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The primary source used to create these notes was L-functions and Densities
of Primes by Anatoly Preygel.

1 Review of Class Field Theory

Let K be a number field.

Definition 1.1 By a modulus m, we mean a finite formal product of primes of
K raised to non-negative powers.

We shall write x ≡ 1 (mod m) to mean that ord(x− 1)p ≥ m where pm ||m
for p non-archimedean and ν(x) > 0 for ν real archimedean.

We have a natural map ι : K× → IK defined by ι(a) = aOk. Set ImK = ISm

K where
Sm = {p finite : p |m} and Km = ι−1(ImK). Now denote Km

1 = {x ∈ Km : x ≡ 1
(mod m)} and Pm

K = ι(Km
1 ).

Definition 1.2 The Ray class group is defined to be ClmK = ImK/P
m
K .

We may neglect the K subscript when no ambiguity can arise.

Definition 1.3 A congruence subgroup Hm is any subgroup of Im containing
Pm. A (generalized) class group is the corresponding quotient Im/Hm.

Proposition 1.1 If m | n, then In ⊂ Im. Then given a congruence subgroup
Hm ⊂ Im, if we set Hn = Hm∩In, then Hn is a congruence subgroup with Hm =
HnPm. Moreover, the inclusion In ↪→ Im induces an isomorphism In/Hn ∼=
Im/Hm.

From this we see that if a class group is defined mod m, then it is defined
mod all multiples of m . For any class group, there is a unique minimal m called
the conductor and denoted by †.

One can show that these generalized class groups are indeed finite as is the
case with the standard ideal class group.

Now given a finite Galois extension L/K of number fields and a prime p of
K, the Galois group Gal(L/K) acts transitively on the set of primes Pi lying
above p . For each Pi, set Dbi = {σ ∈ Gal(L/K) : σ(Pi) = Pi}. If we let l
and k denote the residue fields of L and K respectively, then there is a natural
surjective homomorphism Gal(L/K)→ Gal(l/k), and we define the kernel to be
IPi . If Pi is unramified, then IPi is trivial, and so we have an isomorphism. We

define (L/KPi ) to be the inverse image of the Frobenius element of Gal(l/k). If
Pi, is ramified, we may still apply this construction, but the result is only well-

defined up to conjugation. If this case, we write {(L/KPi )} for the corresponding
conjugacy class. Note that applying σ ∈ Gal(L/K) to Pi has the effect of
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conjugating (L/KPi ) by σ. Therefore if L/K is an abelian extension, then (L/KPi )

only depends on p . In this case, we denote it by (L/Kp ).

Theorem 1.1 (Artin Reciprocity) Given an abelian extension L/K of num-
ber fields, there exists a modulus m divisible by all primes that ramify in L and
a congruence subgroup Hm ⊂ Im such that the map

(
L/K

·
) : Im/Hm → Gal(L/K)

defined by sending p to (L/Kp ) for p prime and extending multiplicatively. Fur-
thermore, every generalized class group arises in such a manner.

2 Class Field Theory and L-functions

Given χ ∈ Hom(Clm, S1), we may regard it as a character on Im in a natural
way. We may then extend it to all ideals by defining it to be zero on ideals
dividing m .

Definition 2.1 Given χ ∈ Hom(Clm, S1), we define the Dirichlet-Hecke L-
series by

L(m, s, χ) =
∑
a

χ(a)

Norm(a)−s
.

Definition 2.2 Given c ∈ Clm, we define the ideal class zeta function by

ζ(s, c) =
∑
a∈c

Norm(a)−s.

Note that this enables us to write

L(m, s, χ) =
∑

c∈Cl(m)

χ(c)ζ(s, c).

Proposition 2.1 Let χ ∈ Hom(Clm, S1). Then L(m, s, χ) converges absolutely
for <(s) > 1 and uniformly for <(s) > 1 + δ for any δ > 0. Moreover, for
<(s) > 1, we have the Euler product factorization

L(m, s, χ) =
∏
p-m

(1−Norm(p)−sχ(p))−1.

Definition 2.3 Given a modulus m and a character χ ∈ Hom(Clm, S1), we
define the conductor of χ, denoted †χ, to be the conductor of Im/ ker(χ).

Proposition 2.2 Given the above set-up, †χ is the smallest modulus n for which
χ factors through Cln. Furthermore, there exists a unique χ̃ ∈ Hom(Cl†χ , S1)
so that χ factors through χ̃.

2



Definition 2.4 Let L/K be a Galois extension of number fields with Galois
group G, and let ρ : G→ GLn(C) be an irreducible representation of G. Given a

finite prime p in K and a prime P lying over p in L, (L/KP ) is a coset in G of IP .

But ρ(L/Kp )|IP is independent of the choice of representative for the coset and
moreover remains invariant if one replaces P by a different prime lying over p .

Therefore the quantity det(id−ρ(L/Kp )|IP ) is well-defined. We then define the
Artin L-function attached to ρ by

L(L/K, s, ρ) =
∏
p

det(id−ρ(
L/K

p
)|IP )−1.

For our purposes, it shall suffice to consider the case when L/K is abelian,
and ρ is one-dimensional, i.e. a character on G. In this case, we will see that
the L-function agrees with a Dirichlet-Hecke L-function and thus inherits all the
corresponding properties.

Theorem 2.1 Let L/K be an abelian extension of number fields with Galois
group G, and let ρ be a character on G. Let F be the subfield of L fixed by ker ρ.
By class field theory, ρ corresponds to some χ ∈ Hom(Clm, S1). Let † be the
conductor, and let χ̃ be the induced character. Then

L(L/K, s, ρ) = L(m, s, χ̃).

Proposition 2.3 Let L/K be an abelian extension of number fields. Then on
their common domain of definition, we have

ζL(s) =
∏
ρ

L(L/K, s, ρ) = ζK(s)
∏
χ 6=χ0

L(†χ, s, χ̃).

Comparing vanishing orders at s = 1 yields the following.

Proposition 2.4 Given the above set-up, L(m, 1, χ) 6= 0 for χ 6= χ0.

3 The Chebotarev Density Theorem

Definition 3.1 If S is a set of finite primes of K, then we define the density
of S by

δ(S) = lim
s→1+

∑
p∈S Norm(p)−s∑
p Norm(p)−s

.

Note that 0 ≤ δ(S) ≤ 1.

The first step in proving the Chebotarev Density Theorem is to establish
the following key technical result.
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Proposition 3.1 Let K be a number field, m a modulus, and Hm a congruence
subgroup. Given c ∈ Im/Hm, if we let S(c) denote the set of prime ideals
representing c, then

δ(S(c)) =
1

[Im : Hm]
.

Combining this with class field theory and using the fact that we can neglect
a finite set of primes yields the following

Theorem 3.1 (Chebotarev Density Theorem - Abelian Case) Let L/K
be an abelian extension of number fields with Galois group G, and let σ ∈ G.
Set

S = {p unramified finite prime of K : (
L/K

p
) = σ}.

Then

δ(S) =
1

|G|
.

Now let L/K be an arbitrary Galois extension of number fields with Galois
group G. Fix σ ∈ G, and write cσ for the corresponding conjugacy class. Set

S = {p finite prime of K : (
L/K

p
) = cσ}.

Then

δ(S) =
|cσ|
|G|

.

Let H =< σ >, and set S′ = {p ∈ S : p unramified in L/K}, T =

{P prime of LH over p ∈ S′ : (L/L
H

P ) = σ, fLH/K(P ) = eLH/K(P ) = 1}, and

U = {P prime of L over p ∈ S′ : (L/KP ) = σ}. Then one can show that the map

U → T defined by P 7→ P ∩ OLH is a bijection, and the map U → S′ defined

by P 7→ P ∩ OK is |ZH ||H| to one. Then the abelian case gives us δ(T ) = 1
|T | so

δ(S′) = δ(T )
|H|
ZH

=
1

|H|
|H|
|ZH |

=
1

|ZH |
=
|cσ|
|G|

.

But S and S′ only differ by a finite set so they must have the same density. We
have thus shown the following.

Theorem 3.2 (Chebotarev Density Theorem) Given the above set-up, we
have

δ(S) =
|cσ|
|G|

.
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