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Abstract— In this paper, we describe a novel nonlinear con-
trol strategy for the closed-loop control of extensible continuum
robots. Previous attempts at controlling continuum robots have
proved difficult due to the complexity of their system dynamics.
Taking advantage of a previously developed dynamic model for
a three-section, planar, continuum manipulator, we develop an
adaptation-based control law. We present simulation results of
a set-point tracking between a rigid-link control device and an
extensible continuum manipulator. Experimental results of the
controller implemented on a six degree-of-freedom continuum
robot are also presented.

I. INTRODUCTION

Continuum robots [1] have the unique ability to bend at
any point along their structure, creating a novel control prob-
lem, especially when applying traditional control techniques.
This bending ability, derived from the Animal Kingdom
(tongues, trunks and tentacles), allows for a range of motions
unique to continuum robots that rigid-link manipulators are
incapable of performing [2], [3]. There have been numerous
designs of continuum systems developed over the years with
a corresponding range of potential applications [4], [5], [6],
[7], [8], [9], [10], [11], [12].

Continuum robotics is an emerging area of robotics where
areas of study common to robotic systems have room to grow
and be expanded. Given their ability to navigate unstructured
environments [13], wrap around objects of arbitrary shapes
[14], and use their entire structure to manipulate an object
[15], continuum robots allow for numerous novel applica-
tions of robot control theory. One subject that seems to have
been largely neglected in continuum robotics literature is the
use of nonlinear control techniques.

Kinematic modeling of continuum robots has been the
subject of extensive research [16], [17], including the de-
velopment of Jacobian models, both as approximations [18]
and, later, exact models [19], [20], [21]. These models allow
for real-time implementation of kinematic control of the
often kinematically redundant continuum systems through
traditional robot control practices.

Beyond kinematics, dynamic models of continuum sys-
tems have been studied and developed [22], [23], [24],
[25], [26], [27], [28]. Other works have investigated control
applications with dynamic models and model-free control
[29], [30], [31], [32], [33], [34], [35]. The development of
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continuum dynamic models and control using those mod-
els currently remain active and open areas of interest and
research.

Teleoperative control of continuum robots is another area
of investigation in continuum robots that has been investi-
gated [36], [19], [37]. These studies investigated the phys-
ical aspect of developing intuitive master systems for the
teleoperation of a continuum manipulator. In [38], the work
focused on the development of a controller that promoted
reduced tracking error between the end-effector positions for
kinematically dissimilar master and slave systems through
a model-based control law. The investigation of intuitive
teleoperation of continuum robots remains an active field of
research.

Nonlinear techniques are well established for robotic sys-
tems [39], [40], [41]. However, research into the nonlinear
control of continuum systems is very limited in the litera-
ture. To the authors’ knowledge, only one work describes
the investigation of nonlinear control methods applied to
continuum manipulators [42]. This work was extended and
compared to a proportional-derivative controller (PD) in
[30]. However, there are still numerous aspects of nonlinear
control theory that have yet to be investigated with regard to
continuum robotic systems.

In this paper, we introduce a nonlinear control law de-
veloped to create asymptotic tracking error convergence
between the end-effector of a rigid-link control device and
a continuum manipulator in their respective environments.
The approach is inspired by adaptive control, but without
the need to approximate unmodeled parameters. We report
on both simulated and experimental controller performance
as measured by the error between a master device and a
continuum manipulator.

The paper is organized in the following order: Section II
describes the mathematical modeling of the control device
and continuum manipulator. Section III describes the devel-
opment and stability analysis of the implemented control law.
Sections IV and V detail simulation and experimental results
of the implemented controller. Discussions and conclusions
are made in Sections VI and VII, respectively.

II. MATHEMATICAL MODEL

In order to develop the nonlinear control law, we make
use of both kinematic and dynamic models of an exten-
sible continuum manipulator limited to a single plane of
motion. Specifically, we use the model of a three-section, 9
Degree-of-Freedom (DoF) extensible continuum manipulator
referred to as the OctArm [14], seen in Figure 1. The
OctArm is a kinematically redundant extensible continuum
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robot comprised of three serially-connected sections. The
sections are designated as the base, middle, and tip, pictured
from right to left, respectively, in Figure 1. Each section
is capable of three independent motions: change in section
length, change in section curvature, and change in orientation
in three-dimensional (3D) space.

Fig. 1: The 9 Degree-of-Freedom OctArm Manipulator

The 9 DoF available are q = [s1 s2 s3 κ1 κ2 κ3 φ1 φ2 φ3]T.
As discussed in [17], si(t) represents the section length, κi(t)
the section curvature, and φi(t) is the section orientation of
the ith section, where i=1, 2, 3. When limited to a single
plane, the number of DoF reduces from nine to six, resulting
in q(t) = [s1 s2 s3 κ1 κ2 κ3]T. Figure 2, from [17], depicts
the geometric representation of s(t) and κ(t) for a single
continuum section.

Fig. 2: Geometric Representation of s and κ for Continuum
Section

Two master devices were used in this work, one for simu-
lation and one for the physical experiments. The simulation
master device is a 2 DoF rigid-link robot composed of
two revolute joints. This device can be described by the
values qm = [θ1 θ2]T. The physical master device, further
described in Section V and [43], is a 9 DoF continuum device
kinematically similar to the OctArm.

A. Kinematic Model

The kinematic models of the master device and continuum
manipulator are given by:

xi(t) , f(qi); i = 1, 2 (1)

where xi ∈ IRni is the position in the task space and f(qi)
∈ IRni denotes the forward kinematics. The first and second
derivatives with respect to time are:

ẋi(t) = Jiq̇i (2)

ẍi(t) = J̇iq̇i + Jiq̈i (3)

where J1 ∈ IRn1×n1 is the Jacobian of the rigid-link master
device. The development of the Jacobian for the continuum
manipulator can be found in [38].

The homogeneous transformation matrix describing the
coordinate frame and orientation transformation to the base
plane of a planar, single section continuum [17] robot is
given by equation:

H =


cos(siκi) − sin(siκi) 0 cos(siκi)−1

κi

sin(siκi) cos(siκi) 0 sin(siκi)
κi

0 0 1 0
0 0 0 1

 (4)

This transformation is used to determine desirable end-
effector locations for both the continuum master device and
OctArm in simulations by inputting values for s(t) and κ(t)
and evaluating the Cartesian values obtained from the matrix.

B. Dynamic Model

The dynamic model of the planar continuum manipulator
used herein, and detailed in [27], is of the form:

M(q)q̈ + C(q, q̇)q̇ = τ (5)

where M(q) ∈ IR6×6 is the inertia matrix, C(q, q̇) ∈ IR6×6

is the Centripetal-Coriolis matrix, and τ ∈ IR6 is the control
input for the planar continuum manipulator. The variables q̈,
q̇, and q are the acceleration, velocity, and position of the
system. It is assumed that q(t), q̇(t), and q̈(t) ∈ L∞. The
matrix M(q) is symmetric and positive definite and satisfies
the following inequalities [44]

m1i‖ξ‖2 ≤ ξTMi(·)ξ ≤ m2i‖ξ‖2, ∀ξ ∈ IR6 (6)

where m1i, m2i ∈ IR are positive constants and ‖ · ‖ implies
the standard Euclidean norm. Further, the matrix (Ṁ − 2C)
is skew-symmetric such that:

ξT (Ṁ − 2C)ξ = 0. ∀ξ ∈ IR6 (7)

These relationships are exploited when developing the con-
troller.

III. CONTROL DESIGN

The goal of the control design is to cause asymptotic
tracking convergence between the end-effector position of
the master device and continuum manipulator. Given the
simplicity of the two-dimensional (2D) master device, a PD
controller is adequate to cause asymptotic convergence to its
desired position. For the continuum manipulator, the use of
a previously developed Jacobian-based kinematic controller,
seen in [17], does eventually allow the end-effector to asymp-
totically reach the desired position, as illustrated in Figure
5, but does not result in a timely convergence to the solution
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required for effective real-time use of the continuum robot.
Therefore, it was anticipated that a nonlinear control strategy
would be better suited for the control of this inherently
nonlinear system.

In order to simplify the modeling, some assumptions were
made that further impact the design of the control law. These
assumptions are:

1. The continuum manipulator is operating on a plane
parallel to the ground, negating the impact of gravity on the
dynamic model.

2. The underlying surface on which the continuum manip-
ulator moves is passive and frictionless.

3. The master device is capable of manipulating all the
degrees-of-freedom available to the continuum manipulator.

4. The continuum manipulator does not grasp objects, or
otherwise contact the environment, to change its mass or
dynamic properties.

A. Control Synthesis

In order to create the nonlinear controller, a Lyapunov
function was defined for the continuum manipulator system:

V (t) ,
1

2
sTMs (8)

where

s(t) =



˙̃q1 + λq̃1
˙̃q2 + λq̃2
˙̃q3 + λq̃3
˙̃q4 + λq̃4
˙̃q5 + λq̃5
˙̃q6 + λq̃6

 , (9)

where the coefficient λ is a positive, real-valued constant.
The values ˙̃qi and q̃i are velocity and position errors between
the continuum manipulator and the desired position defined
as:

˙̃qi = q̇i − ˙qdi, (10)
q̃i = qi − qdi, (11)

where qdi and ˙qdi are the desired position and velocity of the
ith control parameter for the continuum manipulator. Further,
we find the time derivative of the Lyapunov function as:

V̇ =
1

2
sTMṡ+

1

2
ṡTMs+

1

2
sT Ṁs (12)

= sTMṡ+
1

2
sT Ṁs. (13)

Here ṡ(t) is
ṡ = q̈ − q̈r, (14)

defining the variable q̈r , q̈d - λ ˙̃q. By substituting equation
(14) into the derivative of the Lyapunov function in Equation
(12), we obtain:

V̇ = sTM(q̈ − q̈r) +
1

2
sT Ṁs (15)

= sT (τ −Mq̈r − Cq̇) +
1

2
sT Ṁs (16)

Finally, using the definition q̇ , s + q̇r and substituting
into equation (15), we have the derivative of the Lyapunov
function as:

V̇ = sT (τ −Mq̈r − C(s+ q̇r)) +
1

2
sT Ṁs (17)

= sT (τ −Mq̈r − Cq̇r) +
1

2
sT (Ṁ − 2C)s (18)

= sT (τ −Mq̈r − Cq̇r) (19)

The term 1
2s
T (Ṁ −2C)s in equation (18) is zero due to the

skew-symmetric property of (Ṁ−2C) given in equation (7).
In traditional adaptive control, the results from equation

(17) can be used to create an estimate of unknown manip-
ulator variables, such as mass at the end-effector. However,
in this research, all parameters are assumed to be known
due to the passive environment and Assumption 4. Thus,
we simply need to design a control input that can ensure
asymptotic tracking convergence and provide stability, the
following control law is proposed:

τ =M(q̈d − 2λ ˙̃q + λ2q̃) + Cq̇r, (20)

where τ ∈ IR6.

B. Stability Result

Before implementing the control law, the stability of the
system needs to be determined. First, substituting equation
(20) into equation (17) for τ yields:

V̇ = sT (Mq̈d − 2λM ˙̃q + λ2Mq̃ + Cq̇r −Mq̈r − Cq̇r)
(21)

= sT (Mq̈d − 2λM ˙̃q + λ2Mq̃ −M(q̈d − λ ˙̃q)) (22)

= sTM(−λ ˙̃q − λ2q̃) (23)

= −sT (λM)s (24)

Because M is a positive definite matrix and λ is a positive
constant, the term −sT (λM)s negative-definite. Coupled
with the positive-definite nature of the Lyapunov function
in equation (8), V̇ → 0, thus the solution is determined to
be asymptotically stable in the sense of Lyapunov.

IV. CONTROLLER SIMULATION

Simulations were run to test the effectiveness of the
control law. A simulated dynamic model of the OctArm with
planar motion was first used to test the convergence of the
Jacobian-controlled OctArm compared to convergence of the
continuum manipulator using the nonlinear control input. In
order to ensure an end-effector position achievable by the
OctArm, the desired position for simulation was determined
by selecting a random OctArm configuration and then using
the OctArm forward kinematics to calculate the resulting
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end-effector location. For the simulation set reported below,
the desired OctArm configuration was set to be:

qd =


s1
s2
s3
κ1
κ2
κ3

 =


0.3233 m
0.5000 m
0.4250 m
0.040 m−1

−0.020 m−1

0.052 m−1


Using the OctArm forward kinematics for a three-section

continuum robot, the desired end-effector location for the
OctArm configuration was determined to be:

p =

[
z
x

]
=

[
1.248 m
−0.012 m

]
where z ∈ IR and x ∈ IR are the coordinates for the base
frame, illustrated as z0 and x0 in Figure 3.

Fig. 3: OctArm Coordinate System

The tracking error of the simulated master device to the
desired position can be seen in Figure 4, where asymptotic
convergence is achieved through the use of the inverse
Jacobian for the 2 DOF rigid-link manipulator. Figure 5
depicts the error tracking between the master device and
continuum manipulator when relying on the inverse Jacobian
of the OctArm to control its end-effector’s location. These
errors do eventually converge to the master device’s end-
effector location with a steady state error of approximately
5 mm, but convergence is not smooth and takes an a priori
unpredictable amount of time.

Fig. 4: Rigid-Link Master Device Tracking Error

Fig. 5: Jacobian Controlled Simulated OctArm Tracking
Error

Figures 6 and 7 depict the corresponding tracking errors
between the rigid-link master device and continuum manip-
ulator with the implementation of the nonlinear controller
for different values of λ. As can be seen, the time of
convergence and the oscillation of the error decreases as the
value of λ increases. Setting λ = 1 gives initial convergence
to the desired position but results in a steady state error
of approximately 18 cm. A value of λ = 25 was found to
produce an asymptotically converging tracking error while
also eliminating oscillations seen in lower values of λ.
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Fig. 6: Simulated OctArm Tracking Error, λ=1

In order to simulate a noisy system feedback in a phys-
ical system, an additional simulation was performed with
Additive Gaussian white noise introduced into the feedback
loop of the system. The Signal to Noise Ratio (SNR) of
the Gaussian input was 30 dB, the impact of which can be
seen in Figure 8. The end-effector tracking error can still be
observed asymptotically converging to zero despite the noise
added to the system.

V. EXPERIMENTAL IMPLEMENTATION

In order to validate the controller on a physical continuum
manipulator, experiments were conducted using the OctArm.
The input device used was a 9 DoF continuum master device,
described in [43]. The master device is kinematically similar
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Fig. 7: Simulated OctArm Tracking Error, λ = 5

Fig. 8: System Response with added White Gaussian Noise,
SNR = 30 dB

to the OctArm, comprised of three sections, each described
by s(t), κ(t), and φ(t). In these experiments, only the arc
length (s) and curvature (κ) values determined by the master
device were used. All three sections of the OctArm were
programmed to curve in the same plane.

The nonlinear controller was implemented in Mat-
lab/Simulink [45]. A pair of Quanser Q8 data acquisition
boards [46] were used to receive the desired configuration set
by the master device and output the values calculated by the
nonlinear controller. The kinematic values determined by the
master device were used as a desired end-effector set-point
location within the Simulink model similar to the set-point
used in the simulations in Section IV.

Five configurations were chosen to highlight the effective-
ness of the nonlinear controller. These were as follows:

1. No extension or curvature for any section.
2. Base section extended and curved.
3. Middle section extended and curved.
4. Tip section extended and curved.
5. All sections extended and curved.
The specific kinematic values set by the master device for

each of the configurations are listed in Table I.
For comparison, the same configurations were used in

an open-loop control scheme of the OctArm. Figures 10-

Parameter CFG 1 CFG 2 CFG 3 CFG 4 CFG 5
sbase [m] 0.3234 0.3600 0.3233 0.3233 0.3437
smid [m] 0.3140 0.3140 0.3496 0.3140 0.3386
stip [m] 0.3387 0.3387 0.3387 0.3791 0.3623

κbase [m-1] 0.0012 0.0178 0.0012 0.0012 0.0160
κmid [m-1] 0.0015 0.0083 0.0392 0.0015 0.0445
κtip [m-1] 0.0047 0.0047 0.0047 0.0378 0.0296

TABLE I: Kinematic Values for Experimental OctArm Con-
figurations

14 display both the end-effector error and tracking data for
each configuration from both the open-loop and nonlinear
closed-loop controller. The tracking plots display the paths
traveled by the ends of the base, middle, and tip sections
of the OctArm. These paths are colored cyan, green, and
red, respectively. Also displayed are the desired set points
of the base, middle, and tip section given by the master
device. These appear as blue, dark green, and maroon stars.
The black triangle marks the beginning of the base section
for both the master device and OctArm and a black star
designates the final end-effector position for the OctArm.

Additionally, in order to evaluate potential error in system
feedback and state estimation, the location of the OctArm
end-effector was manually measured using a grid located
in the plane-of-motion of the OctArm, as seen in Figure 9.
These errors are discussed in Section VI

Fig. 9: Experimental Measurement Grid for OctArm

VI. DISCUSSION

A. Simulation Results

The developed control law successfully resulted in asymp-
totic tracking convergence between the rigid-link master
device and continuum manipulator in simulation. As seen
in the simulation results, Figures 6 and 7, an increase in
the value of λ greatly influenced the accuracy and rate of
convergence of the continuum manipulator. Small values
of λ (λ ≤ 1) caused the end-effector to over-shoot the
desired position and resulted in either oscillating or constant
error from the desired position. Larger values of λ (λ > 1)
resulted in ideal asymptotic convergence, though moderate
values of λ still produced small amounts of oscillation in the
approach to zero-tracking error. Additionally, the continuum
manipulator was still able to asymptotically converge to the

7731



0 5 10 15 20
Time [s]

-1

-0.5

0
Z

-E
rr

or
 [m

]

0 5 10 15 20
Time [s]

-0.6
-0.4
-0.2

0

X
-E

rr
or

 [m
]

(a) Nonlinear End-Effector
Error

0 0.2 0.4 0.6 0.8 1 1.2
Z-Axis [m]

-0.1

0.1

0.3

0.5

0.7

X
-A

xi
s 

[m
]

(b) Nonlinear Tracking Data

0 5 10 15 20
Time [s]

-1

-0.5

0

Z
-E

rr
or

 [m
]

0 5 10 15 20
Time [s]

-0.6
-0.4
-0.2

0

X
-E

rr
or

 [m
]

(c) Open Loop End-Effector
Error

0 0.2 0.4 0.6 0.8 1 1.2
Z-Axis [m]

-0.1

0.1

0.3

0.5

0.7

X
-A

xi
s 

[m
]

(d) Open Loop Tracking Data

Fig. 10: Straight Configuration Tracking and Error Data

solution despite the presence of Gaussian white noise in the
system feedback loop.

B. Experimental Results

During the implementation of the nonlinear controller
on the OctArm, multiple considerations were made when
obtaining and analyzing the results. Most notable was the
need to use a vector of varying λ values for each configura-
tion in order to critically-damp the system response. During
simulation, a single λ value for all 6 DoF was adequate
for end-effector convergence. In experimentation, a single λ
value assigned to the entire OctArm, or even a single section,
produced an oscillatory response. Therefore, a vector of 6 λ
values, one for each DoF, was implemented. The λ values
used to produce the results in Section V varied for each
configuration. These values are listed in Table II.

Parameter CFG 1 CFG 2 CFG 3 CFG 4 CFG 5
sbase 85 60 200 600 60
smid 85 200 380 300 60
stip 85 200 120 700 60
κbase 85 450 200 1000 550
κmid 85 200 450 700 600
κtip 85 200 160 1500 650

TABLE II: λ Values Corresponding to Experimental Config-
urations

The error and tracking plots in Section V reveal steady-
state errors in end-effector location and section end-point
locations. These errors can be attributed to a multitude of
factors such as imperfections in system feedback, unmod-
eled friction, physical limitations associated with continuum
systems, and model errors.

The error between the manual measurements and state
estimate values are seen in Table III. In configuration 4, the
curving of the tip section, the error between the manual mea-
surement and the state estimate at the end-effector location
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Fig. 11: Curving Base Section Configuration Tracking and
Error Data
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Fig. 12: Curving Middle Section Configuration Tracking and
Error Data
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Fig. 13: Curving Tip Section Configuration Tracking and
Error Data

could not be captured due to the oscillations seen in Figure
13a.

The limit cycles (oscillations) seen in Figure 13 are
likely due to the unmodeled dynamics resulting from our
experimental conditions and differences between the physical
system and the ideal model used. Corrections made to the
model as well as changes to initial conditions could reduce
or eliminate these oscillations.

C. Further Research

Further consideration can be given to implementing the
developed control law for real-time tracking between a
master device and continuum manipulator instead of set
point-convergence. This will include the need to dynamically
alter λ values during runtime and increase the accuracy of
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(d) Open Loop Tracking Data

Fig. 14: All Sections Curving Configuration Tracking and
Error Data

Parameter Z-Error [m] X-Error [m]
CFG 1 0.08 0.07
CFG 2 0.02 0.09
CFG 3 0.03 0.12
CFG 4 - -
CFG 5 0.01 0.10

TABLE III: State Estimation Error

the dynamic model. One possible solution for this is the
implementation of a Kalman filter or similar tool to update
λ depending on tracking error.

While the implemented control law performs as desired,
there is still the desire to develop a truly adaptive control
law for the control of continuum systems. Future work will
examine the introduction of uncertainties into the models and
environment, such as obstacles and objects to manipulate, as
well as friction.

Additionally, there is the need to expand the control of a
continuum system to the dimension outside of the plane. This
requires the development of a spatial dynamic model capable
of modeling all of the degrees-of-freedom available to a
three-section continuum robot. Once developed, nonlinear
controllers such as the one examined in this paper can be
updated to include such a model.

VII. CONCLUSION

We have introduced a novel nonlinear control law for
extensible continuum robots. The control law is inspired by
standard adaptive control techniques. However, the control
law assumes no uncertainties in the model or the environ-
ment. Though the designed control law does not perfectly
cancel the continuum manipulator dynamics, the results
demonstrate that asymptotic tracking convergence is still
achieved at a rate similar to exact cancellation. Results
were demonstrated through both the simulation and physical
implementation of a three section continuum manipulator.
Accompanying this paper is a video showing the tracking

7733



motion of the OctArm in the plane as reported in the
experimental results.
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