into Egs.(8), (9), (14), and(15) to
PYE. (x)= IEl P ( X) 1, (18)  satisfy the boundary integral equations and the boundary/

interface conditions at the BCM points. The discretized Pois-
whereNSis the total number of nodes on the semiconductoSON's equation, Eq10), for an interior node; is given by

beam, ¢, is the nodal parameter for nodeandN;(x) is the NS R NS R
fixed kernel meshless approximation function of node V- lssV(E NI(Xi)¢I>:| = ‘e{p[}_m(E NI(Xi)¢I):|
evaluated ak (see Refs. 25-27 for detajlsin a boundary 1=1 1=1

cloud method, the unknown potentigx) and its normal NS A
derivativeq(x) at a boundary point can be approximated by - n{]—"m(E N|(xi)¢,)}
either a Hermite-type approximati%?nor a varying basis I=1

least-squares approximati®hThe approximation functions

are constructed over the boundary nodes without using a +N5—NL ([, (21
mesh. In this paper, we employ a varying basis least-squares

approach to approximate the unknown quantities in the BIE
The discrete form of the varying basis approximation for the,
unknowns is given by

Sthe discretized boundary integral equation, E@), for a
boundary node; is given by

e < N - &G(x x")
N, (x)¢ a(X i)~ S—dI(x!
H*(X) = > Ni(X) (19 E[ (X))N3(x;) 2‘1 Ny(x) 22241 (x )]¢J
- NB | NC o
SN :_E{EJ NJ(X/)G(Xi’X,)dF(X')]aJ‘*¢oc, 22)
(x) = > N(X)G;, (20) J=1| k=11,
1=1

where I’y is the kth cell on the boundary. The discretized
Dirichlet potential boundary condition, E¢L3), for an FCM
boundary node; is given by

NS

whereNB is the number of boundary pointB, andg; are the
BCM nodal parameters ap andq for nodel, respectively,

and N,(x) is the varying basis approximation function of -
node | (see Ref. 29 for details After the approximation 2 Ni(xp) ¢y =g(x), (23
functions are constructed, the boundary of the structure is =t
discretized intoNC cells for integration purpose. Each cell the discretized Dirichlet potential boundary condition, Eq.
contains a certain number of nodes and the number of nodeg3), for a BCM boundary nodg; is given by
can vary from cell to cell. Differggt from an element or a NB
panel in boundary-element methodghe cell can be of any NN
shape or size and the only restriction is that the union of all E Na() 3= 0%, 24
the cells equal the boundary of the domain.

After the approximation functions are constructed, boththe discretized interface conditions, E¢b4) and(15), for a
the FCM and the BCM use a point collocation technique toboundary node; are given by

discretize the governing equations. In a point collocation ap-  ns NS
proach, the governing equations are satisfied at every node ' ﬁJ(xi)?ﬁJ: > N|(Xi)<;5|, (25)
which does not carry a boundary condition, and for nodes =1 1=1
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NS N R NB ON. hybrid BIE/Poisson approach gives a higher accuracy of the
852 a—n'(xi)¢| + sdE a—nJ(xi)"qJ =a(x), (26) solution compared to the conventional approach.
1=1 J=1

and the discretized boundary integral equation, @), is
given by V. HYBRID BIE/POISSON/SCHRODINGER APPROACH
NB [ NC FOR QUANTUM ELECTROSTATIC ANALYSIS
E [gl Jr As the size of the nanoswitch continues to shrink, due to
the abrupt change of the potential on the surface of the semi-
As shown in Fig. 4, for an interior node of the beam, E{)  conductor, the semiconductor structure behaves as a quantum
is enforced, for a boundary node of the beam with a specifiediell where the carrier concentration at the boundary is much
potential boundary condition, Eq22)-24) are satisfied, for  smaller than the concentration in the bulk. To account for the
a boundary node on the beam at the dielectric medium intequantum effects in the system, Poisson’s equation given in
face, Eqs.(22), (25), and(26) are satisfied, for a boundary the preceding section is combined with Schrodinger’s equa-
node on the bottom conductor, Eq22) and (24) are en-  tjon. By solving these two equations self-consistently over
forced, and finally, Eq(27) is satisfied separately. It can be the entire semiconductor structure, the potential field and the
easily verfied that Eqs(21){27) give rise to a nonlinear charge distribution in the system can be determined more
system of NS+2NB+1 unknowns andNS+2NB+1 equa-  accurately. In this section, we extend the hybrid BIE/Poisson
tions, which can be rewritten in a general form as approach introduced in Sec. IV to include the solution of
A~ P Schrddinger’s equation. The two dimensional effective mass
Rl ¢0,C)=0 1=1,2,. . NS+2NB+1, Schrodinger’s equation is given ¥y
1=1,2,...NS J=1,2,...NB (28

E(x’)dr(x')]m =0. (27)

k

- K2
A Newton's method with line searchis used in this paper to Hlgm) == 5 = V24 + U(Vh,80)thn = Enthy, (3D)
solve the nonlinear system given in E@8). The linearized
system is given by whereH is the HamiltonianlJ is the potential energyn* is
53) the effective mass of electrons or holés,is the wave func-
] R " tion corresponding to the energy levgl, andV,, is the het-
l‘y_A &_N R ﬁ] o ={-R}. (29) erojunction step potential at the side contacts. By solving
dp d¢p 99 dC 5% Schrédinger’s equatiofEqg. (31)], the energy level&, and
5C the corresponding wave functiong, can be obtained for
electrons and holes.
In short form, Eq.(29) can be rewritten as The Poisson’s equation is coupled with Schroédinger’s
[J{ou} = {- R}, (30) equation through the quantum electron and hole densities,
i i ST Er-E
yvhere.] is the Jacpblan mat_m@J is the vector of unknown ny(¢) = an lﬂﬁf—l/z< F n>, (32)
increments, an® is the residual vector. The nodal param- n kg T

etersfﬁ, ?;S andq can be obtained by iteratively solving the
nonlinear system. Note that only Q1) is nonlinear. There- 5 E,- Er
fore, only the entries corresponding to E81) in the Jaco- Po() = Np X h2F 119 T ) (33
bian matrix need to be updated in each iteration. Once the . B
nodgl parameters are obtained, the poterzyilahd its normal  \\here the summation is over all the energy levels and
derivativeq can be computed by using Eq4.6), (19), and
(20). The charge distribution in the semiconductor beam _1f2mpkeT\Y2 1 f2m keT\Y?
structure can be then computed by evaluating the right-hand "™n~= 52 Np=— 72 '
side of Eq.(10).
Remarks where m;v and m;U are thg density—of—§tate masses of elec-
(1) In the proposed hybrid Poisson/BIE approach, therdrons and holes, respectively. Assuming the semiconductor

is no cutoff box and hence no discretization of the exteriorStructure to be an ideal quantum well, we enforce the Dirich-
dielectric medium is required. Only the boundary of the!€t Poundary condition for the wave functio,=0, at the
NEM structures is discretized for the boundary integral equaPoundary of the semiconductor beam. The discretization of
tions. As a result, the degrees of freedom of the system a/'€ nanoswitch is shown in Fig. 5. We solve Schrédinger’s
largely reduced. equation on the same set of points used to solve Poisson’s

(2) The boundary integral formulations typically provide duation(see Sec. 1. The fixed-kernel approximations
accurate results due to the introduction of the fundamentddiVen in Eqs.(16)«(18) are employed to approximate the

solution, i.e., the Green’s function, into the problem formu-UNknown wave function, and its derivatives, i.e.,

(34)

o

lation. Furthermore, the hybrid approach eliminates the error NS
introduced by the approximated cutoff box boundary condi- PA(x) = > NI(X);bnlv (35)
tion. The numerical experiments in the paper show that the I=1
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NS _g® — HK
R - 2 Er-E." +e(¢p— ")
V2 3(x) = 2 V2N(X) . (36) g = N ) f_m( " T ., (40
1=1 n B
Substituting Egs(35) and(36) into Eq.(31), Schrédinger’s 5 ? E E]k) —e(¢p—- p¥) - Ep
equation can be rewritten in the matrix form Pg=No2 U8 Flupo T : (41
n B
Hin = Enthn, (37) where the superscrifit denotes the quantities obtained from
where the previous iteration. The potential*** is computed by
) solving the(modn‘led Poisson’s equatifieq. (39)]. The wave
h functions**? and the energy leveE*"" can be obtained
Hyy = = ——V2Ny(x)) + UV, N 9y
DT ome 3) + ULV @) INs(x) by solving nSchr('jdinger’s equation usnir¢gﬁ"*1). Algorithm 1
1J=1,2, ... NS, (39) summarizes the procedure for self-consistent electrostatic

analysis of NEM structures by using the hybrid BIE/Poisson/
The discretized eigenvalue problem, Eg7), is then solved Schrodinger approach.
by using the sparse eigensolver ARPAQRef. 33 to obtain
the energy levels and the wave functions of electrons andf!- NUMERICAL EXAMPLES
holes. By using Eqg32) and(33), the quantum electron and In this section we perform electrostatic analysis of
hole densities can be computed. _ _ several nanoswitch devices by using the hybrid approaches.
To _ obtain a _ self-consistent solytlon of P0|sson/_-|-he results obtained by using the hybrid approaches
Schrédinger equations, one needs to iterate between Poigre compared with the results obtained by using the cutoff
son's and Schrodinger's equations. Since simple undetyoy approach. Note that, since the focus of this paper is
relaxation scheme usually gives a low convergence rate, ign the development of efficient computational techniques,
this paper, we employ the predictor-corrector scheme progather than the investigation of quantum physics in NEM
posed in(Ref. §. The Poisson’s equation is rewritten as  giryctures, Schrédinger’s equation with a simple effective
V - (8sV ¢) =~ &P~ Tig + NH-N7), (39) mass ap.proximation is used in all the examples. However,
the hybrid approach can be employed for more advanced
where the quantum electron and hole densities are replacquhysical models within the framework of Poisson/
by the predictors Schrédinger equations.

Algorithm 1 Hybrid BIE/Poisson/Schrodinger approach for self-consistent NEMS electrostatic analysis

(1) Discretize the domain of the semiconductor structures and the boundary of the bottom conductors.
(2) Compute the approximation functidw(x,), 1,J=1,2,... NSand its derivatives for the FCM points.

(3) Compute the approximation functid(x), I,J=1,2, ... NB for the BCM points.

(4) At the initial stepk=0, set the initial value of the potential to g#”=0

(5) Solve Schrédinger’s equatidiq. (31)] by using $© to computengo) and Ego) for electrons and holes.

(6) Repeat.

(7) Following the procedure described in Sec. IV, solve the coupled BIE/Poisson eqy&gmes), (9), and(39)] using
the predictordiy( i]k),E“o) andf)q(w(k),E ﬁk)) to obtain potentiaky**V.

(8) Solve Schrédinger's equatidiq. (31)] by using¢**? to computey!*” andE *** for electrons and holes.

(9) Compute the corrected quantum electron derr#ﬁ/l) and hole densityoqu”) by using Eqs(32) and(33), respec-

tively.

(10) until |ngk+l)—n;k)| and |p+ -

; pg‘)| <error tolerance:,

A. Semiclassical analysis and the quantum effect of the holes can be neglected. The
The first example is a nanoswitch containing a 20 r]m:system is solved by using both thg convent|.onal cutoff box
S , . approach and the proposed hybrid BIE/Poisson approach.
long and 10 nm wide fixed-fixed silicon beam. The gap be- . o . .
. The discretization of the cutoff box and the potential profile

tween the beam and the bottom conductor is 10 nm, Th%btained by using the conventional approach is shown in Fi
beam has aiN-type doping density of £8/cm?. The poten- y 9 bp g

tial at th ds of the b . ified as 0 V. Th i (g Figure 7 shows the potential variation in the fixed-fixed
'ala ) € ends ot Ine beam I3 Spe‘?‘ 1ed as - 1€ apPIGiiicon beam computed by using the hybrid approach. Note
potential on the bottom conductor is 5 V. The bottom con-

i ) ) ) ~~""that in the hybrid approach, there is no cutoff box and the
ductor is 40 nm long and 2 nm wide. In this configuration, e, serior dielectric medium is not discretized. Only the

only the quantization of the electrons needs to be C°“5ider%undary of the structu¢s is discretized for the boundary
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FIG. 11. Charge density profile obtained from the semiclassical analysis. y (nm)

integral equations. Therefore, the hybrid approachriG. 13. Comparison of the variation of the charge density along the width
significantly reduces the system size and consequentigbtained from semiclassical and quantum-mechanical analysis.

the computational cost. As shown in Fig. 8, for this example,
the system DOFs are reduced by about ten times. Figure 94 the bottom conductor is 1 nm. The beam hadldype

shows the. CPU time comparison between the tWoy,hing density of 18/cr?. The potential at the ends of the
approaches: the hybrid approach is about five timegeam s specified as OV. The applied potential on the bottom
faster compared to the conventional approach. Note thalynqycor is 5 V. The bottom conductor is 8 nm long and

the Jacobian matrix given in EQ30) contains dense ; hmide. The system is solved by using both the semiclas-
blocks generated by the boundary integral equationsgj-g hybrid BIE/Poisson approach and the quantum-

) . ures 11 and 12 show the charge density profiles obtained
the linear syster’{]I’Eq. (30)]. On the other hand, the introduc- 4, the semiclassical and the quantum-mechanical analysis,
tion of the Green's function in the BIEs and the elimination roghectively. Figures 13 and 14 shows the cross section view
of the cutoff box boundary condition improves the accuracyaiong the width and at the center of the bearhthe charge

and convergence of the solution. The convergencgensity and potential profiles, respectively, obtained from the
comparison between the two approaches, shown in Fig. 1Qgmicjassical and quantum-mechanical analysis. It is clear
mdu_:ates that_, by using the BIEs, the hybrid appro_achrrom the results that when the critical dimension of the NEM

achieves a higher accuracy compared to the conventionglrcyre is just a few nanometers, electron quantum confine-
approach. ment effect is so significant that the quantum-mechanical
B. Quantum-mechanical analysis analysis is necessary.

In the third example, we increase the size of the

The second example is a nanoswitch with a 4 NMp,naqyitch beam to be 10 neil0 nm and the gap is 2 nm.
X 2 nm fixed-fixed silicon beam. The gap between the beam

19

x10 1 T T T
14 =0~ semiclassical
7 =E- quantum
124 08r k
mE 104
8
= 84
= -
@ 64 ;>_,
$ :
s 4 5
= o
I 2] &
Q
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=2 .l
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"3
15 -0.2 L L L
41 21 —05 0 05 1

x (nm) y (nm) y (nm)

FIG. 12. Charge density profile obtained from the guantum-mechanicaFIG. 14. Comparison of the variation of the potential along the width ob-
analysis. tained from semiclassical and quantum-mechanical analysis.
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FIG. 17. Degree of freedom comparison between the standard and the hy-
FIG. 15. Comparison of the variation of the charge density along the widthbrid approachegAh is the grid spacing
obtained from semiclassical and quantum-mechanical analysis.

A potential of 2.5 V is applied on the bottom conductor. TheSical model can be applied when the critical length of NEM
beam isN doped with a density of 28/cne. The potential at structures is largétypically >30 nm. When the critical di-

the ends of the beam is specified as 0 V. Figures 15 and 1ension of NEM structures is below several tens of nanom-
show the cross section vie@@long the width of the charge eters, electron quantum confinement effect can impose a sig-
density and the potential profiles at the center of the beamificant effect on the charge distribution in the mechanical
obtained from the semiclassical and quantum-mechanicalomponents of NEMS and the quantum-mechanical analysis
analysis. In this case, even though the quantum effects aig necessary. In this paper, we propose a hybrid BIE/Poisson
significant only within a 3 nm region from the boundary of gpproach and a hybrid BIE/Poisson/Schrédinger approach
the beam, a quantum-mechanical analysis is still necessary {g; the semiclassical and quantum-mechanical electrostatic

obtain an accurate charge distribution in the beam StrUCtur%{naIysis of nanoscale electromechanical systems. We com-

As sho_wn n F|gs_: 17 and 183 in this example, the hyb”.dbine the boundary integral equations with the interior Pois-
BIE/Poisson/Schrédinger again reduces the system size | . e ) . .
son’s equation and Schrodinger’s equation, along with the

(DOFs9 by about ten times and gives a higher accuracy com- .

pared to the conventional approach. meshless finite cloud method and the boundary cloud

method, to provide an efficient approach for electrostatic

analysis of NEMS. The hybrid approaches significantly re-

duce the computational cost and provide a higher accuracy of
The critical dimension in NEMS can vary from several the solution.

hundred nanometers to just a few nanometers. The semiclas-

VII. CONCLUSIONS

-35 T T T T T T T
0.8 T =©~- Cut-off box approach
=©- semiclassical =B~ Hybrid approach
0.71 =8- quantum
06} 4t i
05F
S 04} I
= 5 _asl ]
8 D
= Ke]
2
g
5} J
-0.1
_55 . L . . L . L
02 . -14 2 -1 -08 -06 -04 -02 0 0.2
-5 0 log(A h)

y (nm)

tained from semiclassical and quantum-mechanical analysis.

FIG. 18. Convergence comparison between the standard and the hybrid
FIG. 16. Comparison of the variation of the potential along the width ob-approachegAh is the grid spacing Error is defined the same way as given

in the caption of Fig. 10.
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