MAT 3190 Binary Operations Exercises

- (1) Decide whether the given set B is closed iwth respect to the binary operation defined on the set of integers \mathbb{Z} . If B is not closed, exhibit elements $x, y \in B$ such that $x * y \notin B$.
 - a.) x * y = xy, $B = \{n \in \mathbb{Z} : n \ge -3\}$. b.) x * y = x - y $B = \{n \in \mathbb{Z} : n > 0\}$. c.) $x * y = x^2 + y^2$ $B = \{n \in \mathbb{Z} : n > 0\}$.
- (2) In each part below, a rule is given that determines a binary operation * on Z. Determine whether the operation is commutative or associative and whether there is an identity element. Also, find the inverse of each invertible element.
 - a.) x * y = x 6. b.) x * y = 3(x + y).
 - c.) x * y = x + xy + y + 2.
 - d.) x * y = |x y|.
- (3) Prove or disprove that the set of even integers is closed under addition. Do the same for multiplication.
- (4) Assume that * is a binary operation on a nonempty set A which is commutative and associative. Show that

$$[(a * b) * c] * d = (d * c) * (a * b).$$

for all $a, b, c, c \in A$.

(5) Assume that * is an associative binary operation on A with an identity element. Prove that the inverse of an element is unique when it exists.