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The primary source used to create these notes was L-functions and Densities
of Primes by Anatoly Preygel.

1 Review of Class Field Theory
Let K be a number field.

Definition 1.1 By a modulus m, we mean a finite formal product of primes of
K raised to non-negative powers.

We shall write z =1 (mod m) to mean that ord(z — 1), > m where p” || m
for p non-archimedean and v(z) > 0 for v real archimedean.

We have a natural map ¢ : K* — I defined by t(a) = aOy. Set I} = I2™ where
Sw = {p finite : p|m} and K™ = ,~1(I®). Now denote K* = {x € K™ : 2z =1
(mod m)} and PP = ((K{).

Definition 1.2 The Ray class group is defined to be Cl = I/ P2.
We may neglect the K subscript when no ambiguity can arise.

Definition 1.3 A congruence subgroup H™ is any subgroup of I™ containing
P™. A (generalized) class group is the corresponding quotient I™/H™.

Proposition 1.1 If m|n, then I™ C I™. Then given a congruence subgroup
H™ C I™, if we set H® = H™NI", then H" is a congruence subgroup with H™ =
H"P™. Moreover, the inclusion I"™ — I™ induces an isomorphism I"/H" =
I™/H™.

From this we see that if a class group is defined mod m, then it is defined
mod all multiples of m. For any class group, there is a unique minimal m called
the conductor and denoted by 7.

One can show that these generalized class groups are indeed finite as is the
case with the standard ideal class group.

Now given a finite Galois extension L/K of number fields and a prime p of
K, the Galois group Gal(L/K) acts transitively on the set of primes P; lying
above p. For each P;, set Dy, = {0 € Gal(L/K) : o(P;) = P;}. If we let [
and k denote the residue fields of L and K respectively, then there is a natural
surjective homomorphism Gal(L/K) — Gal(l/k), and we define the kernel to be
Ip,. If P; is unramified, then Ip, is trivial, and so we have an isomorphism. We

define (#) to be the inverse image of the Frobenius element of Gal(l/k). If
P;, is ramified, we may still apply this construction, but the result is only well-
defined up to conjugation. If this case, we write {(Lé,K)} for the corresponding

conjugacy class. Note that applying o € Gal(L/If ) to P; has the effect of




conjugating (#) by o. Therefore if L/K is an abelian extension, then (
only depends on p. In this case, we denote it by (L/TK)

LI/DiK)

Theorem 1.1 (Artin Reciprocity) Given an abelian extension L/K of num-
ber fields, there exists a modulus m divisible by all primes that ramify in L and
a congruence subgroup H™ C I™ such that the map

(%) ™ /H™ — Gal(L/K)

defined by sending p to (L/TK) for p prime and extending multiplicatively. Fur-

thermore, every generalized class group arises in such a manner.

2 Class Field Theory and L-functions

Given x € Hom(CI™, S'), we may regard it as a character on I™ in a natural
way. We may then extend it to all ideals by defining it to be zero on ideals
dividing m .

Definition 2.1 Given xy € Hom(CI™,S%), we define the Dirichlet-Hecke L-

series by
= x(a)
L(m, 5,x) = - Norm(a)=s"

Definition 2.2 Given ¢ € CI™, we define the ideal class zeta function by
C(s,0) = Z Norm(a)~°.
acc
Note that this enables us to write

L(m757X): Z X(C)C(S,C).

ceCl(m)

Proposition 2.1 Let x € Hom(CI™, S). Then L(m,s,x) converges absolutely
for R(s) > 1 and uniformly for R(s) > 1+ 6 for any § > 0. Moreover, for
R(s) > 1, we have the FEuler product factorization

L(m,s,x) = [ J(1 = Norm(p) ~*x(p))~".
pim

Definition 2.3 Given a modulus m and a character x € Hom(CI™,S'), we
define the conductor of x, denoted 1y, to be the conductor of I™/ker(x).

Proposition 2.2 Given the above set-up, t, is the smallest modulus n for which
X factors through CI™. Furthermore, there exists a unique XY € Hom(Clx,S!)
so that x factors through x.



Definition 2.4 Let L/K be a Galois extension of number fields with Galois

group G, and let p : G — GL,(C) be an irreducible representation of G. Given a
finite prime p in K and a prime P lying over p in L, (L/TK) is a coset in G of Ip.

But p( L/K)|1P is independent of the choice of representative for the coset and
moreover remains invariant if one replaces P by a different prime lying over p .

Therefore the quantity det(id — p(L/K)|1P) is well-defined. We then define the
Artin L-function attached to p by

L(L/K,s,p) Hdet (id —p( {JK)IP)I.

For our purposes, it shall suffice to consider the case when L/K is abelian,
and p is one-dimensional, i.e. a character on G. In this case, we will see that
the L-function agrees with a Dirichlet-Hecke L-function and thus inherits all the
corresponding properties.

Theorem 2.1 Let L/K be an abelian extension of number fields with Galois
group G, and let p be a character on G. Let I be the subfield of L fized by ker p.
By class field theory, p corresponds to some x € Hom(CI™, S). Let 1 be the
conductor, and let x be the induced character. Then

L(L/K,s,p) = L(m,s,X).

Proposition 2.3 Let L/K be an abelian extension of number fields. Then on
their common domain of definition, we have

HLL/Ksp s) II Lt 5,0

X7#X0

Comparing vanishing orders at s = 1 yields the following.

Proposition 2.4 Given the above set-up, L(m,1,x) # 0 for x # Xo.

3 The Chebotarev Density Theorem

Definition 3.1 If S is a set of finite primes of K, then we define the density

of S by
N —Ss
0(S) = lim ZPES Orm(st
s—1+ >, Norm(p)

Note that 0 < §(5) <1

The first step in proving the Chebotarev Density Theorem is to establish
the following key technical result.



Proposition 3.1 Let K be a number field, m a modulus, and H™ a congruence
subgroup. Given ¢ € I™/H™, if we let S(c) denote the set of prime ideals

representing ¢, then
1

6(5(c)) = W

Combining this with class field theory and using the fact that we can neglect
a finite set of primes yields the following

Theorem 3.1 (Chebotarev Density Theorem - Abelian Case) Let L/K
be an abelian extension of number fields with Galois group G, and let o € G.
Set

S = {p unramified finite prime of K : (L/pK) =o}.
Then )
0(8) = —-.
(5) el

Now let L/K be an arbitrary Galois extension of number fields with Galois
group G. Fix ¢ € G, and write ¢, for the corresponding conjugacy class. Set

S = {p finite prime of K : (L/pK) =c¢y}.
Then |
c
5(9) = 2.

Let H =< ¢ >, and set S" = {p € S : p unramified in L/K}, T =

H
{P prime of L* over p € ' : (L/If ) =0, frok(P) = epn/x(P) = 1}, and
U = {B prime of L over p € S’ : (L/TK) = o}. Then one can show that the map
U — T defined by P — BN Opwu is a bijection, and the map U — S’ defined

by P — PN Ok is % to one. Then the abelian case gives us 6(T) = ﬁ SO
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But S and S’ only differ by a finite set so they must have the same density. We
have thus shown the following.

Theorem 3.2 (Chebotarev Density Theorem) Given the above set-up, we
have



