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Abstract

Collocation meshless methods are conceptually simple, easy-to-implement and fast numerical methods. The

robustness of collocation methods has, however, been an issue especially for scattered set of points. In this paper we

show that the robustness of collocation meshless methods can be improved by ensuring that certain conditions, defined

as the positivity conditions, are satisfied when constructing approximation functions and their derivatives. The sig-

nificance of positivity conditions is pointed out by an error analysis of the finite cloud method, which is a collocation

based meshless method. We propose techniques, based on modification of weighting functions, to ensure satisfaction of

positivity conditions on the approximation function and its derivatives when using a scattered set of points. Several

types of weighting functions are tested for 1D and 2D problems on scattered points. Numerical results demonstrate the

effectiveness of collocation methods when positivity conditions are satisfied.

� 2004 Published by Elsevier B.V.
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1. Introduction

Meshless methods have emerged as a class of effective numerical methods which are capable of avoiding

the difficulties encountered in conventional computational mesh based methods, such as, meshing complex

geometries, mesh distortion due to large deformation and remeshing in moving boundary problems.

Extensive research has been conducted in the area of meshless methods in recent years (see [1] for an

overview). Broadly defined, meshless methods contain two key steps: construction of meshless approxi-

mation functions and their derivatives and meshless discretization of the governing partial–differential

equations. Least-squares and kernel based approaches are two techniques that have gained considerable
attention for construction of meshless approximation functions (see [2] for a detailed discussion on least-

squares and kernel approximations). The meshless discretization of the partial–differential equations can be
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categorized into three classes: cell integration [3–5], local point integration [6], and point collocation [7–11].
Of these techniques, point collocation is the simplest approach. O~nate et al. [7,8], Liszka et al. [9], Aluru [10]

and Aluru and Li [11] have reported satisfactory results for a large class of problems encountered in

engineering applications. However, the robustness of the collocation approach is an issue especially when

scattered and random points are used to discretize the governing equations. For example, O~nate et al. [7,8]
have noticed some stability problems when applying the point collocation method to fluid flow problems.

Benito et al. [12] have reported that the solution of the generalized finite-difference method depends on the

number of nodes in the cloud, the relative position of the nodes in the cloud with respect to the star node

and the weighting function.
In this paper, we try to improve the robustness of the collocation methods by understanding the possible

sources of error that arise when using a scattered point of points. Specifically, the errors could arise because

of the way the meshless approximation functions and their derivatives have been constructed for a scattered

point of points or because of the way the discretization of the governing equations has been performed.

Instead of using a straight-forward point collocation technique for discretization, it is possible to use more

sophisticated collocation methods which could minimize solution errors for a scattered set of points. We

leave this topic for future research and in this paper we address the issue of improving the quality of the

approximation functions and its derivatives when using a scattered set of points. We observed that when
the meshless approximation functions and its derivatives do not satisfy certain conditions (referred to as the

positivity conditions) for a given point distribution, it is possible to get large numerical errors when using

collocation methods. To satisfy the positivity conditions, the weighting function used in the construction of

the approximation functions can play an important role. The positivity conditions are well-known in the

literature for over five decades now [13]. Patankar [14] included the positivity conditions in a series of basic

rules for constructing finite-difference schemes. Demkowicz et al. [15] proved that ensuring positivity

conditions is sufficient to prove convergence of the finite-difference method on arbitrary irregular meshes

for some class of elliptic problems. Liszka et al. [9] used the positivity conditions to explain the better
solutions obtained from the Hermite-type approximations. These studies suggest that positivity conditions

can be important when using meshless collocation methods.

The objective of this paper is to develop appproaches to satisfy positivity conditions in the finite cloud

method [2,10,11], which employs a fixed kernel technique for the construction of interpolation functions

and a point collocation technique for the discretization of the governing equations. We perform an error

analysis of the finite cloud method to investigate the importance of the positivity conditions. We then

propose techniques to enforce the satisfaction of the positivity conditions by customizing weight functions.

The rest of the paper is outlined as follows: Section 2 summarizes the finite cloud method, Section 3
summarizes the positivity conditions and their significance by considering a numerical example, Section 4

presents an error analysis of the finite cloud method, Sections 5 and 6 describe approaches to satisfy the

positivity conditions in 1D and 2D domains, respectively, and numerical examples with scattered point

distributions are given in Section 7. Finally, conclusions are given in Section 8.
2. Finite cloud method

The finite cloud method (FCM) employs a fixed kernel technique to construct the meshless approxi-

mation functions and a point collocation technique to discretize the governing partial differential equations.

In the following, we outline the steps used for the construction of approximation functions (see [2,11] for

more details). Let the domain X 2 Rd (d is the dimension) denote an open bounded connected set of points

in Rd . A point in Rd is denoted by x ¼ fx1; . . . ; xdg. The domain X is first represented by a set of NP points

(or nodes), as shown in Fig. 1 for two-dimensions. Then, for each node an approximation function is

generated by constructing a cloud about that node (also referred to as a star node). A cloud is constructed
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Fig. 1. Physical domain (left) is represented by a set of points (right). Clouds are constructed at each point. Also shown in the figure

are circular and rectangular clouds.
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by centering a kernel about the star point. The kernel is non-zero at the star point and at few other nodes

that are in the vicinity of the star point. The shape of the cloud, which defines the nodes at which the kernel

is non-zero, can be arbitrary. Typical shapes we have employed are circles and rectangles in 2D. In a fixed

kernel approach, an approximation uaðxÞ to an unknown uðxÞ is given by

uaðxÞ ¼
Z
X
Cðx; xk � yÞ/ðxk � yÞuðyÞdy; ð1Þ

where / is the kernel function centered at xk and Cðx; xk � yÞ is the correction function which is given

by

Cðx; xk � yÞ ¼ pTðxk � yÞcðxÞ; ð2Þ

where pðxk � yÞ is an m� 1 vector of shifted polynomial basis and cðxÞ is the unknown correction function

vector (see [2,11] for details) and ðxk; ykÞ is the center of the kernel function. In constructing the approxi-

mation function for a point ðx; yÞ, one can choose ðxk; ykÞ arbitrarily and consequently the approximation
function can be multivalued. A unique set of interpolation functions can be constructed by fixing ðxk; ykÞ at
the point ðx; yÞ, i.e., when computing Niðx; yÞ, i ¼ 1; 2; . . . ;NP and its derivatives, the center of the kernel

function is fixed at ðx; yÞ (see [11] for more details). In discrete form, the approximation in Eq. (1) can be

written as

uaðxÞ ¼
XNP
i¼1

NiðxÞûi; ð3Þ

where ûi is the nodal parameter for node i, and NiðxÞ is the fixed kernel meshless approximation function

defined as

NiðxÞ ¼ pTðxÞM�Tpðxk � xiÞ/ðxk � xiÞDVi ; ð4Þ

where DVi is the nodal volume andM is the moment matrix. The ijth entry in the moment matrix is given by

Mij ¼
XNP
l¼1

piðxk � xlÞ/ðxk � xlÞpjðxlÞDVl i; j ¼ 1; 2; . . . ;m: ð5Þ

Let the ath order partial derivative of a function u be denoted by

DauðxÞ ¼ ojajuðxÞ
oa1x1; . . . ; oad xd

jaj ¼
Xd
i¼1

ai: ð6Þ
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The derivatives of the unknown u are approximated by

DauaðxÞ ¼
XNP
i¼1

DaNiðxÞûi: ð7Þ

After the meshless approximation functions are constructed, the FCM uses a point collocation technique

to discretize the governing equations. For nodes with prescribed boundary conditions the approximate

solution or the derivative of the approximate solution are set to the given Dirichlet and Neumann-type

boundary conditions, respectively. The point collocation approach gives rise to a linear system of equa-
tions, the solution of which provides the nodal parameters at the nodes. Once the nodal parameters are

computed, the unknown solution at each node can be computed from Eq. (3).
3. Positivity conditions

The positivity conditions [13], as commonly referred to in the finite difference literature, on the

approximation function and its second-order derivatives are stated as

NiðxjÞP 0; ð8Þ

r2NiðxjÞP 0 j 6¼ i; ð9Þ

r2NiðxiÞ < 0; ð10Þ
where NiðxjÞ is the approximation function of a point i evaluated at a point j. In the 2D case, Eqs. (9) and
(10) can be written as

o2Niðxj; yjÞ
ox2

þ o2Niðxj; yjÞ
oy2

P 0 j 6¼ i; ð11Þ

o2Niðxi; yiÞ
ox2

þ o2Niðxi; yiÞ
oy2

< 0: ð12Þ

It has been shown that the satisfaction of Eqs. (8)–(10) ensures the convergence of the finite-difference

method with arbitrary irregular meshes for some class of elliptic problems [15]. Patankar [14] included the

positivity conditions in a series of basic rules for the construction of finite differences and pointed out that

the consequence of violating the positivity conditions gives a physically unrealistic solution. To understand

the significance of positivity conditions in meshless collocation methods, we consider a one-dimensional

Poisson equation of the form

o2u
ox2

¼ �6x� 2

a2

 
� 4

ðx� bÞ2

a4

!
exp

"
� ðx� bÞ2

a2

#
06 x6 1: ð13Þ

A Dirichlet boundary condition is applied at x ¼ 0 and a Neumann boundary condition is applied at x ¼ 1.

a and b are chosen to be 0.2 and 0.5, respectively. The exact solution of this problem is

u ¼ �x3 þ exp

"
� ðx� bÞ2

a2

#
: ð14Þ

The finite cloud method is used to solve this problem. In the implementation of FCM, a Gaussian
weighting function and 21 uniformly distributed points are employed. The Gaussian weighting function is

given by
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/ðxi � xÞ ¼ e
�

xi � x
c

� �2

� e
�

dmi

c

� �2

1� e
�

dmi

c

� �2 ; ð15Þ

where dmi is the cloud (support) size and c is the dilation parameter (c is chosen as dmi=2) that defines the
steepness of the curve.

The error in the numerical solution is measured by

e ¼ 1

jujmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NP

XNP
i¼1

½uðxiÞ � uaðxiÞ�2
vuut ; ð16Þ

where e is the error, u and ua denote, respectively, the exact and the computed solutions.

It can be shown that, when 3 point clouds are used, the 1D fixed kernel approximation functions with the

quadratic basis are identical to the second-order finite-difference stencils. Therefore, the positivity condi-

tions (Eqs. (8)–(10)) are all satisfied. However, when the cloud size is increased, the positivity conditions are
violated. Fig. 2 shows the approximation function centered at x ¼ 0:5 and its second-derivative when the

cloud size is 3 points, 5 points, 7 points and 11 points. As shown in Fig. 2, when a 5 point cloud is used, the

second and third positivity conditions (Eqs. (9) and (10), respectively) are still satisfied, i.e., the second

derivative of the approximation function is negative for the star node and positive for all the other points in

the cloud. However, the first positivity condition is violated since the approximation function becomes

negative for certain points. When the cloud size is enlarged to cover 7 points, the two nodes near the star

point start to have negative values for the second derivative of the approximation function. Hence, the

second positivity condition is also violated. Moreover, the ratio of the negative values at the nearby points
to the value at the star point increases as the cloud size increases. Fig. 3 is a plot of the global error

(computed by using Eq. (16)) as a function of the cloud size. As shown in Fig. 3, the global error is small for

3 point clouds and increases as the cloud size increases. When the positivity conditions are violated (starts

from a cloud size of 5 points), the error increases dramatically.

For a scattered point distribution, the positivity conditions are more likely to be violated. Therefore,

meshless collocation methods can be sensitive to the location of the points and the cloud size, especially

when there are less number of points and the point distribution is highly irregular.
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Fig. 2. Shape function (a) and the second derivative of the shape function (b) for various cloud sizes.
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Fig. 3. Error in the numerical solution as a function of cloud size.
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4. Error analysis of the finite cloud method

In FCM, the numerical error comes from two sources: approximation error and discretization error. In

this section, we derive mathematical expressions for the error bound of the FCM solution. It is shown that

the global error is proportional to the cloud size and the condition number of the final coefficient matrix

which is closely related to the positivity conditions.
4.1. Definitions and notation

The Lebesgue space LpðXÞ [16] are classes of functions uðxÞ that are Lebesgue-measurable on X and for

which juðxÞjp is Lebesgue-summable, i.e.,

LpðXÞ ¼ u
Z

juðxÞjp dx
����

�
< 1

�
; 16 p61: ð17Þ

Sobolev spaces [16] are classes of Lebesgue-measurable functions which are defined as

W m;pðXÞ ¼ fuju 2 LpðXÞ : Dau 2 LpðXÞ for jaj6mg: ð18Þ

The spaces of interest in this paper are for p ¼ 2. These spaces are Hilbert spaces denoted by HmðXÞ ¼
W m;2ðXÞ.
4.2. Bounds for approximation functions

The bounds for the moving reproducing kernel approximation functions and its derivatives have been
discussed in [17–19]. It is easy to show that the conclusions drawn in [17] are also valid for the fixed kernel

approximation. From the results of [17, Theorem 4.7], we can derive the following:
Theorem 1. Assume the weighting function / 2 C0 and the point distributions are regular, then there is a
constant c < 1 such that
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max
16 i6NP

max
b:jbj¼l

kDbNik1 6
c
rl

lP 0 ð19Þ

in particular, if jbj ¼ 0,

max
16 i6NP

kNik1 6 c; ð20Þ

where r > 0 is a generalized support (or cloud) size such that, for a regular point distribution with support sizes
ri, i ¼ 1; . . . ;NP , there exist two constants c1; c2 2 ð0;1Þ and

c1 6
ri
r
6 c2 8i: ð21Þ

The regularity of the point distribution [17] implies that, in a cloud, the points are distributed in such a way

that the moment matrix is non-singular. Note that in the fixed kernel approximation, the continuity

requirement of the kernel function / is relaxed compared to the moving reproducing kernel approximation

as no differentiation of / is required in the fixed kernel approximation.
4.3. Error estimates for fixed kernel approximation

In the fixed kernel technique, the approximation to the unknown uðxÞ is defined by

uaðxÞ ¼
XNP
i¼1

NiðxÞûðxiÞ: ð22Þ
Theorem 2. Assume the weighting function / 2 C0ðXÞ, the polynomial basis is complete to the mth order and
the point distributions are regular. If ûðxÞ 2 Cmþ1ðXÞ \ Hmþ1ðXÞ and the point-wise overlap condition [21]
holds, i.e.,

9M 2 N 8x 2 X cardfjjx 2 Xjg6M ð23Þ

then the fixed kernel approximation error estimate is given by

kuaðxÞ � ûðxÞkH0ðXÞ 6C � rmþ1kûðxÞkHmþ1ðXÞ 0 < C < 1: ð24Þ
Proof. We use some concepts and results about polynomial approximations in Sobolev space shown in
[17,20, Chapter 4]. Let Xj be the cloud (or support) for a point x. We can choose a ball Bj in Xj such that Xj

is star-shaped with respect to Bj [17]. Given ûðxÞ 2 Cmþ1ðXÞ \ Hmþ1ðXÞ, Qmþ1û is the Taylor polynomial of

order m of û averaged over a ball Bj �� X. Qmþ1û is defined as [20, Chapter 4]

Qmþ1ûðxÞ ¼
Z
Bj

X
jaj6m

ðx� yÞa

a!
DaûðyÞ/ðyÞdy; ð25Þ

where /ðyÞ is the cut-off function supported in �Bj. The mþ 1th order residual term is given by

Rmþ1ûðxÞ ¼ ûðxÞ � Qmþ1ûðxÞ: ð26Þ

Therefore, for a given point xi we have

ûðxiÞ ¼ Qmþ1ûðxiÞ þ Rmþ1ûðxiÞ: ð27Þ
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Substituting Eq. (27) into Eq. (22)

uaðxÞ ¼
XNP
i¼1

NiðxÞûðxiÞ ¼
XNP
i¼1

NiðxÞQmþ1ûðxiÞ þ
XNP
i¼1

NiðxÞRmþ1ûðxiÞ: ð28Þ

From the consistency conditions [10],

XNP
i¼1

NiðxÞQmþ1ûðxiÞ ¼
XNP
i¼1

NiðxÞ
Z
Bj

X
jaj6m

ðxi � yÞa

a!
DaûðyÞ/ðyÞdy

¼
Z
Bj

X
jaj6m

ðx� yÞa

a!
DaûðyÞ/ðyÞdy ¼ Qmþ1ûðxÞ: ð29Þ

Therefore,

uaðxÞ � ûðxÞ ¼ Qmþ1ûðxÞ � ûðxÞ þ
XNP
i¼1

NiðxÞRmþ1ûðxiÞ ¼
XNP
i¼1

NiðxÞRmþ1ûðxiÞ � Rmþ1ûðxÞ: ð30Þ

Assuming the domain boundary oX is Lipschitz continuous and smooth enough, one can properly

choose Bj and Xj such that the chunkiness parameter of Xj \ X are uniformly bounded [17]. From the

results of [20, Section 4.3], the Taylor series expansion residual is bounded by

kRmþ1kW l;pðXj\XÞ 6 crmþ1�lkukW mþ1�l;pðXj\XÞ 06 l6mþ 1; ð31Þ

kRmþ1kL1ðXj\XÞ 6 crmþ1�d=p � kukW mþ1;pðXj\XÞ; ð32Þ

where d is the dimension. Following the proof of Theorem 4.8 in [17], we obtain

kuaðxÞ � ûðxÞkW 0;pðXÞ 6C � rmþ1 � kûðxÞkW mþ1;pðXÞ mP p: ð33Þ

Therefore, there exists a constant 0 < C < 1 such that

kuaðxÞ � ûðxÞkH0ðXÞ 6C � rmþ1 � kûðxÞkHmþ1ðXÞ: � ð34Þ

Define function space

Û eðXÞ ¼ ûe ûe 2 Cmþ1ðXÞ \ Hmþ1ðXÞ
��� : uðxÞ

(
¼
XNP
i¼1

NiðxÞûeðxiÞ
)
; ð35Þ

where uðxÞ is the exact function. From Theorem 2, it also follows that

uðxÞ ¼ ûeðxÞ þ
XNP
i¼1

NiðxÞRmþ1ûeðxiÞ � Rmþ1ûeðxÞ ð36Þ

and

kuðxÞ � ûeðxÞkH0ðXÞ 6C � rmþ1 � kûeðxÞkHmþ1ðXÞ: ð37Þ
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4.4. Error estimates for fixed kernel point collocation

In the finite cloud method, point collocation is used to discretize the governing equations. The point

collocation for a node x is given by

LuaðxÞ ¼ f ðxÞ x 2 X; ð38Þ

where L is a linear differential operator, f is the source function and x is any node in the domain. If x is a
boundary node, L and f ðxÞ are defined by either Dirichlet or Neumann boundary condition. Let Xi 2 X,
i ¼ 1; . . . ;N be the set of clouds with xi as the center of the ith cloud and the union of all the clouds covers

the domain, i.e.,

[NP
i¼1

Xi ¼ X: ð39Þ

Substituting the fixed kernel approximation, the point collocation for node xi gives

L
XNP
i¼1

NiðxÞûðxiÞ ¼
XNP
i¼1

LNiðxÞûðxiÞ ¼ f ðxÞ: ð40Þ

Eq. (40) can be rewritten in a matrix form,

Kû ¼ f; ð41Þ

where K is an NP � NP matrix, û is the NP � 1 unknown vector, and f is the NP � 1 right hand side vector.
From the matrix form of Eq. (22), the û vector is given by

ua ¼ Nû; ð42Þ

where N is the matrix of approximation functions. Therefore

KN�1ua ¼ f: ð43Þ
Theorem 3. Assume the weighting function / 2 C0ðXÞ, the highest order of the differential operator in Eq. (38)
is n, the polynomial basis is complete to the mth order and the point distributions are regular. Assume
uðxÞ; ûeðxÞ 2 Cmþ1ðXÞ \ Hmþ1ðXÞ and the point-wise overlap condition holds. The error estimate for the finite
cloud method is given by

kua � uk
kuak 6C1 � CondðKN�1Þ � rm�nþ1

kf kHm�nþ1ðXÞ þ C2kukHmþ1ðXÞ þ C3kûekHmþ1ðXÞ

kfk ; ð44Þ

where 0 < C1;C2;C3 < 1.

Proof. In general, the linear differential operator in Eq. (38) can be written as

L ¼
Xn
h¼0

nhL
h; ð45Þ

where h is the order of the differential operator, nh is the coefficient of the hth order differential operator and

n is the highest order of L.
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Replacing ûðxiÞ by ûeðxiÞ on the left hand side of Eq. (40) and applying Eq. (36)

XNP
i¼1

LNiðxÞûeðxiÞ ¼
XNP
i¼1

LNiðxÞ uðxiÞ
"

�
XNP
j¼1

NjðxiÞRmþ1ûeðxjÞ þ Rmþ1ûeðxiÞ
#

¼
XNP
i¼1

Xn
h¼0

nhL
hNiðxÞuðxiÞ �

XNP
i¼1

LNiðxÞ
XNP
j¼1

NjðxiÞRmþ1ûeðxjÞ
"

� Rmþ1ûeðxiÞ
#

¼
XNP
i¼1

Xn
h¼0

nhL
hNiðxÞ Qmþ1�nþhuðxiÞ

	
þ Rmþ1�nþhuðxiÞ




�
XNP
i¼1

LNiðxÞ
XNP
j¼1

NjðxiÞRmþ1ûeðxjÞ
"

� Rmþ1ûeðxiÞ
#
: ð46Þ

By applying the consistency conditions, we obtain

XNP
i¼1

LNiðxÞûeðxiÞ ¼
Xn
h¼0

nhL
hQmþ1�nþhuðxÞ þ

XNP
i¼1

Xn
h¼0

nhL
hNiðxÞRmþ1�nþhuðxiÞ

�
XNP
i¼1

LNiðxÞ
XNP
j¼1

NjðxiÞRmþ1ûeðxjÞ
"

� Rmþ1ûeðxiÞ
#

¼ Qmþ1�nf ðxÞ þ
XNP
i¼1

Xn
h¼0

nhL
hNiðxÞRmþ1�nþhuðxiÞ

�
XNP
i¼1

LNiðxÞ
XNP
j¼1

NjðxiÞRmþ1ûeðxjÞ
"

� Rmþ1ûeðxiÞ
#

¼ f ðxÞ � Rmþ1�nf ðxÞ þ
XNP
i¼1

Xn
h¼0

nhL
hNiðxÞRmþ1�nþhuðxiÞ

�
XNP
i¼1

LNiðxÞ
XNP
j¼1

NjðxiÞRmþ1ûeðxjÞ
"

� Rmþ1ûeðxiÞ
#
: ð47Þ

Therefore, Eq. (47) can be rewritten as

XNP
i¼1

LNiðxÞûeðxiÞ ¼ f ðxÞ þ hðxÞ: ð48Þ

The matrix form of Eq. (48) is given by

Kûe ¼ f þ h; ð49Þ
where h is a NP � 1 vector of the truncation error. Eq. (49) can be rewritten as

KN�1u ¼ f þ h: ð50Þ
Defining A ¼ KN�1, Eqs. (43) and (50) can be rewritten as

Aua ¼ f; ð51Þ

Au ¼ f þ h: ð52Þ
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From matrix analysis [22],

kua � uk
kuak 6CondðAÞ khkkfk ; ð53Þ

where

hðxÞ ¼ �Rmþ1�nf ðxÞ þ
XNP
i¼1

Xn
h¼0

nhL
hNiðxÞRmþ1�nþhuðxiÞ

�
XNP
i¼1

LNiðxÞ
XNP
j¼1

NjðxiÞRmþ1ûeðxjÞ
"

� Rmþ1ûeðxiÞ
#
: ð54Þ

Since the highest order of the governing differential operator is nP 1, from Eq. (19), it follows that

max
16 i6NP

kLNiðxÞk1 6
c
rn

0 < c < 1: ð55Þ

By using Eqs. (20), (31), (32), (55), the triangle inequality, Eq. (54) gives

khðxÞkW l;pðBj\XÞ 6 kRm�nþ1f ðxÞkW l;pðBj\XÞ þ
XNP
i¼1

Xn
h¼0

jnhj � kLhNiðxÞkW l;pðBj\XÞkR
mþ1�nþhuðxÞkL1ðBj\XÞ

þ
XNP
i¼1

kLNiðxÞkW l;pðBj\XÞkR
mþ1ûeðxÞkL1ðBj\XÞ

þ
XNP
i¼1

kLNiðxÞkW l;pðBj\XÞ

XNP
j¼1

kNjðxÞkL1ðBj\XÞ � kR
mþ1ûeðxÞkL1ðBj\XÞ

6 c1 � rm�nþ1�lkf ðxÞkW m�nþ1�l;pðXj\XÞ þ c2 �
Xn
h¼0

jnhj � rm�nþ1�lkuðxÞkW mþ1�nþh�l;pðXj\XÞ

þ c3 � rm�nþ1�lkûðxÞkW mþ1�l;pðXj\XÞ

6C0
1 � rm�nþ1�l kf ðxÞkW m�nþ1�l;pðXj\XÞ

n
þ C0

2 � kuðxÞkW mþ1�l;pðXj\XÞ

þ C0
3 � kûeðxÞkW mþ1�l;pðXj\XÞ

o
; ð56Þ

where 06 l6mþ 1. Let p ¼ 2, with ðmþ 1Þp > d, we have

khk6C1rmþ1�nfkf ðxÞkHm�nþ1ðXÞ þ C2 � kuðxÞkHmþ1ðXÞ þ C3 � kûeðxÞkHmþ1ðXÞg; ð57Þ

where 0 < C1, C2, C3 < 1. Thus the error estimate for the finite cloud method is given by

kua � uk
kuak 6C1 �CondðAÞ � rmþn�1

kf kHm�nþ1ðXÞ þ C2kukHmþ1ðXÞ þ C3kûekHmþ1ðXÞ

kfk 0 < C1;C2;C3 < 1: �

ð58Þ
Remarks

1. It is easy to prove, for elliptic problems, that the matrix A is diagonally dominant when the positivity
conditions are satisfied. Therefore, the condition number of A is improved. The basic idea of satisfying

the positivity conditions is to ensure that the final matrix is diagonally dominant and consequently, re-

duces the error bound of the numerical solution.
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2. Error analysis indicates that the condition number of the final coefficient matrix A not only serves as a

criteria for assessing the accuracy of the solution to the linear system but also directly influences the error

bound for collocation based meshless methods.

3. khk depends on the value of the approximation function and its derivatives, the spacing between the

points, and the cloud size. When a quadratic polynomial basis (m ¼ 2) is used for interior clouds with

a uniform point distribution, due to the symmetry of the points inside the cloud, the third-order trun-

cation errors in Eq. (58) are canceled out and khk is reduced. Therefore, the numerical solution of a

problem with uniform point distribution typically exhibits higher accuracy compared to the scattered
point distribution case.
5. Ensuring the positivity conditions in 1D meshless approximations

In this section, we show that in 1D cases, regardless of the point distribution, the positivity conditions

can always be satisfied by appropriately selecting a weighting function. For a one-dimensional domain with

scattered point distribution, corresponding to a star point xj, denoting

wlhkl ¼
XNP
l¼1

wlhkl k 2 N; ð59Þ

where NP is the total number of points in the domain, hl ¼ xl � xj and wl is the weighting assigned for point

l. The analytical solution for the approximation function NiðxjÞ is given by

NiðxjÞ ¼ � ðwlh3l Þ
2 � ðwlh2l Þðwlh4l Þ

A
wi þ

ðwlh2l Þðwlh3l Þ � ðwlhlÞðwlh4l Þ
A

wi � hi

� ðwlh2l Þ
2 � ðwlhlÞðwlh3l Þ

A
wi � h2i ; ð60Þ

where

A ¼ �ðwlh2l Þ
3 þ 2ðwlhlÞðwlh2l Þðwlh3l Þ � ðwlh0l Þðwlh3l Þ

2 � ðwlhlÞ2ðwlh4l Þ þ ðwlh0l Þðwlh2l Þðwlh4l Þ: ð61Þ
The first-order derivative of the approximation function is given by

oNiðxjÞ
ox

¼ ðwlh2l Þðwlh3l Þ � ðwlhlÞðwlh4l Þ
A

wi �
ðwlh2l Þ

2 � ðwlh0l Þðwlh4l Þ
A

wi � hi

þ ðwlhlÞðwlh2l Þ � ðwlh0l Þðwlh3l Þ
A

wi � h2i ð62Þ

and the second-order derivative of the approximation function is given by

o2NiðxjÞ
ox2

¼ �2
ðwlh2l Þ

2 � ðwlhlÞðwlh3l Þ
A

wi þ 2
ðwlhlÞðwlh2l Þ � ðwlh0l Þðwlh3l Þ

A
wi � hi

� 2
ðwlhlÞ2 � ðwlh0l Þðwlh2l Þ

A
wi � h2i : ð63Þ

Eqs. (60), (62), (63) show that the value of the approximation function and its derivatives are determined by

the weighting function and the point distribution. Given a set of points, one can construct a weighting

function to satisfy the positivity conditions. Defining the coefficients

a ¼ �ðwlhlÞ2 þ ðwlh0l Þðwlh2l Þ; ð64Þ



X. Jin et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1171–1202 1183
b ¼ �ðwlhlÞðwlh2l Þ þ ðwlh0l Þðwlh3l Þ; ð65Þ

c ¼ ðwlh2l Þ
2 � ðwlhlÞðwlh3l Þ: ð66Þ

The second derivative of the approximation function can be rewritten as

o2NiðxjÞ
ox2

¼ � 2c
A
wi �

2b
A
wihi þ

2a
A
wih2i : ð67Þ

It is easy to show that a > 0 and c > 0. As shown in Appendix A, the meshless approximation function

satisfies the first positivity condition (Eq. (8)), if and only if it has the Kronecker delta property. In meshless

approximations, there are various ways to satisfy the first positivity condition [23–26]. In the fixed kernel

approximation, the approximation would possess the Kronecker delta property if the weighting function

behaves like a delta function. Therefore, it is better to chose a weighting function such that the value of the
weighting function at the star point is much higher compared to the value at the other nodes in the cloud.

Therefore, coefficient A in Eq. (67) is greater than zero. In this case, it is obvious that, when hi ¼ 0,
o2NiðxjÞ

ox2 < 0. Thus, the third positivity condition (Eq. (10)) is automatically satisfied. For illustration purpose,

we choose a weighting function such that wj � wi, for i 6¼ j, where wj is the value of the weighting function

at the star point xj. A class of weighting functions which seem to be a good choice are of the form

wi ¼
1

jhijr þ �
gi; ð68Þ

where r is the order of the weighting, gi is the nodal coefficient for point i, � is a small value to avoid the

singularity at the star point (� � jhijr, for i 6¼ j). It is easy to show that the approximation function pos-

sesses the Kronecker delta property as wj ! 1 corresponding to � ! 0. By choosing a sufficiently small �,
e.g., 10�5 �minfjhijr; i 6¼ jg, one can get

NiðxjÞ �
1 i ¼ j;
0 i 6¼ j:

�
ð69Þ

Thus, it is reasonable to say that the first positivity condition can be satisfied by choosing a sufficiently

small �. The rest of the analysis will focus on the second positivity condition (Eq. (9)). Since wj � wi; for i 6¼
j, the positivity condition for Eq. (63) can be simplified as

XNP
l¼1

wlh2l hiðhi � hlÞ > 0 ð70Þ

i.e., Eq. (63) satisfies the second positivity condition if Eq. (70) holds. It can be shown that, if all the points

in a cloud lie on one side of the star node, the left handside of Eq. (70) is negative at the point closest to the

star node. Thus, the second positivity condition is violated. Therefore, to satisfy the second positivity

condition, there must be at least one point on either side of the star node. This condition must be enforced

as a rule in determining the cloud for each point.
The left hand side of Eq. (70) is a quadratic function of hi. Since the second derivative of the approx-

imation function for the star node (hi ¼ 0) is negative (this is the third positivity condition given in Eq.

(10)), the second positivity condition shown in Eq. (70) is more likely to be violated at the points closest to

the star node. Therefore, the second derivative of the approximation function at the nearest point on each

side of the star node is studied. A typical cloud in a one-dimensional case is shown in Fig. 4. Denoting the

star node as x0 and the nodes on the right and the left hand sides of the star node as x1; x2; . . . ; xm and

x�1; x�2; . . . ; x�n, respectively, where m and n are the number of nodes on each side of the star node. The

second positivity condition of the points x1 and x�1 can be rewritten as



x -3 x -1 x2 x3 x4x -2 x x10

cloud

Fig. 4. A cloud in one-dimensional case. x0 is the star node. x1, x2, x3, and x4 are the right hand side nodes in the cloud of x0. x�1, x�2,

and x�3 are the left hand side nodes in the cloud of x0.
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X�n

l¼�1

wlh2l h1ðjh1j þ jhljÞ �
Xm
l¼1

wlh2l h1ðjhlj � jh1jÞ > 0; ð71Þ

X�n

l¼�1

wlh2l h�1ðjhlj � jh�1jÞ �
Xm
l¼1

wlh2l h�1ðjhlj þ jh�1jÞ > 0: ð72Þ

It is obvious that when the order of the weighting is r ¼ 3 (see Eq. (68)), and if we let the nodal coefficient

of the weighting function gl ¼ n for l ¼ 1; 2; . . . ;m and gl ¼ m for l ¼ �1;�2; . . . ;�n, Eqs. (71) and (72)

are satisfied, i.e., the second positivity condition holds for x1 and x�1, which are the nearest to the star node

on either side. It can be easily shown that if the second positivity condition holds for x1 and x�1, it must be

satisfied at the rest of the nodes in the cloud. For the example shown in Fig. 4, if we assign the nodal

weighting coefficient to be 3 for all the nodes on the right hand side of the star node and 4 for all the left

hand side nodes, then the second positivity condition is satisfied. In this paper, the weighting function given

in Eq. (68) with r ¼ 3 is denoted as cubic inverse distance weighting. Note that when r 6¼ 3, a more
complicated algorithm is necessary to compute the nodal coefficient gi so that the second positivity con-

dition is satisfied.
6. Positivity conditions in 2D meshless approximations

In 1D meshless approximations, one can compute the weight for each point within a cloud so that the

positivity conditions can be satisfied. However, in two-dimensions, given a scattered set of points, it is more
difficult to ensure that the second positivity condition is satisfied. The difficulty arises from the posibility

that, within a cloud, the points may be ‘‘badly’’ distributed, i.e., the center of the point distribution in the

cloud deviates severely from the star point. For these ill-balanced clouds, the positivity conditions are more

likely to be violated. Qualitative criteria have been proposed in the literature [9] to measure the quality of a

cloud (star). However, in numerical implementation, quantitative criteria are needed to check the quality of

a cloud.

There are three options to investigate the positivity conditions in 2D: (1) within the framework of kernel/

least-squares approximations, enforce the point distribution within a cloud to satisfy a set of quantitative
criteria for a given weighting function to guarantee the satisfaction of the positivity conditions, (2) reduce

the negative values of r2NiðxjÞ, i 6¼ j as much as possible so that positivity conditions are not violated too

badly or (3) use a different framework that is not based on kernel/least-squares approximations. In this

paper, we discuss the first and the second approaches.

For the first approach, since the value of the approximation function and its derivatives is a function of

the weighting and the spacing among the points within the cloud, given a weighting function, one can

develop quantitative criteria to find ‘‘bad’’ clouds and redefine the clouds so that the positivity conditions

are satisfied. Appendix B shows the derivation of a set of quantitative criteria for the weighting function of
the form
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Fig. 5. Eight sectors in a two-dimensional cloud which are divided by 39� and 51� lines.
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wi ¼
1

r4i þ �
; ð73Þ

where ri ¼ jxi � xjj is the distance from point xi to the star point xj. For other weighting functions, using

the approach presented in Appendix B, it is possible to derive mathematical criteria to satisfy the positivity

conditions. Given a star point and the weighting function in Eq. (73), the following steps can be imple-
mented to define clouds that satisfy positivity conditions:

Algorithm 1

1. Step 1: Select the points of the cloud. In order to get a well balanced cloud, one needs to select the same

number of points in each of the eight shaded sectors of the cloud, as shown in Fig. 5 (see Appendix B for

details).

2. Step 2: Check the regularity of the cloud. If the moment matrix M (Eq. (5)) is singular or ill conditioned,

the cloud is taken to be a ‘‘bad’’ cloud. In this case, more points need to be included in the cloud.
3. Step 3: Check the quality of the cloud for positivity conditions. Assuming that the star node of the cloud

is ðxj; yjÞ, the nodes inside the cloud are denoted by ðxi; yiÞ (i ¼ 1; 2; . . .) and

hxi ¼ xi � xj;

hyi ¼ yi � yj:
ð74Þ

The criterion for a good quality cloud to satisfy the positivity conditions (see Appendix B) is given by

min
X
i

wihx2i ;
X
i

wihy2i

 !
� max

X
i

wihxihyi;

P
i wihxi

P
i wihyiP

i wi

 !
;

min
X
i

wihx4i ;
X
i

wihx2i hy
2
i ;
X
i

wihy4i

 !
� max

X
i

wihx3i hyi;
X
i

wihxihy3i

 !
: ð75Þ

If Eq. (75) does not hold for the cloud, the cloud is taken to be a ‘‘bad’’ cloud. Typically, including more
points in the cloud can enable a cloud to satisfy Eq. (75). However, this is not always guaranteed. In the

extreme cases, the point distribution in the vicinity of the star point needs to be modified.



Fig. 6. 2D fixed kernel approximation function and its derivatives: (a) Nðx; yÞ, (b) o2Nðx; yÞ=ox2, (c) o2Nðx; yÞ=oy2.
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4. Step 4: Compute the fixed kernel approximations and the derivatives by using the selected points within

each cloud.

Alternatively, one can adopt the second approach, i.e., try to reduce the negative values of r2NiðxjÞ,
i 6¼ j as much as possible. We have found that the 2D version of the cubic inverse weighting function given

in Eq. (68) and a modified Gaussian weighting function are good choices, i.e., even if the positivity con-

ditions are violated, the deviation is small with these weighting functions. The cubic inverse distance

weighting function and the modified Gaussian weighting function in 2D are given by

wiðxj; yjÞ ¼
1

r3i þ �
gi ð76Þ

and

wiðxj; yjÞ ¼
/ðxi � xjÞ

1� /ðxi � xjÞ þ �
� /ðyi � yjÞ
1� /ðyi � yjÞ þ �

; ð77Þ

where ri ¼ jxi � xjj is the distance from point xi to the star point xj, /ðxi � xjÞ is the Gaussian weighting
function given in Eq. (15). The weighting function given in Eq. (77) is denoted as the modified Gaussian

weighting. Note that the nodal coefficients gi in Eq. (68), can be computed by using the approach described

in Section 5 to minimize the deviation from the positivity conditions in 2D. However, here the gis are taken
to be 1 for the sake of simplicity. Fig. 6(a)–(c) show the fixed kernel approximation function and its

derivatives by using the weighting function given in Eq. (77). As shown in the figures, the approximation

function Nðx; yÞ is very close to the Kronecker delta function and the positivity conditions on the second

derivatives are satisfied.
7. Numerical results

In this section, 1D and 2D numerical examples are presented to demonstrate the significance of the

positivity conditions. Section 7.1 shows a 1D example where the approach described in Section 5 is used for

ensuring the positivity conditions. The results obtained by satisfying the positivity conditions have been

compared with those that do not satisfy the positivity conditions (i.e., using the classical Gaussian

weighting). Sections 7.2–7.4 present several 2D problems with scattered point distributions. Weighting
functions given in Eqs. (73), (76), (77) are used for 2D calculations. The results are compared with those
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obtained with the 2D version of the classical Gaussian weighting (Eq. (15)). The error in the solution is
computed by using Eq. (16).

7.1. Example in 1D

A set of randomly generated one-dimensional scattered points is shown in Fig. 7. 32 points are used in

this example. The cloud of each node includes the closest 7 points. Fig. 8 shows the approximation

functions obtained by using the regular Gaussian weighting function (Eq. (15)) and the cubic inverse

distance weighting function. The positivity condition (Eq. (8)) is violated when the regular Gaussian
weighting function is used while it is satisfied by using the new weighting. Fig. 9 shows the second-derivative

of the approximation function when the regular Gaussian weighting function and the new weighting

function are used. The violation of the positivity condition (Eq. (9)) is eliminated by using the new

weighting function. The effectiveness of the new weighting function and the approach described in Section 5

is clearly shown in this example.

The set of scattered points are further used to solve the 1D Poisson problem given in Eq. (13). Fig. 10

shows the FCM solution with different weighting functions. Since the positivity conditions do not hold for

the regular Gaussian weighting function, the error in the solution is quite large. But the solutions with the
new weighting function match well with the exact solution.

Numerical properties of the FCM including the condition number of the final coefficient matrix, the

third order truncation error and the error in the solution obtained from different weighting functions are

summarized in Tables 1 and 2. As shown in Tables 1 and 2, the condition number of the matrix is much
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Fig. 7. Scattered point distribution in one-dimension.
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Fig. 8. Approximation function for the point at x ¼ 0:6.
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Fig. 10. Comparison of the exact solution and the computed results by using different weighting functions.

Table 1

Numerical properties with the regular Gaussian weighting function

Cloud size 7 Points 9 Points 13 Points

CondðKÞ 1.6 · 107 6.7 · 105 1.7· 108
Solution error 3.2 0.37 4.8

Table 2

Numerical properties with the new weighting function given in Eq. (68)

Cloud size 7 Points 9 Points 13 Points

CondðKÞ 2.5 · 105 1.3 · 105 5.1· 104
Solution error 0.027 0.033 0.04
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Fig. 9. Second derivative of the approximation function for the point at x ¼ 0:6.
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smaller when the new weighting function is used. Consequently, from the error analysis, the error in the
solution for the new weighting function is much smaller. We have also observed that the FCM solution is

less sensitive to the cloud size with the new weighting function.
7.2. 2D Poisson equation

A two-dimensional extension of the 1D Poisson example is considered. The governing equation along

with the boundary conditions are given by

o2u
ox2

þ o2u
oy2

¼ �6x� 6y � 4

a2

"
� 4

x� b
a2

� �2

� 4
y � b
a2

� �2
#

� exp

"
� x� b

a

� �2

� y � b
a

� �2
#

06 x6 1 06 y6 1; ð78Þ

uðx ¼ 0Þ ¼ �y3 þ exp

"
� b

a

� �2

� y � b
a

� �2
#
; ð79Þ

uðy ¼ 0Þ ¼ �x3 þ exp

"
� x� b

a

� �2

� b
a

� �2
#
; ð80Þ

u;x ðx ¼ 1Þ ¼ �3� 2
1� b
a2

� �
exp

"
� 1� b

a

� �2

� y � b
a

� �2
#
; ð81Þ

u;y ðy ¼ 1Þ ¼ �3� 2
1� b
a2

� �
exp

"
� x� b

a

� �2

� 1� b
a

� �2
#
; ð82Þ

where a ¼ 0:2 and b ¼ 0:5. The exact solution for this problem is given by

u ¼ �x3 � y3 þ exp

"
� x� b

a

� �2

� y � b
a

� �2
#
: ð83Þ

Fig. 11 shows a 1 · 1 square domain with an irregular scattered point distribution. There are 455 points

sprinkled over the domain. Fig. 12 shows a comparison of the solutions along the line x ¼ 1. Fig. 13 shows

a comparison of the computed and the exact solution for the y-derivative along x ¼ 1. 20 point clouds are

used for all the three cases. FCM gives a good solution when the positivity conditions are satisfied by using

the quartic inverse distance weighting function, while in the case of the regular Gaussian weighting function

inaccurate results are obtained. The cubic inverse distance weighting and the modified Gaussian weighting

also give quite good results. Table 3 shows the comparison of the errors when different cloud sizes are used.

We have also observed that the FCM solution is less sensitive to the cloud size with the quartic inverse
distance weighting function.

The Poisson problem in Eq. (78) is also solved by employing a random distribution of 81, 289 and 1089

points to show the convergence of the method with different weighting functions. The point distributions

are shown in Figs. 14–16. The convergence plots for the cloud sizes of 16 and 20 points are shown in Figs.

17 and 18. We have observed that the convergence is affected significantly by the cloud size when the regular

Gaussian weighting is used.
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Fig. 11. Scattered point distribution over a square domain.
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7.3. 2D elasticity: beam bending

A 1 · 1 beam subjected to a uniform load and a shear as shown in Fig. 19 is considered. The beam is

centered at ða; bÞ ¼ ð0:5; 0:5Þ, l ¼ 0:5 unit, c ¼ 0:5 and t ¼ 1 unit. The modulus of elasticity is 3� 107 and

the Poisson�s ratio is 0.25.

The governing equations for elasticity (in a plane stress situation) are

2

1� m
o2u
ox2

þ 1þ m
1� m

o2v
oxy

þ o2u
oy2

¼ 0; ð84Þ

2

1� m
o2v
oy2

þ 1þ m
1� m

o2u
oxy

þ o2v
ox2

¼ 0; ð85Þ
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Fig. 13. Comparison of the exact solution and the computed results for the y-derivative along x ¼ 1.

Table 3

Errors for the 2D Poisson problem by using the regular Gaussian weighting function and the quartic inverse distance weighting

function

Cloud size 20 Points 25 Points 30 Points

Gaussian weighting function 0.034 0.12 0.28

Quartic inverse distance weighting function 0.013 0.02 0.019
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where u and v are the x- and y-components of the displacement and m is the Poisson�s ratio. The boundary
conditions are given by

uðx ¼ aþ l; y ¼ bÞ ¼ mql
2E

;
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Fig. 16. 2D domain with 1089 random points.
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Fig. 15. 2D domain with 289 random points.
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vðx ¼ a	 l; y ¼ bÞ ¼ 0;

sxyðy ¼ b	 cÞ ¼ 0;

ryðy ¼ b� cÞ ¼ �q;

ryðy ¼ bþ cÞ ¼ 0;

rxðx ¼ a	 lÞ ¼ q
2I

2

3
ðy

�
� bÞ3 � 2

5
c2ðy � bÞ

�
;

sxyðx ¼ a	 lÞ ¼ � q
2I

ðx� aÞ½c2 � ðy � bÞ2�:
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Fig. 17. Convergence plot with different weighting functions when the cloud size is 16.
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Fig. 18. Convergence plot with different weighting functions when the cloud size is 20.
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Fig. 19. Beam subjected to a uniform load and a shear.
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The exact solution for this problem is given by [27]

u ¼ q
2EI

l2ðx
"(

� aÞ � ðx� aÞ3

3

#
ðy � bÞ þ ðx� aÞ 2

3
ðy

�
� bÞ3 � 2

5
c2ðy � bÞ

�

þ mðx� aÞ ðy � bÞ3

3

"
� c2ðy � bÞ þ 2

3
c3
#)

; ð86Þ

v ¼ � q
2EI

ðy � bÞ4

12

(
� c2ðy � bÞ2

2
þ 2c3ðy � bÞ

3
þ m ðl2
"

� ðx� aÞ2Þ ðy � bÞ2

2
þ ðy � bÞ4

6
� c2ðy � bÞ2

5

#)

� q
2EI

l2ðx� aÞ2

2

"
� ðx� aÞ4

12
� c2ðx� aÞ2

5
þ 1

�
þ 1

2
m

�
c2ðx� aÞ2

#
þ d; ð87Þ

d ¼ 5

24

ql4

EI
1

�
þ 12

5

c2

l2
4

5

�
þ m
2

��
: ð88Þ

The scattered point distribution shown in Fig. 11 is used to solve the beam bending problem. Regular

Gaussian weighting function, the cubic and quartic inverse distance weighting functions are used. In all

cases, 20-point clouds are used. The x- and y-displacements along x ¼ 0 are shown in Figs. 20 and 21,

respectively. As shown in Figs. 20 and 21, the regular Gaussian weighting function gives poor results. The

quartic and cubic inverse distance weighting functions give good results. The condition number of the final
matrix is again observed to be improved by using the inverse distance weighting functions. Table 4 shows

the comparison of the errors for different cloud sizes when the regular Gaussian weighting function and the

quartic inverse distance weighting function are used. We again observed that the FCM solution is less

sensitive to the cloud size with the quartic inverse distance weighting function.

7.4. 2D elasticity: plate with a hole

The second elasticity example is an infinite plate with a central circular hole subjected to a unit radial
tensile load. Due to the symmetry, only the first quadrant of the plate is considered as shown in Fig. 22.
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Fig. 20. Comparison of the exact and the computed x-displacement along x ¼ 0 for the beam bending problem.
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Fig. 21. Comparison of the exact and the computed y-displacement along x ¼ 0 for the beam bending problem.

Table 4

Errors in the x-displacement for the 2D bending beam problem when the regular Gaussian weighting function and the quartic inverse

distance weighting function are used

Cloud size 12 Points 16 Points 20 Points

Gaussian weighting function 0.2 0.6 0.33

Quartic inverse distance weighting function 0.01 0.02 0.03
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Fig. 22. Scattered point distribution for the plate-with-a-hole problem.
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Symmetric boundary conditions were imposed on the left and bottom edges, and the inner circle boundary
of radius 1 is traction-free. The modulus of elasticity is taken as 1.0 · 103 and the Poisson ratio is 0.3. The

exact solution for the stresses is given by
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rxðx; yÞ ¼ 1� a2

r2
3

2
cos 2h

�
þ cos 4h

�
þ 3a4

2r4
cos 4h; ð89Þ

ryðx; yÞ ¼ � a2

r2
1

2
cos 2h

�
� cos 4h

�
� 3a4

2r4
cos 4h; ð90Þ

rxyðx; yÞ ¼ � a2

r2
1

2
sin 2h

�
þ sin 4h

�
þ 3a4

2r4
sin 4h: ð91Þ

The scattered point distribution for this example is shown in Fig. 22. 20 point clouds are used for

this example. Fig. 23 compares the exact solution and the results obtained by using the regular

Gaussian weighting, the quartic and cubic inverse distance weighting and the modified Gaussian
weighting for the stress rx along x ¼ 0. The reduction in the condition number of the final matrix by

using the new weighting functions is again observed. The large error exhibited with the regular Gaussian

weighting function is eliminated by using the inverse distance weighting functions. Table 5 shows the

comparison of the errors when different cloud sizes are used. The results show that the quartic inverse

distance weighting function provides a superior performance over the regular Gaussian weighting

function.
1 1.5 2 2.5 3 3.5 4 4.5 5
– 2

–1

0

1

2

3

4

 y

st
re

ss
 (

σ x
)

Exact                             
Gaussian weighting                
modified Gaussian weighting       
cubic inverse distance weighting  
quartic inverse distance weighting

Fig. 23. Comparison of rx along x ¼ 0 obtained by Gaussian, cubic inverse distance, quartic inverse distance and modified Gaussian

weighting functions with the exact solution.

Table 5

Errors in rx for the plate-with-a-hole problem by using the regular Gaussian weighting function and the quartic inverse distance

weighting function

Cloud size 16 Points 20 Points 24 Points

Gaussian weighting function 0.36 0.11 0.02

Quartic inverse distance weighting function 0.04 0.0098 0.007
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8. Conclusion

In this paper, we have shown the significance of the positivity conditions in meshless collocation ap-

proaches. From an error analysis of the finite cloud method, we have shown that the error bound of the

numerical solution is directly related to the condition number of the final coefficient matrix. Violation of

the positivity conditions can significantly increase the condition number resulting in a large error in the

numerical solution. Satisfying the positivity conditions ensures that the final coefficient matrix is diago-

nally dominant. Consequently, the condition number of the final matrix and the error bound of the
solution are reduced. For 1D boundary value problems, it is shown that for any given set of scattered

points, the positivity conditions can always be satisfied by employing a weighting function of the form

(see Eq. (68))

wi ¼
1

jhijr þ �
gi:

For 2D scattered point distributions, it is more difficult to satisfy the positivity conditions. We have

employed three types of weighting functions: the cubic and quartic inverse distance weighting and the
modified Gaussian weighting (see Eqs. (73), (76), (77))

wiðxj; yjÞ ¼
1

r4i þ �
wiðxj; yjÞ ¼

1

r3i þ �

and

wiðxj; yjÞ ¼
/ðxi � xjÞ

1� /ðxi � xjÞ þ �
� /ðyi � yjÞ
1� /ðyi � yjÞ þ �

:

For the quartic inverse distance weighting function, we have shown that the positivity conditions

can be satisfied by imposing requirements on the point distributions within the cloud. Alternatively, a

simpler approach is to reduce the violation of the positivity conditions. We have found that the cubic

inverse distance and the modified Gaussian weighting functions are good choices. Although the

positivity conditions can be violated for certain clouds, the deviation is quite small with these

weighting functions and satisfactory results are obtained. Finally, numerical results are presented for

1D and 2D problems to demonstrate the effectiveness of the positivity conditions in meshless collo-

cation methods.
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Appendix A. Positivity of the approximation function

In kernel or least-squares meshless approximation methods, the approximation of an unknown u at a

point j can be written in a generalized form

uaðxjÞ ¼
X
i

NiðxjÞûðxiÞ; ðA:1Þ
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DauaðxjÞ ¼
X
i

DaNiðxjÞûðxiÞ; ðA:2Þ

where ûðxiÞ is the unknown at point j, xj 2 Rd and x ¼ fx1j; x2j; . . . ; xdjg, NiðxjÞ is the approximation

function of node i evaluated at xj. The consistency condition of the approximation function is given by [10]

pðxjÞ ¼
X
i

NiðxjÞpðxiÞ; ðA:3Þ

where pðxjÞ is a vector of monomial basis functions. For a quadratic basis, p ¼ f1 x x2g in 1D and p ¼
f1 x y x2 y2 xyg in 2D.

Theorem 4. Given a generalized approximation in the form of Eq. (A.1) and a quadratic consistency condition
in the form of Eq. (A.3), the positivity condition of the approximation function NiðxjÞ (Eq. (8))

NiðxjÞ >¼ 0 ðA:4Þ
is satisfied if and only if NiðxjÞ has the Kronecker delta property

NiðxjÞ ¼
1 i ¼ j;

0 i 6¼ j:

�
ðA:5Þ

Proof. It is easy to see that if the approximation function NiðxjÞ has the Kronecker delta property, the

positivity condition (Eq. (A.4)) is satisfied immediately. Conversely, if Eq. (A.4) holds, consider the fol-

lowing function

ûðxÞ ¼ kx� xjk2 ¼ ðx1 � x1jÞ2 þ ðx2 � x2jÞ2 þ � � � þ ðxd � xdjÞ2; ðA:6Þ
where x ¼ ½x1; x2; . . . ; xd �T are the d-dimensional coordinates. The approximation of uðxjÞ can be written as

uaðxjÞ ¼
X
i

NiðxjÞûðxiÞ ¼
X
i

NiðxjÞkxi � xjk2: ðA:7Þ

Given that the approximation satisfies second-order consistency, we haveX
i

NiðxjÞkxi � xjk2 ¼ kxj � xjk2 ¼ 0: ðA:8Þ

Given the positivity condition (Eq. (A.4)) and kxi � xjk2 > 0 for i 6¼ j, we conclude that NiðxjÞ ¼ 0 for

i 6¼ j, i.e.,P
i NiðxjÞkxi � xjk2 ¼ 0

NiðxjÞ >¼ 0

kxi � xjk2 > 0 for all i 6¼ j

9>>=
>>;) NiðxjÞ ¼ 0 for all i 6¼ j: ðA:9Þ

Furthermore, the consistency conditions of the approximation require thatX
i

NiðxjÞ ¼ 1: ðA:10Þ

Since we have NiðxjÞ ¼ 0 for all i 6¼ j from Eq. (A.9), it is apparent that

NiðxiÞ ¼ 1: ðA:11Þ
Therefore, Eqs. (A.9) and (A.11) gives the Kronecker delta property for the approximation function. h
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Appendix B. Positivity of the approximation function and its derivatives in 2D

In two-dimensional kernel/least-squares approximation, the positivity conditions can be satisfied when

the weighting function and the cloud points are well selected. The basic idea is to choose a well-balanced

cloud. To define a balanced cloud, as shown in Fig. 24, the cloud is divided into four quadrants. Each

quadrant is assumed to have the same number of points. Given the positivity conditions defined in Eqs. (8)–

(10), denote the Laplacian of the approximation function of a point xi and evaluated at a point xj as

r2NiðxjÞ, the weight at point (xi; yi) as wi ¼ wðxi � xj; yi � yjÞ and, for a point xi,

hxi ¼ xi � xj;

hyi ¼ yi � yj:
ðB:1Þ

It is natural to view a cloud as balanced if the center of gravity of the cloud is close to the star node (note

that the weight of a point can be viewed as the mass of that point). Therefore, the criteria based on the

center of gravity is given by
hyi

hxi i

y

x

star node

point in the cloud
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Fig. 24. (a) A balanced cloud, (b) an unbalanced cloud (type 1), (c) an unbalanced cloud (type 2), (d) an unbalanced cloud (type 3).
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P
l wlhxlP
l wl

� 0

P
l wlhylP
l wl

� 0: ðB:2Þ

The example cloud shown in Fig. 24(b) is not a balanced cloud and this can be detected by using Eq.

(B.2). Even though the clouds shown in Fig. 24(c) and (d) satisfy Eq. (B.2), i.e., the center of gravity of the

cloud is close to the star node, these clouds are not defined as balanced clouds either. Thus, the center of

gravity approach does not provide a sufficient criteria for determining a balanced cloud. To avoid the
situations shown in Fig. 24(b)–(d), we propose a requirement for the point distribution within a cloud

which is given by

min
X
l

wlhx2l ;
X
l

wlhy2l

 !
� max

X
l

wlhxlhyl;

P
l wlhxl

P
l wlhylP

l wl

 !
; ðB:3Þ

min
X
l

wlhx4l ;
X
l

wlhx2l hy
2
l ;
X
l

wlhy4l

 !
� max

X
l

wlhx3l hyl;
X
l

wlhxlhy3l

 !
: ðB:4Þ

Eqs. (B.3) and (B.4) are proposed not only to meet the criteria of the center of gravity but also to balance

the mass moment of inertia for the cloud. By imposing the requirements of Eqs. (B.3) and (B.4), the

analytical expressions for the approximation function and its derivatives can be simplified and it is easy to

show that Eq. (B.3) avoids the situations of Fig. 24(b) and (c) and Eq. (B.4) avoids the situations of Fig.

24(d). These requirements are satisfied if the points in the cloud are spread evenly around the star point, as

shown in Fig. 24(a).

With the requirements of Eqs. (B.3) and (B.4), the Laplacian of the approximation function, r2NiðxjÞ,
can then be written as

r2NiðxjÞ ¼ a1 þ a2ðxi � xjÞ2 þ a3ðyi � yjÞ2; ðB:5Þ

where

a1 ¼
2ð�CDþ BE þ CE � BF Þ

�ðC2D� 2BCE þ AE2 þ B2F � ADF Þ ;

a2 ¼
2ðBC � C2 � AE þ AF Þ

�ðC2D� 2BCE þ AE2 þ B2F � ADF Þ ;

a3 ¼
2ð�B2 þ BC þ AD� AEÞ

�ðC2D� 2BCE þ AE2 þ B2F � ADF Þ

ðB:6Þ

and

A ¼
X
l

wl B ¼
X
l

wlhx2l C ¼
X
l

wlhy2l D ¼
X
l

wlhx4l E ¼
X
l

wlhx2l hy
2
l F ¼

X
l

wlhy4l :

In Eq. (B.6), �ðC2D� 2BCE þ AE2 þ B2F � ADF Þ is the determinant of the moment matrix (Eq. (5)). Since

the moment matrix is positive definite [17], its determinant is greater than zero. For reasons discussed in

Section 5, we choose the weighting function such that wj � wiði 6¼ jÞ. Therefore, it is easy to show that

A � B;C;D;E; F . Finally, the sign of r2NiðxjÞ is determined byX
l

wl

X
l

wlhy2l ðhy2l � hx2l Þhx2i þ
X
l

wl

X
l

wlhx2l ðhx2l � hy2l Þhy2i ðB:7Þ
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let

wl ¼
1

r4l þ �
: ðB:8Þ

Then the expression in Eq. (B.7) can be rewritten asX
l

cos2 ð2hlÞ � cosð2hlÞ
2

hx2i þ
X
l

cos2 ð2hlÞ þ cosð2hlÞ
2

hy2i ; ðB:9Þ

where

cosðhlÞ ¼
hxl
rl

: ðB:10Þ

It is clear that if
P

l
cos2 ð2hlÞ�cosð2hlÞ

2
and

P
l
cos2 ð2hlÞþcosð2hlÞ

2
are greater than zero, r2NiðxjÞ is positive for any

hxi and hyi. Define

f1ðhlÞ ¼ cos2 ð2hlÞ � cosð2hlÞ; ðB:11Þ

f2ðhlÞ ¼ cos2 ð2hlÞ þ cosð2hlÞ: ðB:12Þ
Look at the quadrant where 06 hl 6 p

2
. Given a h1 within ½0; p

4
� and a h2 within ½p

4
; p
2
�, we have

f1ðh1Þ < 0 and f1ðh2Þ > 0; ðB:13Þ

minðf1ðh1ÞÞ ¼ � 1

4
: ðB:14Þ

If we choose h2 such that f1ðh2ÞP 1
4
, then f1ðh1Þ þ f1ðh2ÞP 0. In this case, we obtain

arccos
1�

ffiffiffi
2

p

2

 !

2
6 h2 6

p
2
: ðB:15Þ

Similarly,

f2ðh1Þ þ f2ðh2ÞP 0 ! 06 h1 6

arccos

ffiffiffi
2

p
� 1

2

 !

2
: ðB:16Þ

Since
arccosð1�

ffiffi
2

p

2
Þ

2
� 51� and arccosð

ffiffi
2

p
�1
2

Þ
2

� 39�, we can conclude that, if Eqs. (B.3) and (B.4) is satisfied for a given

cloud, one can construct the fixed kernel approximation and satisfy the positivity conditions by employing

a weighting function of Eq. (B.8) and selecting the same number of points in ½np
2
; 39�þ np

2
� and

½51�þ np
2
; 90�þ np

2
�; n ¼ 0; 1; 2; 3.
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