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Abstract— In this paper, we present a new approach towards
the control of continuous backbone (continuum) “trunk and
tentacle” robots. Development of model-based control algo-
rithms for this new and emerging class of robots has been rela-
tively slow due to the inherent complexity of their mathematical
models. Based on the recently developed kinematics, velocity
Jacobian and full dynamic model, a simple nonlinear task-
space controller, established for rigid-link robots, is adapted
and extended for continuum manipulators for the regulation
of its tip or any location along its backbone in the task-
space. This approach is applicable to all continuum robots
with extension/contraction and bending capabilities. Simulation
results are shown using a three-section, six degree-of-freedom
planar continuum robot.

I. INTRODUCTION

Continuum or continuous backbone robots [1], [2], [3],
[4], [5] have recently been the subject of much attention
[6], [7], [8]. The ability of continuum backbones to bend at
any point along their structure, together with their inherent
compliance, offers continuum robots the potential to perform
functions not feasible with conventional robots. In particular,
novel modes of grasping and manipulation, using the robots
to adapt their shape and “wrap around” environmental objects
of a wide variety of shapes, sizes, and physical properties
[9], as seen in Figure 1, have been widely proposed. Initial
results from simple experimentation with continuum robot
hardware [10], [11] have underlined the strong potential of
this approach to transform the nature of robotic grasping and
manipulation.

In the past few years, significant progress has been made
in the modeling of continuum robots. General kinematic
models have been developed [12], [13], [14], and research
in dynamics initially developed in [15] is active [16], [17]
and ongoing [18], [19]. The results have been successfully
applied to a variety of continuum robot hardware [8], [10],
[20]. Additional work has established core results in the
development of configuration-space controllers of continuum
robots [21], [22], [23], [24]. However, works considering
of manipulation using continuum robots are scarce [11],
[25], [26]. This appears to be largely due to two main
current deficiencies in the literature: (1) a concentration in
the research thus far on configuration space models (the
transformation to task-space - critical for manipulation - is
non-trivial for continuum robot grasping); and (2) lack of
effective control strategies for continuum robot hardware,
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making it difficult to realize desired motion plans in practice.
In this paper, we introduce a new approach to task-space
continuum robot control aimed at enabling ‘whole arm’
continuum grasping and manipulation.

Fig. 1. The Octarm Grasping a Cylindrical Object

The work in this paper is the first, to the best of our
knowledge, to consider task-space control (i.e. control driven
by feedback in the task-space) for continuum robots. We
show that somewhat parallel to the case for conventional
rigid-link robots, task-space feedback, when suitably chosen,
is effective for continuum robots. Moreover, and in strong
contrast to the case for conventional robots, our formulation
enables the location of the controlled task-space coordinates
to vary along the robot backbone. This is critical for enabling
practical “whole arm grasping” of the type long-postulated
for continuum robots.

The issue of variable task-space coordinates is an impor-
tant one for continuum robot grasping and manipulation.
Note that for conventional robot manipulators equipped with
parallel jaw grippers, “grasping” amounts to the discrete
event of closing the gripper. Grasping control is therefore
a binary “success/fail” discrete event, and (subsequent) task-
space manipulation is entirely an issue of controlling the
end-effector coordinates in which environmental objects are
fixed. For whole arm grasping however, grasping, as defined
by the acquisition of sufficient physical influence over an
object to constrain its movements in given direction(s), is
a process, not an event. Contact is made over a range of
locations on the robot, and the key coordinates that have to
be controlled during the grasp, change over time. Grasping
is also more closely coupled with manipulation, which is
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no longer solely a matter of controlling the configuration
of the robot, under the assumption that the grasped object
remains fixed with respect to the robot. In the following, we
introduce and demonstrate the effectiveness of a new task-
space controller for continuum robots which simultaneously
combines grasping and manipulation components.

II. SYSTEM MODEL

A. The Task-Space

As noted above, for continuum robot grasping and ma-
nipulation, the key task-space coordinates, unlike the case
of conventional robots, are not typically located at the tip
(distal end) of the robot. The key physical advantage of
continuum robots is the ability to use any location of their
structure to grasp and manipulate objects, and task-space
control strategies should reflect this. This requirement not
only results in added complexity in the analysis, but also in
a novel controller structure.

First, we define the task-space coordinates x(d, t) ∈ R
m,

where t ∈ R
+ represents time and d(t) ∈ R represents

the arc length specifying location along the backbone of
the robot. More specifically, in the context of this paper,
x(d, t) ∈ R

3 such that x(d, t) = [X,Z, ψY ], where X(t),
and Z(t) ∈ R represent the manipulator end-effectors x-axis
and z-axis coordinates respectively, and ψY ∈ R represents
the y-axis orientation of the manipulator. This allows the
task-space to be located arbitrarily on the robot. We further
assume that locations of contact between the robot and the
environment can be sensed. For example, the local sensors
can be embedded in the robot, or an external vision system
can be used to sense the location of any point on the
backbone in real time1. While the coordinates x(d, t) are
arbitrary in general, in this paper we will restrict x(d, t) to
the tip of the robot and to locations of contact between the
robot and the environment.

The controller structure will combine two components: (a)
movements of the robot which cause ẋ(d, t) �= 0; and (b)
movements of the robot which cause ẋ(d, t) = 0. Intuitively,
we associate those movements in (a) with manipulation; and
those in (b) with grasping about the fixed point of contact
at x(d, t). In practice, more complex and more interesting
situations can occur, but the above intuition will suffice to
demonstrate the controller herein.

B. Kinematic Model

Based on the kinematic model developed by Jones and
Walker [14], the end-effector position and orientation in the
task-space, x(d, t) ∈ R

m is found as

x � f(q) (1)

where f(q) ∈ R
m represents the forward kinematics of the

extensible continuum manipulator, and q(t) ∈ R
n represents

the manipulator section lengths and curvatures. For the
OctArm model used here, it should be noted that q(t) ∈ R

6

1These assumptions are satisfied in our lab for the types of continuum
robot examined in the subsequent analysis

and q(t) = [d1, d2, d3, κ1, κ2, κ3]
T , the extension lengths and

curvatures for each of the three sections respectively. From
(1), the differential relationships between the end-effector
position and the section lengths and curvature variables can
be calculated as

ẋ = J(q)q̇

ẍ = J̇(q)q̇ + J(q)q̈
(2)

where q̇(t), q̈(t) ∈ R
n represent the velocity and acceleration

vectors of the section lengths and curvatures respectively,
while J(t) ∈ R

m×n denotes the manipulator Jacobian, which
can be defined as

J(q) �
∂f(q)

∂q
. (3)

C. Dynamic Model

In this article, the dynamic model for the 3-section Octarm,
developed by Tatlicioglu et al. [19] is utilized . The dynamic
model in presented in the familiar Euler-Lagrangian form,
and is given by

τ = M(q)q̈ + V (q, q̇) q̇ +Gq +B(q) +E(q) (4)

where τ ∈ R
n represents the manipulator control input,

M(q) ∈ R
n×n represents the inertia matrix, V (q, q̇) ∈

R
n×n represents the effect of Centripetal-Coriolis forces,

G(q), B(q), and E(q) ∈ R
n represent gravitation effects,

potential energy due to bending, and potential energy due to
extension respectively. The model has the following proper-
ties:

Property 1: The inertia matrix M(q) is symmetric and
positive definite, and

m1‖ξ‖
2 ≤ ξTM(q)ξ ≤ m2‖ξ‖

2 ∀ξ ∈ R
n (5)

Property 2: The inertia and Centripetal-Coriolis matrices
satisfy the following property

ξT
(
Ṁ − 2V

)
ξ = 0 ∀ξ ∈ R

n. (6)

Note that this property is satisfied when Ṁ − 2V is skew-
symmetric.

Remark 1: The details of the Euler-Lagrangian form for
the Octarm can be found in [19].

III. ERROR SYSTEM FORMULATION

Let e(t) ∈ R
m be defined as the task-space tracking error

such that
e � xd − x, (7)

where xd(t) ∈ R
m denotes the desired task-space trajectory,

and the first and second time derivatives of e(t) are given by
ė, ë ∈ R

m such that

ė = ẋd − ẋ

ë = ẍd − ẍ.
(8)

In (8), ẋd(t) and ẍd(t) ∈ R
m represents the desired task-

space velocity and acceleration respectively. Additionally,
xd(t) is chosen such that xd(t), ẋd(t), and ẍd(t) ∈ L∞.
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Let a sub-task error, denoted by eN (t) ∈ R
n be defined

such that
eN �

(
In − J+J

)
(g − q̇) (9)

where In ∈ R
n×n denotes the n×n identity matrix, J+(q) ∈

R
n×m is the pseudoinverse2 of J(q), and g(t) is an auxiliary

signal based on the required sub-task control objective such
as, joint limit avoidance, singularity avoidance, or obstacle
avoidance.

Remark 2: A similar sub-task signal to that in the
subsequent analysis was introduced in the original work
on task-space control for redundant manipulators [27], and
subsequently in [28]. In those works however, the connection
of the auxiliary signal g(t) ∈ R

n to physically meaningful
self-motions was tenuous. For continuum robot grasping
however, physically meaningful signals g(t) may readily be
synthesized. For example, given x(d, t) as the location of
contact between the robot and environment, the two g(t)
vectors represent self-motion of the robot, maintaining the
contact point, but “sliding past” and “rotating around” it,
respectively.

IV. CONTROL DESIGN

Based on the above error system development, and the
subsequent stability analysis, the control input τ (t) ∈ R

m is
designed as follows

τ = M
(
J+

(
ẍd +Kv ė+Kpe− J̇ q̇

)
+ φN

)
+V +B+E

(10)
where Kp and Kv ∈ R

m×m are constant proportional and
derivative feedback gain matrices respectively. The vector in
the null-space is given by φN ∈ R

m×n and can be denoted
as

φN = (I − J+J) (ġ +KN ėN)

−
(
J+J̇J+ + J̇+

)
J (g − q̇)

(11)

where Kn×n
N ∈ R

+ is a positive definite feedback matrix.
Theorem 1: The controller proposed in (10) guarantees

that e(t) → 0 as t → ∞ provided the manipulator does
not go through a singularity.

Proof: From, (10), the closed loop system can be given
as

Mq̈ + V q̇ +B + E =

M
{
J+

(
ẍd +Kv ė+Kpe− J̇ q̇

)
+ φN

}
+ V +B + E.

(12)
From the expression in (12), it can be seen that

q̈ = J+

(
ẍd +Kv ė+Kpe− J̇ q̇

)
+ φN , (13)

since M (q̇) satisfies Property 1. From (2), it can be seen
that

q̈ = J+

(
ẍ− J̇ q̇

)
+ q̈N , (14)

where q̈N (t) ∈ R
m is a vector in the null space of J(q).

Substituting (14) in (13) results in the following expression

J+ (ë+Kv ė+Kpe) = q̈N − φN . (15)

2Properties of the Moore-Penrose pseudoinverse are provided in Appendix
I

Premultiplying (15) by the Jacobian J(q) results in

ë+Kv ė+Kpe = 0, (16)

as from the properties of pseudoinverses listed in Appendix I,
JJ+ = I , when J(q) is of full rank, and J (q̈N − φN ) = 0
because q̈N − φN belongs in the null space of J(q). The
choices of Kp and Kv that ensure the frequency-domain
transform s2+Kvs+Kp, where is s is the Laplace transform
operator, is Hurwitz, results in the error signal e(t) → 0,
exponentially.

In continuation of the controller synthesis, the time deriva-
tive of (9) yields

ėN =
(
I − J+J

)
(ġ − q̈) −

(
J̇+J + J̇ J̇

)
(g − q̇) , (17)

in which, the substitution of (9) results in

ėN = (I − J+J) (ġ − q̈) − J+J̇eN

−
(
J+J̇J+ + J̇+

)
J (g − q̇) .

(18)

Substituting equations (11) and (14) in (18) results in

ėN = (I − J+J) ġ − φN − J+J̇eN

−
(
J+J̇J+ + J̇+

)
J (g − q̇) ,

(19)

which, given that (I − J+J)J+ = 0 and φN (t) is in the
null-space of J(q), can further be rewritten as

ėN = −
(
I − J+J

)
KNeN − J+J̇eN . (20)

Theorem 2: The control law given in (10) and the null-
space vector given in (11) guarantees global asymptotic sub-
task tracking such that the configuration velocity goes to
g(t) in the null space, i.e. ‖eN‖ → 0 as t → ∞ provided
the manipulator does not achieve a singular configuration.

Proof: Let a Lyapunov function V (t) ∈ R
n be defined

such that

V =
1

2
‖eN‖2. (21)

The time derivative of (21) yields

V̇ = eT
N ėN , (22)

in which the substitution of (20) results in the following
expression

V̇ = −eT
N

(
I − J+J

)
KNeN − eT

NJ
+J̇eN , (23)

which can further be reduced to

V̇ = −eT
NKNeN , (24)

by utilizing the properties of pseudoinverses listed in Ap-
pendix I.

It can be seen that V (t) in equation (21) is positive-
definite, and V̇ (t) in equation (24) is subsequently negative-
definite, it goes that ‖eN‖ → 0 monotonically as t → ∞.
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V. SIMULATION EXAMPLE

A numerical simulation was performed using the MAT-
LAB/Simulink package to outline the performance of the
controller proposed in equation (10). The simulation con-
sisted of two phases; The first phase highlighted the perfor-
mance of the proposed controller, was set up to have x(d, t)
correspond to the tip of the robot using the mathematical
model of the OctArm manipulator [7]. The second phase
assumed contact of the manipulator’s tip-section mid-point
with an object, which it then attempted to grasp. For the
purpose of this paper, all three sections were actuated, and
for simplicity, the robot motion was restricted to the plane
orthogonal to the effect of gravity. Thus, the robot has
six degrees of freedom, that of extension/contraction and
bending for each of the three links.

In the simulation the robot is modeled using the Jacobian
derived from [14] and dynamic models detailed in [19] and
[29] for the Octarm continuum manipulator as shown in
Figure 2. The controller in the simulation has an additive
white Gaussian noise with SNR = 60 introduced into the
configuration-space information fed back into the system
to simulate real-time errors due to modeling inaccuracies,
sensor errors or other unaccounted-for dependencies.

Fig. 2. The Octarm Continuum Manipulator

The nominal desired trajectories for the end-effector posi-
tion are represented by an aggressive set of damped sinusoids
given by

xd =

⎡
⎣

0.7494 + 0.01sin
(

πt
6

)
0.124 + 0.05sin

(
πt
6

)
0

⎤
⎦ . (25)

where the xd(t) vector represents the x-coordinate and z-
coordinate trajectories, and y-coordinate orientation respec-
tively.

The control gains used that provided these results were

Kp = 150I3 Kv = 0 ∗ I3 KN = I6. (26)

It can be seen that the error plots shown in Figure 3
converge satisfactorily within 5 seconds when the system is
controlling the tip of the manipulator. This is consistent with
the dynamic characteristics of the physical Octarm, which is
a pneumatically-actuated compliant device featuring a more
sluggish dynamic response and higher time constants than
conventional industrial manipulators [9].

At t = 20 seconds, we assume that the mid-point of the
tip section of the manipulator comes into contact with an
object, which is when the controller switches from regulation
mode to grasping mode, with the general structure of the
controller and its gains remaining unchanged. This means
that after contact has been made, the “free” portion of the
tip section continues to bend, attempting to “grasp” the object
as seen in Figure 7. Figure 8 illustrates the section lengths
of the manipulator which remain constant upon the switch
to the Grasping Phase. When coupled with the changing
section curvatures, this explains the change in manipulator
tip positions in Figure 5 which is no longer being controlled.
Figure 4 illustrates that despite the switch in tasks, the
manipulator is able to track its new desired position. The
manipulator control inputs for this mode are shown in Figure
6.
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Fig. 3. Octarm Tip Control Phase Tracking Errors

VI. CONCLUSION

We have introduced a new model-based nonlinear task-
space controller extending the concept originally developed
for rigid-link manipulators to a general class of continuum
robots. The application adopts the kinematics, velocity Jaco-
bian, and dynamics recently established in the literature. By
exploiting the structure inherent in the mathematical model,
the controller is guaranteed to converge in spite of inherent
errors due to uncertainty in the model parameters. This result
is applicable to all continuum robots that extend as well
as bend, and is demonstrated via two simulations using the
model of a three-section extensible continuum manipulator.
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Fig. 4. Octarm Grasping Phase Tracking Errors
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Fig. 5. Octarm Tip Section Positions
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Fig. 6. Octarm Section Length and Curvature Control Inputs
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Fig. 8. Octarm Section Lengths

APPENDIX I
PSEUDOINVERSE PROPERTIES

For the development of the task-space controller, the
pseudoinverse, J+(q), of the Jacobian J(q) is defined as

J+ � JT
(
JJT

)−1
, (27)

resulting in the property

JJ+ = Im (28)

where Im ∈ R
m×m is the standard identity matrix. As

described in [30], the pseudoinverse defined in (27) satisfies
the following Moore-Penrose properties

JJ+J = J J+JJ+ = J+

(J+J)
T

= J+J (JJ+)
T

= JJ+.
(29)

In addition to these properties listed above, the matrix
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(In − J+J) also satisfies the following useful properties

(In − J+J) (In − J+J) = In − J+J

(In − J+J)
T

= In − J+J

J (In − J+J) = 0n×m

(In − J+J)J+ = 0n×m.

(30)
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