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Abstract. Soluble surfactants adsorb to rising clouds of micro-bubbles and are
subsequently deposited on the surface of the bulk liquid. The adsorbed surfac-
tant leads to strongly increased damping of capillary waves, when compared to
the damping rate of capillary waves on a clean surface. A theory is developed for
the nonlinear dynamics of a bubble cloud, surfactant scavenging, and capillary wave
damping. The main ingredients are: (i) an understanding of the connections between
spatial structure in the bubble cloud and its mixing properties, deduced from nu-
merical simulation and scaling analysis, (ii) horizontally averaged equations for the
surfactant dynamics, and (iii) a (complex) dispersion relation that connects surface
properties modified by the presence of surfactants to capillary wave damping.

1 Introduction

Surfactants are substances which find it energetically favorable to become
closely associated with interfaces between, in this case, air and water. Dilute
clouds of rising bubbles scavenge soluble surfactants that are subsequently
deposited on the bulk interface of bodies of water [26-28,3]. In this paper,
we study surfactant scavenging together with one of its main consequences:
capillary wave damping.

In the scavenging problem, surfactant in the bulk adsorbs to (and desorbs
from) the surfaces of the rising bubbles. When the bubbles reach the bulk
surface, they donate their associated surfactant. One very important conse-
quence is that capillary waves on the bulk surface are much more strongly
damped than they would be on a clean surface. This happens due to a change
in the hydrodynamic boundary condition associated with the presence of
surfactants. Some recent experiments have shown that this mechanism is re-
sponsible for the surface slicks that are commonly observed behind ships at
sea [21,19]. Typical bubble clouds of interest consist of dilute suspensions of
bubbles in the size range of tens of um; larger bubbles rise out of solution too
quickly to be of much consequence, and smaller bubbles dissolve too quickly.
The bubbles are formed in the wake of ships by the breaking of bow and
stern waves, then carried deep under the surface by turbulence in the wake.
The wake turbulence dies out much more rapidly than the bubbles rise out
of suspension.
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In this paper, we begin by developing a computational model of a cloud of
rising bubbles. The spatial distribution of bubbles in the cloud must have a
very special structure in order to render convergent averages of rise speed and
vertical velocity fluctuations induced in the water. We develop an effective
diffusivity for the bubble-induced mixing (in the vertical) of surfactant dis-
solved in the bulk liquid, which is of great importance in solving the surfactant
transport problem. Next, we consider bulk surface enrichment of surfactant
by micro-bubble scavenging of dissolved surfactant. Finally, we examine the
increase in capillary wave damping associated with the presence of surfactant.

2 Bubble cloud dynamics

Here we consider a monodisperse cloud of small bubbles; we neglect gas trans-
fer between the bubbles and the surrounding liquid, and the fluid hydrostatic
pressure variation during rise. The main ingredients of a bubble cloud model,
to be discussed in turn, are as follows. The individual bubbles are approx-
imated by fundamental solutions of the Stokes equations. The bulk surface
is accounted for with an image system: a descending “anti-bubble” above
the bulk surface for each bubble rising toward the bulk surface. The initial
distribution of bubbles is assumed random at small length scales, but more
homogeneous than random at longer length scales. Bubbles in the far field
are accounted for using a mean field approach. The details are developed in
the dissertation of Stefan [29], Chapters 1-4.

The Reynolds number, defined as Re = Upa/v, is assumed small. Here a
is the bubble radius, Uy is the rise speed, and v is the kinematic viscosity.
The steady Stokes equations describe the fluid motion. The fluid velocity is
u; the static pressure is P. The solution of interest about a rigid sphere is
well known in spherical polar coordinates:

O R S HE ORI

Here Uy = 2ga®(ps — ps)/(9p) is the rise speed, u, and ug are the radial and
angular velocity components of the fluid, r is the radial coordinate measured
from the bubble center, @ is the angle measured from Uy, py is the fluid
density, pp is the bubble density, g is the gravitational constant, and u is the
viscosity. A simpler model results if one instead makes use of a fundamental
solution of the Stokes equations known as a stokeslet. This exerts the same
force on the fluid and thus has the same rise speed Uy. The flow field is given
by (1) without the terms proportional to (a/r)%. As long as (a/r) < 1, as
happens in the dilute cloud of present interest, the stokeslet approximation is
satisfactory. We shall make use of the latter approximation in what follows.
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2.1 Hydrodynamic interaction

When a cloud of bubbles rises through a viscous fluid, each bubble affects the
motion of surrounding bubbles through its buoyancy-induced contribution to
the flow field. The resultant velocity of a test bubble simply consists of its
own velocity Up, superimposed on the components induced from all other
bubbles. The position of each bubble in the cloud can then be updated by
integrating the expressions for the bubble velocities. Note that we make use
of Faxen’s correction as the bubbles are now regarded as moving through a
fluid with spatially-varying background velocity [10].

Solutions for multi-body interaction, against which we have compared
the straightforward technique just described, are available only for simple
arrangements- of a few settling spheres. Goldman, et al. [8] provide an ex-
act solution for two settling spheres of equal size. For a sphere separation of
only five radii, our pair-wise added stokeslets approximation differs from their
exact solution only by about 1%. Accuracy improves with larger sphere sepa-
ration. Ganatos, et al. [7] developed a highly accurate numerical solution for
full multi-body hydrodynamic interaction for an instantaneous arrangement
of spheres settling in vertical and horizontal chains. We made comparisons
of the vertical velocity for chains containing 3, 5, and 9 spheres, separated
from one another by only 4 radii. Our solution deviates from the more ac-
curate solution by Ganatos, et al. by only a few percent. More accurate but
far more computationally intensive methods have been developed for these
problems [2].

2.2 The free surface

In order to account for the free surface, we employ an image stokeslet above
the free surface, with opposite orientation, associated with each rising bubble.
Because the stokeslet and its image are equal and opposite, there is no net
force on the fluid. Far away, the bubble-image pair induces a fluid velocity
that decays like r=2 instead of r—!; we refer the reader to [17] for a clear
discussion. This more rapid decay of the disturbance velocity of the bubble-
image pair relative to a lone bubble has the effect of rendering convergent the
average rise velocity of the bubbles. This is important, as it is well known that
in a dilute, unbounded homogeneous suspension of monodisperse spheres, one
obtains divergent integrals in a naive approach when determining the mean
sedimentation speed of the particles. This divergence problem was overcome
by Batchelor [1], who made use of a renormalization argument, and later
by Hinch [12] and Feuillebois [5]. As a consequence of the image system, all
points on the free surface have zero point-wise vertical velocity (but may
have non-zero horizontal components) and zero shear stress in the plane of
the surface.
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2.3 Cloud structure and its evolution

A second instance of divergent averages must now be addressed with attention
to the structure of the bubble cloud. The variance of the sedimentation speed
of the particles of a random suspension grows without bound as the size of
the sample (or volume) of the suspension increases [4]. Similarly, divergent
integrals result from a calculation of tracer point diffusivity from a random
array of point forces [15].

Cloud structure can be expected to play an important role in the dynamics
of the suspension. Batchelor [1] showed that a random array of particles
settles as < U, > /Up = 1 — 6.55¢; Hasimoto [11] showed that a precisely
spatially periodic array of particles settles as < U, > [Uy =1 — 1.76¢/3.
Here ¢ = (47/3)a3n is the volume fraction of spheres. Saffman [22] describes
the reasons for these differences in rise speed.

Koch and Shagfeh {16] realized what is necessary to overcome the prob-
lem of divergent variance of velocity fluctuations: screening of hydrodynamic
interactions. They observed that in a suspension in which there is a deficit
of exactly one particle in a finite neighborhood of a marked particle, the ve-
locity induced by that marked particle decays faster than (a/r) outside the
neighborhood. We have realized that such a property is readily set up with
the following initial arrangement, which we refer to as a single-cell random
bubble cloud. Let n be the average number density of bubbles in the cloud
(per unit volume). Space is discretized into cubical boxes of side n~1/%, and
one bubble is placed at a random location in each box. No two boxes are the
same. There is no assumption of periodicity. This condition is only set at the
initial time —the bubbles are in no way constrained thereafter. To understand
why the single-cell random cloud structure persists in time, one can examine
the conservation equation for the probability density of the positions of a
group of N particles [16]. Because the dynamical system is divergence-free,
an initially uniform probability density is simply convected around —thus
remaining uniform.

The relative likelihood of finding a bubble at any point is identical in
single-cell and truly random bubble clouds. The difference is that on length
scales larger than the box size, the single-cell random distribution is more ho-
mogeneous than truly random. Moreover, it is easily shown that the single-cell
random distribution has the required deficit of one bubble in the neighbor-
hood of a marked bubble. The velocity variance is convergent as the size of
the domain increases, and one can compute an effective diffusivity of bubble-
induced mixing [31].

2.4 Mean field approach for bubbles in the far field

As a final component of the model, we describe briefly how bubbles in the far
field are taken into account. In the mean field approximation, we augment the
background velocity at a bubble location with an integral over the (uniform,
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homogenized) density of bubbles in the far field. Because we treat the near
field and far field differently, the bubble cloud domain is divided into two
regions: the discrete region and the continuum region. The purpose of the
continuum region is to provide the correct boundary condition for the discrete
region. We take the discrete region to be a rectangular box of square plan
form residing below the free surface surrounded by continuum. The discrete
region need not be in contact with the free surface or with the bottom of the
bubble cloud.

2.5 Average rise speed

It is possible to determine analytically the average vertical velocities of bub-
bles and fluid if one considers the entire domain outside a test bubble to be
a continuum. In this case the continuum extends from the nearest-neighbor
radius to infinity, and no bubble is allowed to overlap the bubble of interest.

For bubbles far from the surface, the average rise speed determined in this
way is < U, > /Uy =1 — 5¢. This is the same expression obtained using the
renormalization technique [1], excluding (as we do) the effect of reflections
beyond the first.

For a single-cell random bubble cloud an analytical expression is more
difficult to obtain because the bubble number density is more homogeneous
than a truly random distribution at larger length scales. We must instead
resort to a numerical simulation far from the free surface. Numerical results
show that the average bubble rise speed is < U, > /Uy =1—-1.27¢~1/3. The
average bubble rise speed for the single-cell random distribution thus lies be-
tween that of a perfectly periodic array and of a purely random distribution.

2.6 Velocity fluctuations induced by rising bubbles

Next we consider vertical velocity fluctuations. In [4] the variance in bubble
vertical velocity diverges oc N'/3 for a large number of bubbles in a random
distribution; our calculations agree. The standard deviation of the vertical
component of fluid velocity is u, ;4. The values for Uz sq in the random case
diverge, but those for the single-cell random bubble distribution do not.

In Fig. 1 we show a typical normalized PDF of vertical velocity fluctua-
tions in the fluid far from the free surface. The overall shape of the distri-
bution is nearly Gaussian. The width and the severity of skewness are both
functions of the bubble volume fraction and depth.

The roughly Gaussian nature of the vertical velocity distribution justifies
our focus on the velocity variance. We find that far below the surface, fluid
and bubble vertical velocity standard deviations follow

Uz, sd

Fz,sd 1/3
2 = 15 2)
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Fig. 1. Normalized PDF of fluid point (and bubble) dimensionless vertical velocity
u, /Up for different bubble volume fractions ¢ far from the free surface in a single-
cell random bubble cloud. The results represent averages of 500 initial bubble cloud
realizations

to about ¢ &~ 0.05. Koch and Shagfeh [16] argue (u. sa/Us)? ~ ¢R;/a in a
homogeneous suspension of sedimenting spheres, where R, is the screening
distance. In a single-cell random cloud Ry/a o< ¢~1/% (see 2.3), hence (2) is
consistent with their result.

The free surface is found to have an influence on the fluid vertical veloc-
ity fluctuations as illustrated in the correlation of vertical velocity standard
deviation with depth [31]:

Uz,sd _ A(¢)|Z*|
150,018~ 1+ A"’

where A(¢) = 0.8914°212 and z* = z/a. More concentrated bubble clouds
mix the fluid more vigorously at depth, and carry that more vigorous mixing
closer to the surface.

2.7 Fluid mixing

The goal of the bubble cloud model is to develop an effective diffusivity for
the vertical mixing process. Koch [13] determines the rate o« N'/2 at which
the diffusivity grows with the number N of random sedimenting particles in
a periodic box. He concludes that the diffusion (in that case) is dominated
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by convective motions occurring on the scale of the box size. In the case of a
single-cell random distribution, the diffusivity is convergent.

We begin the development of an effective diffusivity far below the sur-
face, by following an evolving cloud of fluid tracer points with time. The
effective diffusivity is related to the rate of spread of tracer points through
Dgs; = o?/(2t). Care is taken in measuring the standard deviation o at
times when the fluid point motion is no longer self-correlated. In the calcula-
tions we approximate true bubble-bubble hydrodynamic interaction with its
mean effect; namely, by having the bubbles rise at their average speed due
to hydrodynamic interaction with zero horizontal velocity. This increases the
residence time a passing bubble has with a neighboring fluid point, which
induces more fluid point mixing. Numerical results are shown in Fig 2. The
eddy diffusivity € includes molecular diffusivity as well.

Following [14], we estimate the dimensionless eddy diffusivity €3, /(Usa)
as the product of the rate at which a tracer point undergoes interaction with
a nearby bubble-image pair, R, times the mean square vertical displacement
caused by such an interaction. By nearby, we mean, say, within the box
defined in section 2.3; this is related to the cloud structure. On average, there
is one bubble within such a distance, which rises through the neighborhood
over a time proportional to a¢~1/3 /Up; hence R o« Up¢'/3/a.

The square of the vertical displacement caused by an interaction is con-
veniently obtained numerically by integrating the motion of a tracer point
while it is within a distance n=1/3/2 of a bubble rising at the mean speed.
This is subsequently averaged over the neighborhood of the tracer point, as
the next interacting bubble could appear with equal probability anywhere
within the neighborhood. Because this is just a scaling argument, we obtain
the multiplicative constant (0.2 in this case) by best matching the data with
the result of the scaling argument. A convenient formula (nearly identical to
the scaling law) is

o0
SHL 2 ’ (3)
an 1- C ¢§

where v = 0.327534, ¢ = 1.2601 and ¢ = 0.0948548; this is shown in Fig. 2,
along with the results of simulations.

There is no need to modify the scaling argument just described for points
at a finite distance from the free surface. All that changes is that the vertical
displacement of a tracer particle is reduced as a consequence of the proximity
of the image bubble. The way in which the eddy diffusivity decreases as one
approaches the surface, made dimensionless by its value at great depth, is

shown in Fig. 3. We emphasize that the same scaling law was used to obtain
Figs. 2 and 3. A convenient formula is (to ¢ = 0.006):

enr(z’) _ _n(9)
€Hr 1+n(¢)’

(4)
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Fig. 2. Comparison of the scaling law (3) and numerical data for the dimensionless
eddy diffusivity €37; /(Uoa) far below the surface as a function of the volume fraction

¢

where n(¢) = 0.144053¢4'/2 — 1.09454¢. The root mean square vertical dis-
placement of tracer points associated with an interaction with a rising bubble
is always much less than the depth of the tracer points. This ensures that a
local description of the transport in terms of a diffusivity is valid [14].
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Fig. 3. Dimensionless eddy diffusivity ex;(z*)/e%; as a function of dimensionless
depth z* below the surface

Finally, we show in Fig. 4 the results of a strong test of the depth-
dependent effective diffusivity. Tracer points are released just below the sur-
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face (z = —0.05 cm), where the eddy diffusivity is most rapidly changing, and
allowed to spread due to the rise of a cloud of 50 um bubbles with ¢ = 0.00524
for 0.8s. In the figure we show the normalized PDFs of tracer particle depths;
the asymmetry of the PDFs is a consequence of the depth-dependence of
the mixing. A secondary effect is related to the skewness found in the ver-
tical velocity PDFs (see Fig. 1). The two curves correspond to the result
of a bubble cloud simulation, and that of a finite difference calculation of
the time-dependent diffusion equation employing the depth-dependent effec-
tive diffusivity obtained from the scaling analysis. The comparison is quite
satisfactory considering the fits of the scaling analysis spans four orders of
magnitude in ¢, and the diffusivity in this problem varies by more than two
orders of magnitude across the domain. Other tests gave similar results.

14
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Fig. 4. PDF of tracer particle depths at 0.8 s. Particles were initially released in a
plane at z = —0.05 cm. The simulation results represent the average of 500 initial
bubble cloud realizations; each bubble cloud consisted of 50 um bubbles with ¢ =
0.00524. The effective diffusivity over the domain varies by more than two orders
of magnitude

Unfortunately, there is little in the way of experimental data to which we
can compare. But we now discuss some results that are roughly comparable.
Nicolai, et al. [20] did make various measurements of properties in a settling
suspension at ¢ = 0.05, but nothing is known of the structure of their sus-
pension. They found u, sq/Us = 0.62 £ 0.08, whereas our correlation yields
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uz,s4/Uo = 0.55. Koch and Shagfeh by comparison predict u, s4/Us = 2.2
in a spontaneously screened suspension. Nicolai, et al. measured the vertical
self-diffusivity of the particles to be €%, /Upa = 5 (6 for [9]); our correlation
yields 7.3 for tracer point diffusivity, and Koch and Shagfeh determine 10.4.
The self-diffusivity of bubbles would be a little smaller than our tracer point
diffusivity of 7.3. We note that Nicolai, et al. find €%, /Upa decreases with
¢ at larger concentrations —this they attribute to the collective motion of
small clusters of particles. Such an effect is beyond the scope of the present
work.

In a very recent series of experiments, Segre, et al. [25] undertook a
detailed examination of suspension structure during sedimentation. They
found (u, sa/Usp) /3. Segre, et al. also determined a lengthscale from
the spatial correlation of the vertical component of velocity fluctuations to
be & o< a¢p~1/3. Our suspension exhibits the same scaling as a consequence of
the distribution we assume. In their model, the correlation lengthscale £ is the
cutoff length beyond which particles are no longer randomly distributed —as
we have shown, this is the screening length. No experiments have addressed
the variations in properties near a free surface.

3 Surfactant scavenging

We are interested primarily in the average steady-state behavior of surfac-
tant transport within a horizontally large bubble cloud; however, fluctua-
tions from average quantities also play a role. As bubbles rise, fluctuations
in fluid velocity will induce fluctuations in bubble rise speed, bubble num-
ber density, bulk surfactant concentration, bubble-surface concentration of
surfactant, and bulk-surface concentration of surfactant. In keeping with the
assumptions established for the effective diffusivity of a single-cell random
distribution of bubbles we assume that the bubble number density and bub-
ble velocity have negligible fluctuating components. We do, however, allow
fluctuations in bulk fluid velocity, bulk surfactant concentration, bulk-surface
concentration of surfactant, and bubble-surface concentration of surfactant.

There are several kinetic models that describe adsorption and desorption
of surfactants. In general, the rate of adsorption depends on the nearby bulk
concentration of surfactant, and on the population already resident at the
interface. The rate of desorption normally depends only on the population on
the interface. Nonlinear saturation yields a maximum surface concentration,
or surface-excess, of surfactants that can populate an interface. In the bulk
fluid, surfactant molecules convect and diffuse, although the latter with low
mobility due to the large sizes of these molecules.

The equations are developed in [30}, along with a scheme for horizontal
averaging and an analysis of terms involving averages of products of fluctua-
tion quantities. The latter are shown to be negligible as a consequence of the
separation of time scales for convection and surfactant kinetics.
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The steady-state transport equation for the (horizontally averaged) bulk
concentration of surfactant ¢&(z) is

4 (EHI(Z) dffj)) ~ dra’ngy(z) = 0. (5)

Here ()
_ ~ - (1€
() = & [#0) (e — 7)) = 22
represents the average flux of surfactant, from the bulk liquid to the bubbles,
at depth z. This term accounts for (Langmuir) surfactant kinetics through the
adsorption rate constant a and the desorption rate constant 3. Typical values
for these constants are in the range 107 cm®/(gmolsec) and 107 cm®/gmol,
respectively. A typical bulk concentration of surfactant is 10~7 gmol/cm?®.
A representative saturation concentration of surfactant on a surface is v =
5 x 107'%gmol/cm?. A typical bubble size of interest is 50 um.

In order to determine the boundary condition at the bulk surface, we
assume that adsorption/desorption at the bulk surface is also described by
Langmuir kinetics and apply the same decomposition into mean and fluctu-
ating components. The flux of surfactant from the bulk liquid to the bulk
surface is ~

ds = a [&(0) (Ysat — ¥s) — %
The boundary condition at the bulk surface is a balance between the flux of
surfactant diffusing toward (or away) from the surface into the bulk and the
flux of surfactant adsorbing to (or desorbing from) the surface:
de(0)
‘EHI(O)E" =gs. (6)

The governing equation for the average steady-state surfactant concen-

tration on the bubbles at depth z is,
_ d(z)
2 — G (2). 7
w2 = gy(2) 7
where @, = Up(1—1.27¢'/%)(1+¢) is the average bubble rise speed for a single-
cell random distribution of bubbles adjusted to account for the upward flux
of fluid and bubble volume from the bubble generation at the bottom of the
bubble cloud. To determine the average steady-state surfactant concentration
on the bulk surface we add the flux of surfactant from the bulk fluid to the
flux of surfactant by bubbling. The result is,

qs + 47ra2nﬂb’7b(0) = 0. (8)

Solved together, equations (5, 6, 7, 8) yield the averaged profiles with
depth of the surfactant concentration resident on bubble surfaces and dis-
solved in the bulk liquid. The main result is the enrichment of surfactant
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concentration on the bulk surface. Solution procedures for these nonlinear
equations are outlined in [30].

A simple limiting case can be appreciated by examination of (8). Suppose
bubbles arrive at the surface fully saturated with surfactant, and that the
surface is fully saturated also; then (8) becomes

o
— 2 -
E = 4ma Nz Up-

Hence, the limiting number density of bubbles required to keep the bulk sur-
face fully saturated is nmar = o/ (4ma?w3). For the typical parameter values
we mentioned earlier, this yields ny,, = 6500cm™3 or ¢qe = 0.34%. Even
in this limiting case, the bubble-induced mixing affects how long bubbles
must rise in order to reach the surface fully saturated. When surface con-
centrations are less than saturation, the bubble-induced mixing determines
what will be the enrichment of the bulk surface by bubbling [30].

Associated with the assumption of Langmuir kinetics, one can write down
an expression for the surface pressure [6]

T = —RT¥sq¢ ln(l - ’Ys/"/sat)a 9

where R is the gas constant and T is the temperature. The Gibbs surface
elasticity for the same Langmuir kinetics is

Eq = RT’YS/(I - VS/VSat)- (10)

These are required in the analysis of capillary wave damping, to which we
now turn.

4 Capillary wave damping

Capillary wave damping associated with the presence of surfactants has been
of considerable interest for some time. In [24] we present a review of the
methods used for measuring capillary wave damping, as well as a description
of new experiments and theory for a capillary wave damping experiment in
a circular domain. The reason for exploration of a circular geometry rather
than the usual rectangular geometry is the elimination of edge effects. In the
experiments, the waves are produced by rapid (120 Hz) vertical vibrations of a
cylindrical vessel. The capillary waves propagate in from the rim of the vessel,
where there is a contact line, to the geometric center. There, they reflect.
The superposition of the inward-traveling wave and the outward-traveling
reflection creates a true standing wave only at the origin; otherwise, the wave
is primarily inward-propagating as a consequence of geometric focusing and
damping.

In [24], a theory for the amplitude of such waves was developed, without
the usual restriction to distances far-removed from the origin. The theoreti-
cal amplitude curves for the wave slope were compared to data from a laser
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slope gauge [23]. This allowed for the determination of the exponential damp-
ing factor as a function of surfactant surface concentration. The theory and
experiment showed excellent agreement, as shown in Fig. 5.

slope
0.175

0.15

0.125

0.075

0.025

Fig. 5. Comparison of the theoretical curve and experimental data (points) for the
amplitude of the slope (m/m versus r (cm) of time-dependent capillary waves in a
cylindrical vessel. The surfactant is stearic acid, at a concentration of 0.1381 ug/cm?

The wavelength and decay rate of capillary waves is related to the Gibbs
elasticity Fp and surface tension o = g9 — 7 through a dispersion relation.
The latter derives from a solvability criterion that stems from the boundary
conditions associated with normal and shear stresses at the interface. The dis-
persion relation developed in [24], without the far-field approximation, is the
same for plane and for circular waves. At frequencies greater than about 1 Hz,
the dispersion relation is the same for soluble and insoluble surfactants [18].

The surfactants considered in [24] were stearic acid, oleyl alcohol and
hemicyanine —all insoluble. However, we can get an idea of how sensitively
capillary wave damping depends on surface concentration of surfactant by
examination of the data for these insoluble surfactants, as the mechanics of
damping is the same for high enough frequencies [18]. For stearic acid, Saylor,
et al. [24] find that an increase of surface concentration from 0.1 ug/cm? to
0.27 pg/cm? results in a change in the decay rate of waves from 0.12cm™!
to 0.55cm™!. In a soluble surfactant system governed by Langmuir kinetics,
given Ymez = 10 x 1071% gmol/cm? and T = 20 C, one finds through the use
of (9,10) and the dispersion relation [24] that a bulk surface enrichment of
¥s = 1 x 107 gmol/cm? to v = 7 x 1071° gmol/cm? leads to a comparable
change in the decay rate of waves from 0.15cm™! to 0.51cm™'. In Fig. 6, we
show the decay of two one-dimensional waves for comparison. The volume
fraction of the bubble cloud required to enhance the surface-excess to v, =
7 x 107'% gmol/cm? is readily computed [30]. In any case it is certainly less
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than ¢maez = 0.34%, in the case of the typical parameter values we mentioned
earlier.

X

2 4 6 8 10

Fig. 6. Comparison of the amplitude decay with position z (cm) of two different
planar capillary waves, with decay rates corresponding to 10% and 70% of satura-
tion for the model surfactant. The slowly decaying wave has decay rate 0.15 cm™’;
the rapidly decaying wave has decay rate 0.51 cm™!

5 Conclusions

In this paper we presented a theory for enhanced capillary wave damping
which is associated with surfactant scavenged by a rising cloud of micro-
bubbles. The surface enrichment by deposition of surfactant scavenged from
the bulk depends sensitively on the mixing properties of the cloud. The rising
bubbles mix the fluid vigorously at depth, but in a way which declines dra-
matically as the bulk surface is approached. A scaling model was developed
for the effective diffusivity of the vertical mixing, in concert with numerical
simulation of cloud dynamics.

An enrichment of the surface concentration of surfactant by scavenging
results in decreased surface tension and increased surface elasticity. Through
the dispersion relation for capillary waves, these changes are connected to an
increase in the damping of capillary waves.

This work was supported by the Office of Naval Research under the Young
Investigator and AASERT programs, and through the Naval Research Lab-
oratory.
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