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Optical imaging of raindrops provides important information on the statistical distribution of raindrop
size and raindrop shape. These distributions are critical for extracting rainfall rates from both dual- and
single-polarization radar signals. A large number of raindrop images are required to obtain these
statistics, necessitating automatic processing of the imagery. The accuracy of the measured drop size
depends critically on the characteristics of the digital image processing algorithm used to identify and
size the drop. Additionally, the algorithm partially determines the effective depth of field of the camera�
image processing system. Because a large number of drop images are required to obtain accurate
statistics, a large depth of field is needed, which tends to increase errors in drop size measurement. This
trade-off between accuracy and depth of field (dof) is also affected by the algorithm used to identify the
drop outline. In this paper, eight edge detection algorithms are investigated and compared to determine
which is best suited for accurately extracting the drop outline and measuring the diameter of an imaged
raindrop while maintaining a relatively large depth of field. The algorithm which overall gave the largest
dof along with the most accurate estimate of the size of the drop was the Hueckel algorithm [J. Assoc.
Comput. Mach. 20, 634 (1973)]. © 2007 Optical Society of America

OCIS codes: 010.0010, 010.3920, 100.0100, 100.2000, 100.2960, 100.2980, 100.5010.

1. Introduction

There are several methods for measuring rainfall,
however only radars provide the capability of pro-
viding detailed maps of rainfall over large areas.
Precipitation radars fall primarily into two classes:
single-polarization radars and dual-polarization ra-
dars [1]. The majority of precipitation radars are of
the single-polarization type since these are used in
operational weather stations; dual polarization radars
are currently used primarily in research. While pre-
cipitation radars provide large spatial coverage, the
accuracy of the measurements obtained is question-
able due, among other things, to imperfect knowledge
of the size and shape of raindrops, as is demonstrated
below [2,3].

A single-polarization radar measures a reflectivity
factor Z over its measurement domain. The measured
reflectivity can be related to the distribution of rain-

drop sizes in the measurement volume. Following the
treatment presented in Doviak and Zrnić [1], the drop
size distribution (DSD) is related to Z via the equa-
tion:

Z ��
0

�

D6N(D)dD, (1)

where D is the diameter of the drop and N�D� is the
DSD. The rainfall rate R is related to the DSD by the
following equation:

R �
�

6 �
0

�

D3N(D)wt(D)dD, (2)

where wt�D� is the terminal velocity of the raindrop,
which is itself a function of the diameter. Since both
the reflectivity factor Z and the rainfall rate R depend
on the DSD, a relation between R and Z can be es-
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tablished once the DSD is known. The DSD is typi-
cally modeled as an exponential having the form:

N(D) � N0e
��D, (3)

where N0 and � are parameters used to obtain the
best fit of the actual DSD to this exponential function.
Substituting N�D� from Eq. (3) into Eq. (1) and inte-
grating, the following expression for Z is obtained:

Z � N0(6!)��7. (4)

Because single-polarization radars provide only
one measurement, Z, and according to Eq. (3), the
DSD requires a minimum of two parameters �N0, ��,
the task of extracting R from Z using Eq. (2) is in-
herently underconstrained. Hence, for the single-
polarization measurement, one needs to have a priori
knowledge of the DSD. Since the DSD is known to
vary with storm type, geographical location, and sea-
son [1], researchers continue to measure and study
the DSD, and there is a need for improved DSD mea-
suring methods.

Dual-polarization radars provide an improvement
on the single-polarization measurement in that a
two-parameter measurement is performed. In this
case, the problem of needing to have a priori knowl-
edge of the DSD is obviated. However, one does need
to know the average shape of each drop size in the
radar measurement volume in order to accurately
obtain R from the two radar measurements Zh and Zv,
the horizontal and vertical radar reflectivity, respec-
tively. The reader is referred to [1], which shows that
the relationship between �Zh, Zv� and R requires the
eccentricity e versus D relationship for the drops in
the radar measurement volume. The eccentricity is
defined as:

e � (1 � �2)1�2, (5)

where � is

� � v�h, (6)

and v and h are the vertical and horizontal extent of
the drop, respectively. Eccentricity quantifies the
raindrop shape, and measurement of raindrop shape
is complicated by the tendency of raindrops to oscil-
late. Theoretical models have been developed to pre-
dict the shape of raindrops [4,5], and laboratory
measurements have been carried out with drops of
different sizes to understand their behavior [6–8]. In
addition, field measurements have also been carried
out to extend the laboratory measurements and the-
oretical models [9]. However, inaccuracies still exist
in the e versus D relationship, and a need for mea-
surements of raindrop shape remains.

Summarizing, single-polarization radars require
field measurements of the DSD for the particular
storm type, geographical location and season for
which that radar is being operated. Without this,

extraction of R from Z results in large errors. Dual-
polarization radars require the e versus D distri-
bution which necessitates field measurements of
raindrop shapes. Several methods exist for measur-
ing the DSD and the e versus D distribution as are
described below. First, however it should be noted
that even if one were to measure the DSD perfectly,
other issues exist which would complicate rain mea-
surement via radar. Among these include the fact
that the radar volume is large and therefore inte-
grates over heterogeneities within the radar volume.
Hence variations in rain rate due to differences in the
DSD within the measurement volume will not be
seen and will result in errors in R. Also, measure-
ments of DSDs on the ground may not agree with
those in the radar measurement volume. Further-
more, the presence of wind can cause rain observed at
a certain location in a radar volume to fall in a dif-
ferent spatial location on the ground. Finally, the
radar measurement volume may be at sufficient ele-
vation that some or all of the signal is due to ice,
which has a very different radar cross section, poten-
tially causing large errors in the value of R obtained
from Z. Although not investigated here, these and
other issues can have a significant impact on mea-
surements of rain using radar.

Several methods have been developed and utilized
for measuring individual droplet sizes for computa-
tion of the DSD. The Joss-Waldvogel impact disdrom-
eter (JWD) [10,11] is perhaps the most commonly
used method for measuring the DSD. This disdrom-
eter measures the size of a drop based on the impact
of the drop on a Styrofoam cone. The limitations of
this disdrometer are that high noise environments
can result in erroneous drop counts. The JWD also
underestimates the amount of small drops in heavy
rain because of simultaneous drop impacts [12]. Be-
cause the JWD is an impact type device, it does not
have the capacity to determine drop shape, and there-
fore cannot provide measurements of e.

Several optical methods have been developed for
DSD measurement. Hauser et al. [13] developed a
disdrometer that created a rectangular sheet of light
by collimating light emitted from an IR LED. Drops
falling past this sheet of light occlude light striking a
photodiode, permitting measurement of drop diame-
ter. Löffler-Mang and Joss [14] used a sheet of laser
light and an optical sensor to detect drop sizes via
extinction of the light by the drops. A single optical
sensor was used in the work of both Hauser et al. [13]
and Löffler-Mang and Joss [14] (and other methods
of this general type [15,16]), providing a time trace
which must then be processing to extract drop diam-
eter and fall speed via some type of calibration. Be-
cause a single detector is employed in these methods,
the presence of more than one drop in the laser sheet
results in coincidence issues. A similar approach was
employed by Grossklaus et al. [17] where a cylinder of
laser light instead of a sheet is used. This device was
optimized for high wind speeds and shipboard use.
Delahaye et al. [18] extended the method of using a
sheet or laser light to two sheets, permitting accurate
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measurement of droplet velocity. Borrmann and
Jaenicke [19] developed a holographic method for
measuring droplet size and velocity in clouds. This
holographic droplet and aerosol recording (HODAR)
system was successfully used in obtaining measure-
ments for droplets ranging in diameter from 3 �m to
several hundred microns. The two-dimensional video
disdrometer (2DVD) [20–22] is capable of measuring
both the drop diameter and e. The 2DVD consists of
two line scan cameras that face two light sources
along axes that are orthogonal to each other. Drops
falling between the light source and the line scan
camera cast shadows on the line scan camera, which
are recorded. The region which both line scan cam-
eras record is the measurement volume of the system.
The shadowed area recorded by successive scans of
each camera, are stacked one upon the other to con-
struct an image of the raindrop. The size and shape of
the raindrop are obtained from this reconstructed
image. One issue with this method is that in the
presence of horizontal winds, the drop travels later-
ally through the measurement area, resulting in a
distorted image of the raindrop. While corrections for
this exist, errors in the drop shape measurement re-
main [12,21]. The shape of the enclosure of the 2DVD
also causes errors in the counting of small drops in
the presence of wind [23]. A somewhat similar device
was developed by Knollenberg [24]. This device con-
sists of a HeNe laser focused on a linear diode array
[24–26]. As droplets pass between the laser and the
array, an occluded line is observed by the array, in a
fashion similar to that for the 2DVD. As the drop
passes, sequential scans of the array are used to con-
struct a pseudodrop image [27].

Certain aspects of the above optical methods can be
improved by utilizing direct optical imaging as op-
posed to a single sensor or a line scan camera. When
a raindrop is imaged by a video or CCD camera the
entire drop image is recorded at (essentially) one in-
stant in time. This provides the drop shape informa-
tion and avoids problems inherent in line scan
cameras where the drop is imaged as it moves through
the measurement region. Such a direct optical imag-
ing approach has been used in, for example, the plu-
viospectrometer, which was developed by Frank et al.
[28]. This method is very similar to that which is used
here (see below) except that Frank et al. [28] focus the
illumination source using condenser lenses placed
around the light source and a pair of Fresnel lenses
placed in front of the light source.

Direct optical imaging has been employed by NASA
in the form of the Rain Imaging System (RIS) which
obtains images of raindrops, illuminated from behind
[29]. Figure 1 shows the general optical setup used in
this approach, where the camera records images of
drops that are backlit by the lamp. This results in a
drop image that is a silhouette of the drop. A sample
gray scale image obtained using this backlit configu-
ration is presented in Fig. 2(a).

Imaging drops that are illuminated from behind is
a particularly useful technique in field measure-
ments of raindrops [30,31]. Because the light source

is located behind the drop, an image of the light
source can be seen through the center of the drop
itself, appearing as a bright spot on the dark back-
ground of the drop. Here the drop acts as a lens,
focusing the image of the light source at a location
just in front of the drop. Hence, when the camera is
focused on the drop itself, the image of the light
source in the drop is also in focus. Because of this,
bright spots can be used to determine if the drop is in
focus or not. This is particularly useful when at-
tempting to automate the identification of in-focus
and out-of-focus drop images. An example of an out-
of-focus drop image is presented in Fig. 2(b) which
shows the lack of a hole in the image. The depth of
field of the camera can be determined by identifying
the region along the optical axis of the camera, z
where the drop exhibits a bright spot. This approach
is used in the present work, and we define the depth
of field, dof as:

dof � ze � zs, (7)

where zs and ze are the locations along the optical axis
where the bright spot “starts” and “ends”, respec-
tively, as the drop location moves from the camera to
the light source. Because the shape of falling rain-
drops oscillate, the images obtained will be of ellipses
having a range of � [Eq. (6)]. While this oscillation in
� does change the shape of the bright spot, Saylor
et al. [30] showed that variations in � do not have a
significant effect on the dof or on the ratio of the size
of the bright spot to the size of the drop. Hence, the
work presented herein where spheres are imaged, is
relevant to actual rain.

To improve the accuracy with which the raindrop
size distribution is obtained, the rate at which rain-

Fig. 1. Raindrop imaging setup.

Fig. 2. Sample gray scale images taken by the system illustrated
in Fig. 1: (a) In-focus drop, (b) out-of-focus drop.
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drops are measured should be high. For optical sys-
tems like those presented in Fig. 1, this translates
into having a large measurement volume. This is
because, for a given rainrate, the only way to acquire
more raindrop measurements in a unit period of time
is to image a greater spatial volume. Of course it is
possible to increase the imaging rate, but this is not
desirable since at a sufficiently high rate of image
acquisition, the smaller drops, which have small ter-
minal velocities, will be imaged more than once,
thereby distorting the measured drop size statistics.
However, by increasing the measurement volume by
increasing the depth of field, more drops are imaged
in each acquired frame. As noted above, computing
the depth of field is done by identifying the z loca-
tions, where a hole appears and disappears. Depend-
ing on the image processing method used, a drop
image obtained at a particular location may or may
not have a hole. Therefore, the dof depends not just
on the optical characteristics of the camera and light
source, but also on the algorithm used to process the
resulting images. Hence, by identifying an algorithm
that detects holes over a wider range of z, a larger dof
and a larger measurement volume can be obtained.

In addition to a large measurement volume, a pre-
cise measurement of the DSD requires accurate mea-
surements of drop diameter. Within the dof, drops
closer to the camera will result in drop images that
are larger than those that are located farther from
the camera. This is an inherent characteristic of geo-
metric optics and results in an increasing sizing error
with increasing dof. However, the image processing
algorithm that is used to identify the drop outline can
increase or decrease this error. Hence, the trade-off
between dof and measurement accuracy is partially
dependent upon the image processing algorithm
used.

As the above discussion shows, the quality of the
DSD measurements obtained using the setup shown
in Fig. 1 depends critically on the image processing
algorithm used. The goal of this image processing
algorithm is segmentation followed by sizing; the
drop must be identified and the existence of a hole
must be determined. If there is a hole, then the drop
diameter is measured. Image segmentation processes
are broadly classified into the following three groups
[32,33]: a) thresholding or clustering techniques; b)
region growing and c) edge detection techniques.
Thresholding methods have been investigated in our
earlier work and will not be discussed here [34,35].
Region growing techniques have a high degree of
complexity associated with them and were not con-
sidered to be practical for this application. Accord-
ingly, the present work focuses on edge detection
methods.

In addition to the choice of an image processing
method, other factors affect the ability to measure
accurately the drop size using a CCD camera. Among
these are problems related to smearing of drops trav-
eling at terminal velocity. This is particularly true
with large raindrops which have large terminal ve-
locities. With most digital cameras, a range of expo-

sure times are available and can be reduced to very
small durations. In this situation, the problem of
avoiding image smearing ultimately reduces to one of
providing sufficient lighting intensity. In the work
of Saxena and Saylor [34], the setup used in the
present work was used to obtain DSDs using imagery
acquired during an hour of rain, and using a 300 W
halogen lamp. Smearing was not observed for the
raindrop images acquired in that work. Should blur-
ring exist for different imaging configurations, higher
power lamps and�or more sensitive cameras are com-
mercially available.

2. Edge Detection Algorithms

Edge detection algorithms identify the boundaries of
an object based on abrupt gray level changes. For
analyzing the raindrop images considered here, the
inner (hole boundary) and outer boundary of the drop
must be identified. The identification of the inner hole
is used to determine if the drop lies within the depth
of field, and the identification of the outer boundary
provides the drop diameter.

Two steps are involved in the present application.
First, the edge operator is applied to the original
image producing an image where the edges are en-
hanced. Second, a thresholding operation is applied
where edge pixels are identified. Figures 3(a) and 3(b)
show the images obtained after edge enhancement
and thresholding, respectively of the sample gray
scale raindrop image presented in Fig. 2(a). Note that
while the hole in the center of the drop in Fig. 2(a) is
white, the hole in Fig. 3(a) is black.

A brief summary of existing edge detection algo-
rithms is now presented. Several studies have com-
pared the performance of edge detectors. Peli and
Malah [36] compared the performance of edge detec-
tion methods not requiring a priori knowledge of the
image. The algorithms considered were Roberts’s al-
gorithm [37], Hale’s operators [38] and Rosenfeld’s
algorithms [39–41] all of which are nonlinear algo-
rithms. These algorithms were evaluated based on
two quantitative and three qualitative measures. The

Fig. 3. (a) Edge-enhanced version of the sample gray scale image
presented in Fig. 2(a). The Sobel operator was used in this case. (b)
Binary image obtained after thresholding the edge enhanced im-
age in (a). The slightly oval shape of the white portion in the center
of the image is due to a difference in the x and y-direction pixel
resolutions, discussed in Section 4.
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authors found that the Roberts’s algorithm per-
formed best on low noise images and the Rosenfeld
1–4 algorithm (1–4 represents the size of the neigh-
borhood used) was best suited for noisy edges. Both of
these algorithms were found to detect curved edges.
Shaw [42] compared the accuracy and reliability of
local and regional edge operators. The local methods
considered were the Sobel operator [43], Mero and
Vassy’s approximate Hueckel operator [44] and
Hummel’s operator [45], while the regional operators
were Hueckel’s algorithm [46,47] and a discrete
Hueckel-like operator [42]. The regional operators
performed better than the local. Although the
Hueckel and the discrete Hueckel operator gave sim-
ilar results, the latter was found to be more stable.
Shin et al. [48] compared the performance of eight
edge detectors, evaluating them by measuring the
accuracy with which they recovered the structure and
motion of a sequence of images. The edge detectors
compared were Anisotropic [49], Bergholm [50],
Canny [51], Rosenthaler [52], Rothwell [53], Sarkar
[54], Sobel [43] and SUSAN [55]. The Canny edge
detector gave the best results for this particular ap-
plication.

Heath et al. [56] quantitatively compared the
Canny [51], Nalwa–Binford [57], Sarkar–Boyer [54],
and Sobel edge detectors based on the subjective eval-
uation of human subjects. These authors found that
there was no one best detector for all images consid-
ered. However, they did conclude that if the images to
be analyzed were similar, then the Canny edge de-
tector gave good results. On the other hand, the
Nalwa-Binford detector was found to be suited for the
analysis of a broader range of image types. Fram and
Deutsch [58] compared the performance of human
subjects with the performance of three edge de-
tection schemes in the presence of noise. The algo-
rithms considered were Hueckel [46,47], Macleod
[59,60] and Rosenfeld [40,41,61]. The Macleod algo-
rithm with a large mask gave the best results. Abdou
and Pratt [62] evaluated the performance of several
algorithms based on the amplitude of the edge gra-
dient magnitude, the probabilities of correct and false
edge detection, and a figure of merit computation.
They considered the Roberts operator [37], the Sobel
operator [43], the Prewitt operator [63], the Compass
gradient operator, the Kirsch operator [64], and the
3-level and the 5-level operators. They found that the
3 � 3 pixel 3-level template matching edge detector,
the 3 � 3 pixel Sobel and the Prewitt differential edge
detectors performed well.

The comparison studies described above do not pro-
vide a consensus on a single ‘best’ edge detector. How-
ever, the operators that tended to give the best
results were:

1. The Roberts algorithm
2. The Rosenfeld (1–4) algorithm
3. The Hueckel operator
4. The Canny edge detector
5. The Macleod algorithm with large mask
6. 3 � 3 pixel 3-level template matching operator

7. 3 � 3 pixel Sobel operator
8. 3 � 3 pixel Prewitt operator

These were chosen as candidate edge detection algo-
rithms in the present work. As noted above, the dis-
crete Hueckel operator was found to be more stable
than the Hueckel operator. However, the latter was
chosen for study in this work because of its wider
acceptance as a good edge detector [65]. Each of these
candidate algorithms is now described. Space consid-
erations preclude a detailed discussion of each
method, and the reader is referred to the original
citations for more information.

A. Roberts Operator

The Roberts operator [37,66] uses a 2 � 2 neighbor-
hood to estimate the derivative using the following
convolution masks:

H1 � �1 0
0 �1�, H2 � � 0 1

�1 0�. (8)

The convolutions obtained from these two masks
are used to compute the gradient magnitude using
Eq. (9):

g(i, j) � [g1
2(i, j) 	 g2

2(i, j)]1�2, (9)

where g1 and g2 and the results of the two convolu-
tions.

B. Rosenfeld (1–4) Algorithm

This algorithm is based on computing differences of
the average of two adjacent, nonoverlapping neigh-
borhoods [36,39–41]. In this algorithm, four differ-
ences are computed, one along the horizontal, the
vertical, at 45° and at 135°. Here, the implementation
of this algorithm as described by Peli and Malah [36]
is presented. The neighborhood over which the algo-
rithm is applied is �2r 	 1� � �2r 	 1�, where r is a
parameter.

Step 1:

For r � r1 	 1, . . . , r2
For each point �i, j� in the image

1) The average of the neighborhood centered
at the point �i, j� is computed:

f(r)(i, j) �
� �

m�i�r

i	r

�
n�j�r

j	r

f(m, n)�
(2r 	 1)2 . (10)

2) Four average neighborhood differences
are computed: L�r,H�, L�r,V�, L�r,45�, L�r,135�, which are
the horizontal, vertical, 45X diagonal and 135X

diagonal differences of f�r�, respectively.
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Step 2:

For each point �i, j� and
For each direction d � �H, V, 45X, 135X	

L(d)(i, j) � L(r1,d)(i, j) � L(r1	1,d)(i, j) � . . . � L(r2,d).
(11)

Step 3:

For each point �i, j�

L(i, j) � max[L(d)(i, j)]. (12)

The image L�i, j� is then thresholded to obtain the
binary image. This algorithm was implemented for
r � 1 to 4 in this work, and hence it is referred to as
the Rosenfeld (1–4) algorithm.

C. Hueckel Algorithm

The Hueckel [44,46,47] edge operator is a two-
dimensional edge fitting operator. The ideal step edge
S�x, y, b, h, 
, �� in two dimensions, is given by [67]:

S(x, y, b, h, 
, �) �
b (x cos � 	 y sin �) � 


b 	 h (x cos � 	 y sin �) 
 

,

(13)

where h is the step height, b is the base intensity, and
�
, �� define the position and orientation of the edge.

This operator uses a small circular subset of the
image called the input-disk, as an input to the algo-
rithm. Based on experiments, an input-disk consist-
ing of 69 pixels was found to be most practical by
Hueckel and the same was used here. The values for
the input-disk pixels are assigned from the image
matrix. The operator works by fitting the gray levels
in this disk to the ideal edge model given by Eq. (13).
The values b, h, 
 and � are chosen to minimize the
error between the ideal edge and the image. This
minimization is performed by expanding the ideal
edge and the image intensity as a truncated Fourier
series. The expansion is carried out using a set of nine
basis functions. The constants defining these func-
tions are computed and then analyzed to determine if
there is an edge fit. If there is, then the location and
orientation of the edge in relation to the circular disk
is obtained along with the intensity of the edge. The
location and orientation is then matched to the loca-
tion on the image, and the intensity obtained is as-
signed to that location. This process is repeated by
moving the input-disk over the entire image creating
a new image of edge intensities. The resulting image
is then thresholded to obtain the binary image.

D. Canny Algorithm

The Canny edge detector [51,66,68] consists of the
following six steps.

Step 1:

The image is first smoothed to remove noise using
a two dimensional Gaussian filter:

G(i, j) � e��
i2	j2

2�2 �, (14)

where � is the standard deviation of the Gaussian
which was set to � � w�5, where w is the mask width,
which was set to w � 7. For these settings, the mask
comprises 98.76% of the total area under the Gauss-
ian.

Step 2:

The x- and y-direction gradients are computed at
each �i, j� location of the smoothed image using a
fourth-order central difference approximation.

Step 3:

The magnitude of the gradient at each point is
calculated using Eq. (9), where the values of g1 and g2
correspond to the x- and y-direction gradients, respec-
tively.

Step 4:

The orientation of the edge normal is calculated at
each point using the formula

�(i, j) � tan�1�gj(i, j)
gi(i, j)�, (15)

where gi and gj are the gradient magnitudes in the i
and j directions.

Step 5:

Four directions, d1 through d4 are defined (0X,
45X, 90X and 135X, respectively) with respect to the
horizontal axis. For each �i, j� point in the image, the
orientation of the edge normal [Eq. (15)] is classified
as belonging to one of these four directions, depend-
ing on which it is closest to. Hence, each ��i, j� is
reassigned to �̂�i, j�, where �̂�i, j� � 0X, 45X, 90X or
135X. The gradient magnitude for each point is com-
pared with the gradient magnitude of two of its
neighbors along the direction �̂ of that point. If the
gradient of the point is smaller than its neighbors,
then the value of the gradient at that point is set to
zero.

Step 6:

The resulting image is thresholded using hystere-
sis thresholding, a process requiring two thresholds.
The high threshold (th) is selected by trial and error
and the low threshold (tl) is set to tl � th�3. All pixels
having an edge magnitude greater than th are classi-
fied as edge pixels. For all pixels having edge magni-
tudes between tl and th, the pixel under consideration
is classified as an edge pixel, if any four of its neigh-
bors are edge pixels. Once a pixel is classified as an
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edge pixel, all those pixels connected to it are exam-
ined for the presence of edge pixels. This step is re-
peated until all pixels have been visited.

E. Macleod Algorithm

This algorithm is a correlation-based edge detector
[58–60] using a mask defined as:

H(i, j) � exp��
i2 	 j2

dr
2 ��exp���dij 	 dpk

dpk
�2�

� exp���dij � dpk

dpk
�2��, (16)

where dij � i sin � � j cos �, dpk and dr
2 are constants

which determine the rate of decay of the exponentials
perpendicular to and along the edge, respectively,
and � is the relative direction of the edge. A 13
� 13 mask is constructed from the above expression.
The indices �i, j� are defined relative to the center of
the mask. The values of �, dpk and dr

2 are specified
by the user. The mask H�i, j� is then correlated with
the image to create the edge-enhanced image.

F. 3 � 3 Pixel 3-Level Template Matching Operator

The 3 � 3 3-level template matching operator is also
known as the Robinson 3-level operator, and uses
eight convolution masks defined as:

� 1 1 1
0 0 0

�1 �1 �1
��1 1 0

1 0 �1
0 �1 �1

��1 0 �1
1 0 �1
1 0 �1

��0 �1 �1
1 0 �1
1 1 0

�
��1 �1 �1

0 0 0
1 1 1

���1 �1 0
�1 0 1
0 1 1

���1 0 1
�1 0 1
�1 0 1

�� 0 1 1
�1 0 1
�1 �1 0

�.

Each mask is convolved with the image to provide
eight gradients. The maximum of these is taken as
the gradient magnitude for that pixel, and the result-
ing image thresholded to identify the edge locations.
The 3 � 3 pixel 3-level template matching operator
will be referred to as the Template 3 operator here-
inafter.

G. Sobel Operator

The Sobel operator is a differential gradient operator
used to detect horizontal and vertical edges. The
masks for this operator are:

H1 ��1 0 �1
2 0 �2
1 0 �1

�, H2 ���1 �2 �1
0 0 0
1 2 1

�. (17)

A binary image is obtained by thresholding the image
corresponding to the edge gradient magnitude, ob-
tained by summing the results of the two convolu-
tions obtained from Eq. (17) at each point.

H. Prewitt Operator

Similar to the Sobel operator, the Prewitt operator
approximates the first derivative. The masks for the
Prewitt operator are:

H1 ��1 0 �1
1 0 �1
1 0 �1

�, H2 ���1 �1 �1
0 0 0
1 1 1

�, (18)

which compute the gradient in the x and y directions.
The gradient magnitude is then computed, and the
resulting image thresholded.

3. Procedure

To ascertain the accuracy of the selected image pro-
cessing algorithms, it was necessary to obtain images
of drops having known diameters and then to com-
pare the diameter obtained from each algorithm to
the known diameter. Because of the problems asso-
ciated with consistently producing water drops of the
same size, spheres made of magnesium fluoride were
used in place of water drops. Magnesium fluoride
(MgF2) was chosen because it has a refractive index
(n � 1.38) very close to that of water (n � 1.33) [69].
Figures 4(a) and 4(b) show in-focus and out-of-focus
gray scale images of an MgF2 sphere having a diam-
eter of 8 mm.

A. Experimental Setup

The experimental setup used to obtain the required
images is shown in Fig. 5. This setup consists of a
CCD camera and a halogen lamp separated by a dis-
tance of 4 m along the optical, or z-axis. This camera
is connected to a PC which records and stores the
images using a LabVIEW code. The setup also has a
stand, the position of which can be varied along the
optical axis. It can be located �15 cm on either side of
the focal point, which is 200 cm from the camera. The
design is such that the smallest possible distance
separating any two positions at which the stand can
be located on the optical axis is 1 mm. This stand
consists of a horizontal extension mounted with a
plate containing a hole through which the MgF2
spheres are dropped. It also consists of a horizontal
slide used to adjust the position of the dropping plate

Fig. 4. Sample gray scale images of an MgF2 sphere. (a) In-focus
and (b) out-of-focus.
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along the x-axis. For the research reported here, the
height of the stand was adjusted so that it was just
above the image frame. The spheres were dropped
through the stand, and their images were recorded
as they fell. Because the spheres were manually
dropped (viz., without any synchronization to the
video clock), the y-locations of the recorded images
were random. The size of the image frame is 640
� 240 pixels, with 640 pixels in the x-direction and
240 in the y-direction. The magnification of the cam-
era was adjusted to obtain a pixel resolution of 0.05
mm/pixel in the x-direction and 0.1 mm/pixel in the
y-direction. The f-number of the camera was set to 4.
This setup is similar to that used by Saylor et al. [31]
except that here the spheres were dropped instead of
being mounted on a vertical post. Mounting of the
spheres introduces the image of the post into the
image frame which affects the outcome of the algo-
rithms considered here. It is noted that because the
spheres are dropped from a relatively low height,
they are not traveling at terminal velocity when im-
aged. Hence, this present work does not demonstrate
the ability of this system to image drops at terminal
velocity. However, as noted earlier in this paper, Sax-
ena and Saylor [34] employed the setup used in the
present work to obtain raindrop images without
smearing.

The setup shown in Fig. 5 allows the dof to be
measured by determining the z-locations where the
drop image just begins to exhibit a hole and stops
exhibiting a hole. Images were recorded at intervals
in z of 1 mm near zs and ze. Approximately 30 images
were recorded at each location. A large number of
images were collected because not all of the images
contained a sphere located completely within the
frame due to the fact that the y-location was not
controlled. For the purpose of testing the image pro-
cessing algorithms, only those images having the
sphere lying completely within the frame were used.
These images were then processed using each image
processing algorithm and analyzed to determine the
exact zs and ze values for each algorithm. Images were
obtained for six sphere diameters: D � 3, 4, 5, 6, 7,
and 8 mm.

The selected edge detection algorithms were imple-
mented in MATLAB. The images obtained after the
application of the edge detection algorithms were
thresholded to create binary images. A different
threshold was used for each algorithm and was se-
lected by trial-and-error to give the best results. Once

selected, the threshold was used consistently for all
images for that given algorithm.

After the images were thresholded, they were man-
ually examined to determine the presence or absence
of a hole. Identification of zs and ze was based on the
following conditions. Starting with the image re-
corded at the smallest z and moving to images ob-
tained at locations progressively farther from the
camera, zs was defined to be the first location having
a hole, where the two successive positions also had
holes. Moving further from the camera, ze was defined
as the first location to not have a hole where three
successive positions also did not have holes in the
center of the drop image. These criteria used to iden-
tify the dof will be referred to as the 3-hole criteria.
The 3-hole criteria was generalized to an n-hole cri-
teria to see if n had a significant role on algorithmic
performance for the range n � 3, 4, 5, 6, 7. For this
range of n, dof changed negligibly with n for all al-
gorithms except for the Roberts algorithm where dof
increased by 
40% when n was increased from 3 to 4.
Upon further increase in n, dof changed little for the
Roberts algorithm. Hence, the 3-hole criteria is used
in computing dof for all of the results presented
herein.

Because the method for measuring depth of field
relies on the existence of a bright spot in the drop
image, there is a minimum drop size below which
such a spot will not be observable. It should be noted
that this minimum drop size is not an absolute num-
ber, but rather depends on the magnification of the
lens being used. Inherently, the minimum detectable
size of the bright spot is a single pixel. Hence, the
physical size of the minimum detectable bright spot is
determined by the magnification ratio of the lens
used, which for the system used here is 0.05 mm by
0.1 mm. However, by increasing the magnification of
the lens, smaller hole sizes could be resolved. Simi-
larly, it is noted that in the work presented here, the
minimum sphere diameter used was 3 mm, while
raindrops can have diameters considerably less than
3 mm. However, by using a higher magnification ra-
tio lens, much smaller droplet diameters can be im-
aged, and hence the only lower limit is really the
diffraction limit for the wavelength of light used,
which is much smaller than the minimum size typi-
cally tabulated when measuring DSDs in precipita-
tion science.

For each image within the dof, the measured drop
diameter (Dm) was obtained. This was done by count-
ing the number of pixels that fell within the outer
drop boundary np, and then using the equation:

Dm � 2 � �Ad

�
, (19)

where Ad is the area of the drop in mm2 and is given
by:

Ad � np � 0.05 � 0.1, (20)

where 0.05 and 0.1 are the pixel resolutions
(mm/pixel) in the x- and y-directions, respectively.

Fig. 5. Laboratory setup used to collect images of MgF2 spheres of
different diameters and at different z-locations.
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After the measured diameter was obtained for each
z-location, the average diameter �D� was computed by
integrating over all measured diameters in the dof:

�D � �
1

dof �
zs

ze

P(z)dz, (21)

where P�z� is a polynomial fit to the Dm versus z data.
The individual edge detection algorithms were

compared using dof and the error in �D� as figures of
merit.

4. Results

As noted in Section 2, eight different edge detection
algorithms were considered here. Figure 6 shows the
gray scale images of a 5 mm sphere obtained at three
different z-locations, and Fig. 7 shows the binary im-
ages obtained after application of each of the eight
edge detection algorithms to these images. Figure 7
shows that the images obtained using the Macleod
algorithm are directionally sensitive i.e., the image is
skewed in the direction of �, the relative direction of
the edge given as an input. The specification of a
single direction as an input to the Macleod algorithm
causes one direction to be weighted higher than the
others, resulting in directionally sensitive outputs.
This is not useful in this work where the circularly
symmetric spheres have edges in all directions, and
hence the Macleod algorithm is not considered fur-
ther. Figure 7 also shows that some algorithms result
in an oval shape instead of the expected circular
shape. The ultimate cause of this is a difference in
pixel resolution in the x- and y- directions. This prob-
lem did not prevent a comparison of the algorithms
evaluated here as will be shown in Section 5, where
an explanation of this effect is also presented. Fi-
nally, Fig. 7 shows that all the algorithms detect

Fig. 6. Sample gray scale images of a 5 mm sphere at three
different z-locations.

Fig. 7. Sample binary images of a 5 mm sphere after the application of the edge detection algorithms.
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holes in the images at z � 200 cm, the focal plane, as
expected.

For each algorithm, the diameter was measured for
all the images and a plot of Dm versus z was obtained.
Figure 8 shows the variation of Dm with z obtained by
applying the Canny algorithm to the images. A single
plot is presented for each of the six diameters tested.

The pair of vertical dashed lines in each of the plots
identifies the hole start and hole end positions, zs and
ze, respectively. The distance between these two lines
is the dof. The vertical solid line is the location of the
focal point of the camera at z � 200 cm. In this figure,
for all D, the value of Dm is high at the beginning of
the dof, then drops down in the region around the

Fig. 8. Variation of Dm with z using the Canny algorithm for actual diameters of (a) 3 mm, (b) 4 mm, (c) 5 mm, (d) 6 mm, (e) 7 mm, and
(f) 8 mm.

1 August 2007 � Vol. 46, No. 22 � APPLIED OPTICS 5361



focal point and increases again at the end of the dof.
The Dm versus z behavior of the other edge detection
algorithms were all similar to Fig. 8, except for the
Hueckel algorithm which is shown in Fig. 9. For the
Hueckel algorithm the Dm versus z plot is close to a
straight line with a shallow slope. Also, the deviation
of Dm from D is small.

Figure 10 is a plot of dof versus D for each of the
edge detection algorithms. The figure shows that
the depth of field increases monotonically with D
for all of the algorithms except the Roberts algo-
rithm which shows some oscillatory behavior. The
data presented in this plot are tabulated in Ta-
ble 1.

Fig. 9. Variation of Dm with z using the Hueckel algorithm for sphere diameters of (a) 3 mm, (b) 4 mm, (c) 5 mm, (d) 6 mm, (e) 7 mm,
and (f) 8 mm.
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The average diameter �D� was calculated using Eq.
(21) for each sphere diameter for all of the algorithms.
A cubic polynomial P�z� was found to accurately fit
the Dm versus z data in all cases. This cubic polyno-
mial is shown in the Dm versus z plots in Figs. 8 and
9. A plot of �D� versus the actual sphere diameter, D,
is presented in Fig. 11, and the data appearing in
these plots are presented in Table 2. Linear fits to the
data are also presented in Fig. 11, and the corre-
sponding slopes and intercepts are presented in Ta-
ble 3. For each of the edge detection algorithms, the
slope of the linear fit is very close to one. Also, as
Table 2 and Fig. 11 show, the average measured di-
ameters obtained are always greater than the actual
diameter for all of the algorithms except for the
Hueckel algorithm.

5. Discussion

All of the images obtained in this study were of
spheres, and hence the output images obtained from
each algorithm investigated should be circular in
shape. This was not the case for some of the edge
detection algorithms whose binary images were
slightly oval in shape (see Fig. 7). The distortion from
a circular shape was due to the different pixel reso-
lutions: 0.05 mm�pixel in the x-direction, and 0.1
mm�pixel in the y-direction. Edge detection algo-
rithms use gradients and approximations to gradi-
ents to detect edges. These gradients were computed
on a pixel basis. That is to say, the intensity change
was computed over a certain number of pixels, not

over a certain physical length. Because the pixel res-
olutions were unequal in the x- and y-directions, some
of these algorithms generated images that were oval.

To determine the degree of distortion in these bi-
nary images, the ratio � was calculated according to
Eq. (6) where h and v are the horizontal and vertical
extent of the image, respectively. For a perfectly cir-
cular image � � 1. For each of the edge detection
algorithms, � was computed at the beginning of
the dof, at the focal point and at the end of the dof.
The deviation of � from unity was maximum for the
Canny and Rosenfeld algorithms where it was 5%; for
all other algorithms the deviation was less than 2%.
This flaw can be easily corrected by either using a
camera with equal x and y-direction pixel resolutions,
or by computing gradients with respect to distance
as opposed to pixels. This would be critical for com-
puting the e versus D relationship needed for dual-
polarization radars. Since such computations were
not done in the present work, the gradients were
computed with respect to pixels for the sake of sim-
plicity.

In this work, the dof was obtained by manually
inspecting the binary images obtained from each al-
gorithm to determine the presence or absence of a
hole. This inspection technique worked for the cur-
rent study because the number of images processed
was relatively small, since the purpose of the study
was only to evaluate algorithms. This visual inspec-
tion procedure becomes untenable in an actual field
application where the number of images to be pro-
cessed becomes very large. To avoid these problems,

Fig. 10. Plot of dof versus D for each edge detection algorithm.
The line through each data is a simple linear interpolation between
each point.

Table 1. Depth of Field dof (cm) for the Different Edge Detection Algorithms for Each Sphere Diameter

D Prewitt Sobel Canny Roberts Template 3 Rosenfeld Hueckel

8 mm 15.9 20.2 23 15.9 19.3 22.4 26.6
7 mm 15.2 18.2 21.1 12.9 17.6 19.1 24.1
6 mm 14.2 18.0 19.9 14.3 16.4 18.0 21.6
5 mm 14.2 16.8 17.7 11.7 16.3 14.8 18.3
4 mm 13.1 15.3 14.7 12.3 14.3 11.7 14.5
3 mm 10.5 11.9 11.2 7.9 11.7 6.8 8.7

Fig. 11. Plot of �D� versus D (the actual diameter) for each of the
edge detection algorithms.
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an algorithm can be developed which identifies the
presence or absence of a hole. Saxena and Saylor [34]
utilized a boundary counting algorithm for this pur-
pose. Because the characteristics of the holes ob-
served in the images generated by edge detection
algorithms are different than those obtained using
the thresholding methods presented in Saxena and
Saylor [34], some modifications of their boundary
counting algorithm would be needed. Additionally,
that algorithm did not work perfectly, occasionally
classifying out-of-focus drops as in-focus. Hence,
some attention is needed in this area, and this is left
as future work.

A. Dm versus z

As noted in Section 4, the Dm versus z behavior did
not vary significantly among algorithms. Figure 8
plots Dm versus z for the Canny algorithm for each of
the sphere diameters. The plots show that the value
of the measured diameter is high near zs, then de-
creases in the region near the focal point, and in-
creases again in the region near ze. All of the edge
detection algorithms considered here showed similar
behavior. The only exception to this is the Hueckel
algorithm, which is plotted in Fig. 9 and shows an
almost flat straight line, indicating that the mea-
sured diameter does not vary significantly with posi-
tion within the dof. When compared to the results
obtained from the other edge detection algorithms,
the Hueckel algorithm has the smallest variation of
the measured diameter with z. One of the goals of this
work was to determine which edge detection algo-
rithm results in a minimum variation of the mea-
sured diameter over the dof, and the Hueckel
algorithm clearly gives the best performance in this
regard.

It should also be noted that all of the edge detection
algorithms investigated here performed better as a
group, when compared to other methods of identify-

ing and measuring raindrops images. Figure 12 pre-
sents Dm versus z plots for two of the edge detection
algorithms presented here, and another obtained us-
ing a histogram modification technique due to Peleg
[70]. As the figure shows, the degree of variation in
Dm versus z behavior is small among the two edge
detection algorithms, when compared to that for the
Peleg algorithm.

All of the Dm versus z data obtained in this work
show that Dm is closest in value to D in the center of
the dof, near the focal point z � 200 cm, which is
expected. The plots of Dm versus z also show that the
dof extends farther to the right side of the focal point
than to the left. This is because the spheres to the
right are closer to the light source than the spheres to
the left of the focal point. When the spheres are closer
to the light source, a larger number of rays fall on the
sphere, causing the image of the lamp in the center of
the sphere image to be brighter, increasing the like-
lihood that the algorithm will result in an image with
a hole. Another feature observed in the plots of Dm

versus z is that the Dm values are larger in the region
between the camera and the focal point than in the
region between the focal point and the lamp. This
result is expected, since objects naturally appear
larger when closer to the camera and smaller when
far from it. This creates finite error in Dm. However
this error is relatively small when compared to
nonedge-detection methods, as shown in Fig. 12.

B. Depth of Field

The depth of field increases with D for all of the edge
detection algorithms, as can be seen from Fig. 10 and
Table 1. The Hueckel algorithm gives the maximum
dof for all diameters except the 3 and 4 mm spheres
where the Sobel edge operator gave a larger dof. Fig-
ure 10 shows that the dof versus D relationship is
erratic for all of the algorithms except the Hueckel
algorithm where the variation is smooth. Indeed, the
dof versus D data for the Hueckel algorithm can be
approximated using a quadratic fit, as shown in Fig.
13. This is useful since, in a field application, it pro-
vides a means for determining the dof for each drop
size category measured.

C. Average Diameter

As Fig. 11 shows, the average measured diameter �D�
varies linearly with the actual diameter D for all the
edge detection algorithms considered here. A line of
unity slope and zero intercept is included in this fig-

Table 2. Average Measured Diameter ��D�� (mm) for the Different Edge Detection Algorithms for Each Sphere Diameter

D Prewitt Sobel Canny Roberts Template 3 Rosenfeld Hueckel

8 mm 8.5721 8.6683 8.9894 8.4775 8.5987 9.0171 8.0807
7 mm 7.4926 7.5624 7.8814 7.3923 7.5138 7.9009 7.0075
6 mm 6.4974 6.5516 6.8587 6.4043 6.4725 6.8680 5.9959
5 mm 5.4756 5.5202 5.8042 5.3405 5.4707 5.7984 4.9831
4 mm 4.4710 4.4954 4.7587 4.3683 4.4396 4.7532 3.9938
3 mm 3.5104 3.5254 3.7915 3.3923 3.4842 3.7639 3.1160

Table 3. Slope and Intercept of the Linear Fits to the ��D�� versus D
Data Presented in Fig. 11

Algorithm Slope Intercept

Hueckel 0.99 0.04
Canny 1.04 0.62
Sobel 1.02 0.40
Rosenfeld 1.05 0.57
Roberts 1.01 0.30
Prewitt 1.01 0.44
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ure to help in comparing the deviation of the average
diameter obtained from the different algorithms from
the actual diameter. This figure shows that the
Hueckel algorithm provides the least deviation from

the actual diameter. In fact, this deviation is so small
that the unity slope line and the Hueckel line are
almost identical. The Rosenfeld algorithm shows the
worst behavior, having the maximum deviation from
the actual diameter. A linear fit to the �D� versus D
data are presented for each of the edge detection
algorithms in Fig. 11. These fits can be used to obtain
the actual diameter D from the measured diameter
for each algorithm. Hence, even for the algorithms
that show a large deviation of �D� from D, D can still
be extracted. The caveat to this statement is that �D�
is the average of Dm obtained over the dof. Hence it
masks any variations of Dm over the dof. Neverthe-
less, as was shown above, these variations were rel-
atively small for all of the algorithms considered
here. This notwithstanding, the deviation of Dm from
D over the whole dof is quantified below.

D. Measurement Error

To compare the algorithms considered here, their de-
viation from the actual diameter over the dof is quan-
tified by an average error computed for each diameter
and for each algorithm. For each diameter D, for
each z-location within the dof, the error Em was cal-
culated as:

Fig. 12. Plots of Dm versus z for two of the edge detection methods presented here: (a) Hueckel and (b) Roberts. Also included is (c) a
histogram modification method due to Peleg [70]. While there are differences in the Dm versus z behavior for the edge detection algorithms
presented in this work, the behavior among these algorithms is quite similar when compared to different algorithmic approaches. (plot (c)
obtained from Sivasubramanian and Saylor [35]).

Fig. 13. Plot of dof versus D for the Hueckel algorithm with
quadratic fit.
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Em � �Dm � D�. (22)

An average of Em over the dof was computed by fitting
a curve Q�z� to the Em versus z data and computing
�E�:

�E � �
1

dof �
zs

ze

Q(z)dz. (23)

A plot of �E� versus D is presented for each of the edge
detection algorithms in Fig. 14. The figure shows that
the Hueckel algorithm has the least error followed by
the Roberts operator, while the Rosenfeld operator
has the largest error.

The flatness of the Dm versus z plots presented here
shows that, in general, the average measured diam-
eter is not significantly influenced by the size of the
depth of field. Hence, there is no trade-off between dof
and the accuracy of measuring the diameter, which is
usually the case in these applications [34,35].

6. Conclusion

A set of edge detection algorithms was evaluated to
determine which algorithm would provide the most
accurate measurement of raindrop diameter, when
applied to raindrop imagery, thereby increasing the
accuracy of the drop size distributions (DSD) ob-
tained from this imagery. The selected algorithms
were applied to images of MgF2 spheres obtained
from a laboratory setup. Images of six different
sphere sizes were obtained using the lab setup and
the dof and diameter were obtained using each of the
algorithms considered. The Hueckel algorithm was
found to give results that were best suited to the goals
of raindrop sizing. The dof obtained using the
Hueckel algorithm was the largest for all sphere di-
ameters greater than 4 mm. The average diameter
obtained using the Hueckel algorithm was found to
be the closest to the actual diameter when compared
to the other algorithms. For all of the edge detection
algorithms considered, the measured diameter was

not found to vary significantly over the dof. The
smallest variation of measured diameter over the dof
occurred for the Hueckel algorithm.

This work was supported by the National Science
Foundation.
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