MAT 3190

Binary Operations

Exercises

(1) Decide whether the given set B is closed iwth respect to the binary operation defined on the set of integers \mathbb{Z}. If B is not closed, exhibit elements $x, y \in B$ such that $x * y \notin B$.
a.) $x * y=x y, \quad B=\{n \in \mathbb{Z}: n \geq-3\}$.
b.) $x * y=x-y \quad B=\{n \in \mathbb{Z}: n>0\}$.
c.) $x * y=x^{2}+y^{2} \quad B=\{n \in \mathbb{Z}: n>0\}$.
(2) In each part below, a rule is given that determines a binary operation $*$ on \mathbb{Z}. Determine whether the operation is commutative or associative and whether there is an identity element. Also, find the inverse of each invertible element.
a.) $x * y=x-6$.
b.) $x * y=3(x+y)$.
c.) $x * y=x+x y+y+2$.
d.) $x * y=|x-y|$.
(3) Prove or disprove that the set of even integers is closed under addition. Do the same for multiplication.
(4) Assume that $*$ is a binary operation on a nonempty set A which is commutative and associative. Show that

$$
[(a * b) * c] * d=(d * c) *(a * b)
$$

for all $a, b, c, c \in A$.
(5) Assume that $*$ is an associative binary operation on A with an identity element. Prove that the inverse of an element is unique when it exists.

